Grazing Cattle, Sheep, and Goats Are Important Parts of a Sustainable Agricultural Future
Abstract
:Simple Summary
Abstract
1. Introduction
2. Insight from Learning That Animals Are Part of the Land
3. Basic Principles of Rotational Grazing
3.1. Four Basic Types of Grazing
3.2. Soil Health Benefits of Rotational Grazing
4. High-Plains United States Livestock Grazing
4.1. Grazing Cover Crops in Nebraska and Other High-Plains States
4.2. Rotational Grazing on the Nebraska Sand Hills and Eastern Colorado
5. Grazing the Eastern Wetter Parts of the U.S.
Increasing Rancher Interest in Grazing
6. South American Sustainable Grazing Systems
7. European Grazing Systems
8. China and Northern Steppes Land Grazing
9. Arid, Hot Australian Outback
10. Grazing in Africa
11. Choosing the Right Livestock for Extensive Grazing for Both Productivity and Animal Welfare
12. Other Ways to Use Livestock to Improve Sustainability
12.1. Effects of Fire
12.2. Grazing under Solar Panels
12.3. Combine the Best of Organic and Conventional Agriculture
13. Animal Welfare Issues in Grazing Systems
14. Local Grazing May Reduce Supply Chain Fragility
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grandin, T. Auditing animal welfare at slaughter plants. Meat Sci. 2010, 86, 56–65. [Google Scholar] [CrossRef]
- Grandin, T.; Cockram, M. The Slaughter of Farmed Animals: Practical Ways of Enhancing Animal Welfare; CABI: Wallingford, UK, 2020. [Google Scholar]
- Pendergrast, N. The vegan shift in the Australian animal movement. Int. J. Soc. Soc. Policy 2020, 41, 407–423. [Google Scholar] [CrossRef]
- Birch, J.; Burn, C.; Schnell, A.; Browning, H.; Crump, A. Review of Evidence of Sentience in Cephalopod Mollusks and Decapod Crustaceans. 2021. Available online: Lse.ac.uk/business/consulting/asset/documents/Sentience-in-cephalopod-mollusks-and-Decapod-crustaceans-Final-Report-November-2021.pdf (accessed on 21 June 2022).
- de Waal, F.B.; Andrews, K. The question of animal emotions. Science 2022, 6587, 1351–1352. [Google Scholar] [CrossRef]
- Hampton, J.O.; Jones, B.; McGreevy, P.D. Social licenses and animal welfare: Developments from the past decade in Australia. Animals 2020, 19, 2237. [Google Scholar] [CrossRef]
- Rischer, H.; Szilvay, G.R.; Oksman-Caldentey, K.M. Cellular agriculture-industrial biotechnology for food and materials. Curr. Opin. Biotechnol. 2020, 61, 128–134. [Google Scholar] [CrossRef]
- Sergelidas, D. Lab grown meat: The future sustainable alternative to meat or a novel functional food. Biomed. J. Sci. Tech. Res. 2019, 17, 12440–12444. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, H.J.; Lee, D.A.; Kang, J.H.; Ramanz, S.; Park, S.; Huv, S.J. Principle protocols for processing cultured meat. J. Anim. Sci. Tech. 2021, 63, 673–680. [Google Scholar] [CrossRef]
- Vafi, K.; Rafiq, T.; Biraud, S.; Thorpe, A.; Duren, R.; Hopkins, F.M. Methane super emitters in California oil fields. Res. Sq. 2021, 1–31. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, C.; Singh, J.S. Wetlands: A major natural source responsible for methane emission. In Restoration of Wetland Ecosystem, a Trajectory towards a Sustainable Environment; Upadhyay, A.K., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Hristov, A.N. Historic pre-European settlement and present-day contribution of wild ruminants to enteric methane emissions in the United States. J. Anim. Sci. 2012, 90, 1371–1375. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Sci. 2020, 157. [Google Scholar] [CrossRef]
- Byrnes, R.; Eastburn, D.J.; Tate, K.W.; Roche, L.M. A global met analysis of grazing impacts on soil health indicators. J. Environ. Qual. 2018, 47, 758–765. [Google Scholar] [CrossRef]
- Apfelbum, S.L.; Thompson, R.; Wang, F.; Mosier, S.; Teague, R.; Byck, P. Vegetation water in filtration in soil carbon response to adaptive multi paddock and conventional grazing and southeastern USA ranches. J. Environ. Manag. 2022, 308, 114576. [Google Scholar] [CrossRef]
- Teague, W.R.; Apfelbaum, S.; Lai, R.; Kneotes, U.P.; Rowntree, J.; Davies, C.A.; Conser, R.; Rasmussen, M.; Hatfield, J.; Wang, T.; et al. The role of ruminants in reducing agriculture’s carbon footprint in North America. J. Soil Water Conserv. 2016, 71, 156–164. [Google Scholar] [CrossRef]
- Barry, S.; Huntsinger, L. Rangeland sharing, livestock grazing’s role in conservation of imperiled species. Animals 2021, 13, 4466. [Google Scholar] [CrossRef]
- Menefree, D.S.; Collins, H.; Smith, D.; Haney, R.L.; Fay, P.; Polley, W. Cropping management in a livestock-pasture-crop rotation integration modifies microbial communities, activity, and soil health scare. J. Environ. Qual. 2021. [Google Scholar] [CrossRef]
- Becker, A.E.; Horowitz, L.S.; Ruark, M.D.; Jackson, R. Surface soil carbon stocks are greater under well-managed grazed pasture than row crops. Soil Water Manag. Conserve 2022, 86, 758–768. [Google Scholar] [CrossRef]
- Lee-Mader, E.; Stine, A.; Fowler, J.; Hopwood, J.; Vaughan, M. Cover Cropping for Pollinators and Beneficial Insects, SARE (Sustainable Agriculture Research Education USDA) 2014. Available online: Save.org/wp-contact/uploads/cover-cropping-for-pollinators-and-beneficial-insects.pdf (accessed on 6 July 2022).
- Outhanwaite, C.L.; McCann, P.; Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 2022, 605, 97–102. [Google Scholar] [CrossRef]
- Perez-Gusman, L.; Phillips, L.A.; Seuradge, B.J.; Agomoh, I.; Drury, C.F.; Acosta-Martinez, V. An evaluation of biological soil health indicators in four long-term agro ecosystems in Canada agro systems. Agrosyst. Geosci. Environ. 2021, 4, e20164. [Google Scholar] [CrossRef]
- Ahlbrandt, T.S.; Fryberger, S.G. Eolian deposit in the Nebraska sandhills, Geologic and Paleoecologic studies in Nebraska sandhills. In Geological Survey Professional Paper; 1120-A.B.C.; United States Printing Office: Washington, DC, USA, 1980. [Google Scholar]
- Nunez, C. Grassland, like the little Missouri National Grassland in the United States, fill a niche between forests and deserts often bordering on the two. In National Geographic; National Geographic Society: Washington, DC, USA, 2020. [Google Scholar]
- Seo, N.S. Sublime grasslands: A story of the Pampas, Prairie, Steppe, and Savannas, Where Animals Graze. In Climate Change and Economics; Palgrave Macmillan: London, UK, 2021. [Google Scholar]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland carbon: A global review. Global Chang. Biol. 2013, 23, 585–594. [Google Scholar] [CrossRef]
- Frank, D.A.; McNaughton, S.J.; Tracey, B.F. The ecology of earth’s grazing ecosystems. BioScience 1998, 48, 513–521. [Google Scholar] [CrossRef]
- Bailey, D.W.; Woodward, O.K.; Gross, J.E.; Laca, E.A.; Rittenhouse, L.R. Mechanisms that result in large herbivore grazing distribution patterns. J. Range Manag. 1997, 49, 386–400. [Google Scholar] [CrossRef]
- Machado, L.O.C.P.; Sco, H.L.S.; Daros, R.R.; Enriquez, D.; Wendling, A.V.; Pinheiro, L.C. Voisin rotational grazing as a sustainable alternative for livestock production. Animals 2021, 11, 3434. [Google Scholar] [CrossRef]
- Aljoe, H. The keys to successful regenerative grazing management. In Progressive Cattle; Progressive Publishing: Jerome, ID, USA, 2022; pp. 33–35. [Google Scholar]
- Provenza, F.D.; Villalba, J.J.; Dziba, L.E.; Atwood, S.B.; Banner, R.E. Linking herbivore experience, varied diets, and plant biochemical diversity. Small Rumin. Res. 2003, 49, 257–274. [Google Scholar] [CrossRef]
- Rui, Y.; Jackson, R.D.; Cotrufo, M.F.; Ruak, M.D. Persistent soil carbon enhanced in mollisols by well-managed grassland but not annual grain or dairy forage cropping systems. Proc. Natl. Acad. Sci. USA 2022, 119, e2118931119. [Google Scholar] [CrossRef]
- Mosier, S.; Apfelbaum, S.; Byck, P.; Cotrufo, F.M.F. Adaptive multi paddock grazing enhances nitrogen stock and stabilization throughout southeastern grazing lands. J. Environ. Manag. 2021, 288, 112409. [Google Scholar] [CrossRef]
- de Otalora, X.; Epelde, L.; Arranz, J.; Garbisu, C.; Ruiz, R.; Mandaluniz, N. Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecol. Indictors 2020, 125, 107484. [Google Scholar] [CrossRef]
- DiVirgilio, A.; Lambertucci, S.A.; Morales, J.M. Sustainable grazing management of rangelands: Over a century of searching for a silver bullet. Agric. Ecosyst. Environ. 2019, 283, 106561. [Google Scholar] [CrossRef]
- McDonald, S.E.; Reid, N.; Smith, R.; Waters, C.M.; Hunter, J.; Rader, R. Rotational grazing management achieves similar plant diversity outcome in areas managed for conservation in a semi-arid rangeland. Rangel. J. 2019, 41, 135–143. [Google Scholar] [CrossRef]
- Schatz, T.; Ffloukes, D.; Shotton, P.; Hearnden, M. Effect of high intensity rotational grazing on the growth of cattle grazing buffalo pasture in the northern territory and on carbon sequestration. Anim. Prod. Sci. 2020, 60, 1814–1821. [Google Scholar] [CrossRef]
- Augustine, D.J.; Derner, J.D.; Fernandez-Gimenez, M.E.; Porensky, L.M.; Wilmer, H.; Briske, D.D.; Fernandez-Gimenez, M.E.; Parensky, L.M.; Wilmer, H.; Briske, D.D.; et al. Adaptive multi paddock rotational grazing management a ranch scale assessment of effects on vegetation and livestock performance on semi-arid rangeland. Rangel. Ecol. Manag. 2020, 3, 796–810. [Google Scholar] [CrossRef]
- Drewnoski, M.; Parsons, J.; Blaner, H.; Redfeam, D.; Hales, K.; MacDonald, J. Forages and pastures symposium—Cover crops in livestock production whole system approach: Can cover crops pull double duty: Conservation and profitable forage production in midwestern United States? J. Anim. Sci. 2018, 96, 3503–3512. [Google Scholar] [CrossRef] [PubMed]
- Wyffels, S.A.; Bourgault, M.; Dafoe, J.M.; Lamb, P.F.; Boss, D.L. Introducing cover crops as a fallow replacement in Northern Great Plains 1. Evaluation of cover crop mixes as forage source for grazing cattle. Renew. Agric. Food Syst. 2021, 37, 292–302. [Google Scholar] [CrossRef]
- Farney, J.K.; Sassenrath, G.F.; Davis, C.; Presley, D.A. Growth forage quality and economics of cover crop mixes for grazing. In Kansas Agricultural Experiment Station Reports; Kansas State University: Manhattan, KS, USA, 2018. [Google Scholar]
- Rai, T.; Tieya, T.; Kumer, S.; Sexton, P. The medium term impacts of integrated crop performance. Agronomy J. 2021, 113, 5207–5221. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Drewnoski, M.F.; MacDonald, J.C.; Redfearn, D.D.; Parsons, J.; Lesoing, G.W.; Williams, T. Does cover crop grazing damage soils and reduce crop yields. Agrosyst. Geosci. Environ. 2020, 3, e20102. [Google Scholar] [CrossRef]
- Kuhn, A. Livestock Grazing Impacts on Crop and Soil Responses for Two Cropping Systems. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2021. [Google Scholar]
- Conway, A.C.; Bondurant, R.G.; Hilscher, F.H.; Parsons, J.; Redifearn, D.; Drewnoski, M.F. Impact of grazing spring rye on subsequent crop yields and profitability. In Nebraska Beef Report; University of Nebraska: Lincoln, NE, USA, 2019; pp. 47–48. [Google Scholar]
- Riley, H.E.; Hales, K.E.; Shackelford, S.D.; Freetly, H.C.; Drewnoski, M.E. Effect of Rapeseed Inclusion in Late Summer Planted Oats Pasture on Growing Performance of Beef Steers. Nebraska Beef Cattle Reports. 2019. Available online: https://digitalcommons.unl.edu/animalscinbcr/1036/ (accessed on 15 June 2022).
- Wagner, P.M.; Abagandura, G.O.; Mamo, M.; Weissingling, T.; Wingeyer, A.; Bradshaw, J.D. Abundance and diversity of dung beetles (Coleoptera scarab aeoida) as affected by grazing management in Nebraska Sandhill Ecosystem. Environ. Entomol. 2021, 50, 222–231. [Google Scholar] [CrossRef]
- Andradi, B.Q.; Shropshire, A.; Johnson, J.J.; Redden, M.D.; Semerad, T.; Soper, J.; Beckman, B.; Mibby, B.; Eskridge, K.M.; Velesky, J.D.; et al. Vegetation and animal performance responses to stocking density grazing systems in Nebraska Sandhills Meadows. Rangel. Ecol. Manag. 2022, 82, 86–96. [Google Scholar] [CrossRef]
- Steiner, J.L.; Starks, P.J.; Neel, J.P.S.; Northrop, B.; Turner, K.E.; Gowda, P.; Calemon, S.; Brown, M. Managing tallgrass prairies for productivity and ecological function: A long-term grazing experiment in the Southern Great Plains. USA, Grasslands Manage. Sustain. Agrosyst. 2019, 11, 699. [Google Scholar] [CrossRef]
- Machmuller, M.G.; Kramer, M.G.; Cyle, T.K.; Hill, N.; Hancock, D.; Thompson, A. Emerging land use practices rapidly increase soil organic matter. Nat. Commun. 2015, 6, 6995. [Google Scholar] [CrossRef]
- Wang, F.; Apfelbaun, S.I.; Thompson, R.L.; Teague, R.; Byke, P. Effect of adaptive multiple paddock and continuum grazing on fine scale spatial patterns: Vegetation species and biomass in commercial ranches. Landsc. Ecol. 2021, 36, 2725–2741. [Google Scholar] [CrossRef]
- Aiken, G.E.; Henning, J.C.; Rayburn, E. Chapter 9—Management strategies for pasture, beef cattle, and marketing of stocker-feeder calves in the Upper South I-64 Corridor. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Rouquette, M., Aiken, G.E., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 227–264. [Google Scholar]
- Mote, R.S.; Hill, N.S.; Skarlupka, J.H.; Tran, V.T.; Walker, D.I.; Turner, Z.B.; Sanders, Z.P.; Jones, D.P.; Suen, G.; Filipov, N.M. Toxic fall fescue grazing increases susceptibility of Angus steer fecal microbiota and plasma/urine metabolome to environmental effects. Sci. Rep. 2020, 10, 2497. [Google Scholar] [CrossRef]
- Poole, D.H.; Mayberry, K.J.; Newsome, M.; Poole, R.K.; Gallious, J.M.; Khanal, P.; Poore, M.H.; Serao, N.V.L. Evaluation of resistance to fescue to toxicosis in purebred Angus cattle utilizing animal performance and cytokine response. Toxins 2020, 12, 796. [Google Scholar] [CrossRef] [PubMed]
- Kaester, L.R.; Poole, D.H.; Serao, N.V.L.; Schmitz-Esser, S. Beef cattle that respond differently to fescue toxicosis have distinct gastrointestinal tract microbiota. PLoS ONE 2020, 15, e0229192. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.D. Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation. Agric. Environ. Lett. 2022, 7, e20059. [Google Scholar] [CrossRef]
- Aide, M.; Graden, I.; Murray, S.; Schabbing, C.; Scott, S.; Siemers, S.; Svenson, S.; Weather, J. Optimizing beef cow grazing across Missouri with an emphasis on protecting ecosystem services. Land 2021, 10, 1076. [Google Scholar] [CrossRef]
- Bailey, D.W.; Moslely, J.C.; Estell, R.E.; Cibils, A.F.; Horney, M.; Hendrickson, J.R.; Walker, J.W.; Launchbaugh, K.L.; Burritt, E.A. Synthesis paper targeted livestock as a prescription for healthy rangelands. Rangel. Ecol. Manag. 2019, 72, 865–877. [Google Scholar] [CrossRef]
- Wang, T.; Jin, H.; Kreuter, U.; Feng, H.; Hennessy, D.A.; Teague, R.; Cho, Y. Challenges of rotational grazing practices. Views from nonadopters across the Great Plains. USA. J. Environ. Manag. 2020, 256, 109941. [Google Scholar] [CrossRef]
- Koop, F. Uruguay Plans to Boost Beef Production and Lessen Its Climate Footprint. Dialogo Chino 2021. Available online: https://dialogochino.neet/en/agriculture/uruguay-strategy-boost-beef-china-lessen-footprint (accessed on 10 August 2022).
- Alves, L.A.; de Oliveira Denardin, L.G.; Martins, A.P.; Anghinoni, I.; de Faccio Carvalho, P.C.; Tiecher, T. Soil acidification and P.K, Ca, and Mg budget is affected by sheep grazing and crop rotation in a long-term integrated crop livestock system in southern Brazil. Geoderma 2019, 351, 197–208. [Google Scholar] [CrossRef]
- de Faccio, P.C.; Pontes-Prater, A.; Szymcak, L.S.; Filho, W.S.; Moojen, F.G.; Lemain, G. Reconnecting grazing livestock to crop landscapes: Reversing specialization trends to restore landscape multifunctionality. Front. Sustain. Food Syst. 2021, 5, 750765. [Google Scholar] [CrossRef]
- Alves, L.A.; Denardin, L.G.O.; Martins, A.; Bayer, C.; Veloso, M.G.; Bremm, C.; Carvalho, P.C.R.; Machado, D.R.; Tiecher, T. The effect of crop rotation and sheep grazing management on plant production and soil C and N stock in a long-term integrated crop livestock system in southern Brazil. Soil Tillage Res. 2020, 203, 104678. [Google Scholar] [CrossRef]
- Schuster, M.Z.; Harrison, S.K.; de Moraes, A.; Sulk, R.M.; Carvalho, P.C.F.; Lang, C.R.; Anghinoni, L.; Lustosa, S.B.C.; Gastal, F. Effects of crop rotation and sheep grazing management on seedbank and emerged weed flora under no tillage integrated crop livestock system. J. Agric. Sci. 2018, 156, 810–820. [Google Scholar] [CrossRef]
- Broom, D.M. A method for assessing sustainability with beef production as an example. Biol. Rev. 2021, 96, 1836–1853. [Google Scholar] [CrossRef] [PubMed]
- Polania-Hincapiem, K.L.; Olaya-Montes, A.; Cherubin, M.R.; Herrera-Valencia, W.; Ortiz-Morea, F.A.; Silva-Olaya, A.M. Soil physical quality responses to silvopastoral implementation in Columbia Amazon. Geoderma 2021, 136, 114900. [Google Scholar] [CrossRef]
- Kumar, R.V.; Roy, A.K.; Kumar, S.; Gautam, K.; Singh, A.K.; Ghosh, A.; Singh, H.V.; Koli, P. Silvopastural systems for restoration of degraded lands in a semi-arid region of India. Land Degrad. Dev. 2022, in press. [Google Scholar] [CrossRef]
- Fraser, M.D.; Garcia, R.R. Mixed species grazing management to improve sustainability and biodiversity, The Contribution of Animals to Human Welfare. Rev. Sci. Tech. 2018, 37, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Soussana, J.F.; Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop production systems. Agric. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Bonaudo, T.; Bandahan, A.B.; Sabatier, R.; Ryschawny, J.; Bellon, S. Agroecological principles for the redesign of integrated crop livestock systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Veysset, P.; Lherm, M.; Bebin, D.; Rouiene, M. Mixed crop livestock farming systems: A sustainable way to produce beef? Commercial farms results, in questions and perspectives. Animals 2014, 8, 1218–1228. [Google Scholar] [CrossRef]
- Benthien, O.; Braun, M.; Rieman, J.C.; Stolter, C. Long-term effect of sheep and goat grazing on plant diversity in a semi dry natural grassland habitat. Hellyon 2018, 4, e00556. [Google Scholar] [CrossRef]
- Toth, E.; Deak, B.; Valko, O.; Keleman, A.; Miglecz, T.; Tothmeresz, B.; Tarok, P. Livestock type is more crucial than grazing intensity: Traditional cattle and sheep grazing in short grass steppes. Land Degrad. Dev. 2016, 29, 231–239. [Google Scholar] [CrossRef]
- Evans, D.M.; Redpath, S.M.; Evans, S.A.; Elston, D.A.; Gardner, C.J.; Dennis, P.; Pakeman, R.J. Low intensity mixed livestock grazing improves breeding abundance of common insectivorous passerine. Biol. Lett. 2016, 2, 636–638. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, X.Q.; Wang, X.Y.; Liu, N.; Kan, H.M. Establishing the carrying capacity of grasslands of China: A Review. Rangel. J. 2014, 36, RJ13033. [Google Scholar] [CrossRef]
- Kemp, D.; Han, G.; Hou, F.; Hou, K.; Li, Z.; Sun, Y.; Wang, Z.; Wu, J.; Zhang, X.; Zhang, Y.; et al. Sustainable management of Chinese grassland-issues and knowledge. Front. Agric. Sci. Eng. 2018, 5, 9–23. [Google Scholar] [CrossRef]
- Dong, L.; Martinson, V.; Wu, Y.; Zheng, Y.; Liang, C.; Liu, Z.; Mulder, J. Effect of grazing exclusion and rotational grazing on labile soil organic carbon in North China. Soil Sci. 2021, 72, 372–384. [Google Scholar] [CrossRef]
- Wang, L.; Gan, Y.; Wiesmeier, M.; Zhao, G.; Zhang, R.; Han, G.; Siddique, K.H.M.; Hou, F. Grazing exclusion—An effective approach for naturally restoring degraded grasslands in Northern China. Land Degrade Dev. 2018, 29, 4439–4455. [Google Scholar] [CrossRef]
- Li, C.; Dong, G.; Sui, B.; Wang, H.; Zhao, L. Effects of grassland conversion in the Chinese Chernozem region in soil carbon, nitrogen, and phosphorus. Sustainability 2021, 13, 2554. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, J.; Ni, U.S. Towards a sustainable grazing management based on biodiversity and ecosystem multifunctionality in dryland. Curr. Opin. Environ. Sustain. 2001, 48, 36–43. [Google Scholar] [CrossRef]
- Munkhzul, O.; Oyundelger, K.; Narantuga, N.; Tuushintogtokh, I.; Oyuntsetseg, B.; Jaschke, Y. Grazing effects on Mongolian steppe vegetation: A systemic review of local literature. Front. Ecol. Eval. 2021, 9, 703220. [Google Scholar] [CrossRef]
- Dai, L. Moderate grazing promotes the root biomass in kobresia meadow on northern Qinhai-Tibet Plateau. Ecol. Evol. 2019, 9, 9395–9406. [Google Scholar] [CrossRef]
- Bao, X.; Yi, J.; Liu, S.; Gaowa, J.; Wureqimuge; Jigejidesuran; Budebateer; Wang, P.; Lian, Y. Effects of different grazing on the typical steppe vegetation characteristics on the Mongolian plateau. Nomadic Peoples 2020, 14, 53–66. [Google Scholar]
- MacLaren, C.; Storkey, J.; Strauss, J.; Swanepool, P.; Dehnen-Schmitz, K. Livestock on diverse cropping systems improve weed management and sustainable yields whilst reducing inputs. J. Appl. Ecol. 2019, 56, 144–156. [Google Scholar] [CrossRef]
- Wells, H.B.M.; Crego, R.D.; Ekadeli, J.; Namoni, M.; Kimuyo, D.M.; Odadi, W.O.; Porenskym, L.M.; Dougill, A.J.; Stringer, L.C.; Young, T.P. Less is More: Lowering cattle stocking rates enhances wild herbivore habitual use and cattle foraging efficiency. Front. Ecol. 2022, 11, 825689. [Google Scholar] [CrossRef]
- Scasta, J.D.; Lalman, D.L.; Henderson, L. Drought mitigation for grazing operations: Matching the animal to the environment. Rangelands 2016, 38, 204–210. [Google Scholar] [CrossRef]
- Thomas, H.S. Murray Grey cattle fit the grassfed niche. In The Stockman Grass Farmer; Mississippi Valley Publishing: Ridgeland, MS, USA, 2022; pp. 7–9. [Google Scholar]
- Case, A. Updated Numbers Show 1,084 Homes Destroyed in Marshall Fire. 9 News 2022. Available online: https://www.9news.com/article/news/local/wildfire/1084-homes-destroyed-marshall-fire/73-5fc58914-54ae-4eb2-a368-4a88e6535c5f (accessed on 18 June 2022).
- Carrasco, A. Marshall Mesa Trailhead Reopens 4 Months after Wildfire. 2022. Available online: https://www.9news.com/article/life/style/colorado-guide/marshall-mesa-trailhead-reopens-boulder/73-15c568dc-5f3f-408c-bc45-1584b23722bd (accessed on 10 August 2022).
- Morris, C.D.; Everson, C.S.; Everson, T.M.; Gordijn, P.J. Frequent burning maintained a stable grassland over four decades in Drakensberg, South Africa. Afr. J. Range Forage Sci. 2021, 1, 39–52. [Google Scholar] [CrossRef]
- Smith, T. RAP reveals grassland stories. In Angus Beef Bulletin; Angus Association: Saint Joseph, MO, USA, 2021; pp. 84–85. [Google Scholar]
- Alyssa, A.C. Lamb Growth and Pasture Production in Agrivoltaic Production System. Honors Thesis, Oregon State University, Corvallis, OR, USA, 2020. Available online: https://lir.libraryoregonstate.edu/concern/honors_college_thesis/v405sh87r (accessed on 10 August 2022).
- Kochencloerfer, N.; Thonney, M.L. Grazing Sheep on Solar Sites in New York, Opportunities and Challenges; Cornell University: Ithaca, NY, USA, 2021; Available online: https://solargrazing.org/wp-content/uploads/2021/02/Solar-Site-Sheep-Grazing-in-NY.pdf (accessed on 18 June 2022).
- Li, X.; Li, B.; Chen, L.; Liang, J.; Huang, R.; Tang, X.; Zhang, X.; Wang, C. Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat-rice rotation. Eur. J. Agron. 2022, 133, 126445. [Google Scholar] [CrossRef]
- Heyman, S. The Planter of Modern Life: Louis Broomfield and the Seeds of Modern Food Production; W.W. Norton: New York, NY, USA, 2020. [Google Scholar]
- Montgomery, D. The Novelist Who Loved the Soil. Nature 2020, 580, 319–320. [Google Scholar] [CrossRef]
- Whitlock, J. New Report Estimates Fertilizer Prices to Increase by 80%. TexasFarmBureau.org, 2022. Available online: https://lafarmbureaunews.com/news/2022/1/19/new-report-estimates-fertilizer-prices-to-increase-by-80 (accessed on 18 June 2022).
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McCueevy, P.D.; Jones, E.; Wilkins, C. The 2020 Five Domains Model: Including Human-Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef]
- Grandin, T. Improving Animal Welfare: A Practical Approach. In CABI Publishing; Wallingford: Oxford, UK, 2020. [Google Scholar]
- Cebellos, M.; Gois, K.C.R.; Sant Anna, A.C.; de Costa, M.J.R.P. Frequent handling of grazing beef cattle maintained under rotational stocking method improves temperament over time. Anim. Prod. Sci. 2016, 58, 307–313. [Google Scholar] [CrossRef]
- Szegedi, K. COVID-19 Has Broken the Global Food Supply Chain. So Now What? Deloitte Consumer Business. 2021. Available online: https://www2.deloitte.com/ch/en/pages/consumer-business/articles/covid19-has-broken-the-global-food-supply-chain.html (accessed on 19 June 2022).
- DuPuis, M.E.; Ransom, E.; Worosz, M.R. Food supply chain shocks and the pivot toward local: Lessons from the global pandemic. Front. Sustain. Food Syst. 2022, 6, 836574. [Google Scholar] [CrossRef]
- Grandin, T. Temple Grandin: Big Meat Supply Chains are Fragile. Forbes 2020. Available online: https://hub.biz/blog/temple-grandin-big-meat-supply-chains-are-fragile-8530161899365477320 (accessed on 20 June 2022).
- Grandin, T. Methods to prevent future severe animal welfare problems caused by COVID-19 in the Pork Industry. Animals 2021, 11, 830. [Google Scholar] [CrossRef]
- Thomas, P. Cattle ranchers take aim at meatpackers’ dominance. Wall Str. J. 2022. Available online: https://newyorklatestnews.com/cattle-ranchers-take-aim-at-meatpackers-dominance/432958/ (accessed on 19 June 2022).
- Eller, D. Lowan Company Plans to Build a $325 Million Beef Processing Plant in Council Bluffs. Lowa, Des Moines Regist. 2021. Available online: https://www.desmoinesregister.com/story/money/agriculture/2021/06/25/iowa-farm-company-cattlemens-heritage-build-325-million-beef-plant-near-council-bluffs-meatpacking/5345418001/ (accessed on 10 August 2022).
- Kovner, G. Bay Area Ranchers Open Their Own Mobile Meat Processing Plant, Filling a Key Gap for Local Industry. Press Democrat, 2022. Available online: Pressdemocrat.com/article/news/bay-area-ranchers-open-their-own-mobile-meat-processing-plant-filling-key/ (accessed on 19 June 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grandin, T. Grazing Cattle, Sheep, and Goats Are Important Parts of a Sustainable Agricultural Future. Animals 2022, 12, 2092. https://doi.org/10.3390/ani12162092
Grandin T. Grazing Cattle, Sheep, and Goats Are Important Parts of a Sustainable Agricultural Future. Animals. 2022; 12(16):2092. https://doi.org/10.3390/ani12162092
Chicago/Turabian StyleGrandin, Temple. 2022. "Grazing Cattle, Sheep, and Goats Are Important Parts of a Sustainable Agricultural Future" Animals 12, no. 16: 2092. https://doi.org/10.3390/ani12162092