Evaluation of a Novel Infrared Thermography Projection to Assess Udder Health in Primigravid Dairy Heifers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kossaibati, M.A.; Esslemont, R.J. The costs of production diseases in dairy herds in England. Vet. J. 1997, 154, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Auldist, M.J.; Coats, S.J.; Sutherland, B.J.; Hardham, J.F.; McDowell, G.H.; Rogers, G.L. Effects of somatic cell count and stage of lactation on the qualiy and storage life of ultra high temperature milk. J. Dairy Res. 1996, 63, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Bascom, S.S.; Young, A.J. A summary of the reasons why farmers cull cows. J. Dairy Sci. 1998, 81, 2299–2305. [Google Scholar] [CrossRef]
- De Vliegher, S.; Fox, L.K.; Piepers, S.; McDougall, S.; Barkema, H.W. Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. J. Dairy Sci. 2012, 95, 1025–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vliegher, S.; Laevens, H.; Barkema, H.W.; Dohoo, I.R.; Stryhn, H.; Opsomer, G.; De Kruif, A. Management practices and heifer characteristics associated with early lactation somatic cell count of Belgian dairy heifers. J. Dairy Sci. 2004, 87, 937–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santman-Berends, I.M.; Olde Riekerink, R.G.; Sampimon, O.C.; van Schaik, G.; Lam, T.J. Incidence of subclinical mastitis in Dutch dairy heifers in the first 100 days in lactation and associated risk factors. J. Dairy Sci. 2012, 95, 2476–2484. [Google Scholar] [CrossRef] [Green Version]
- Piepers, S.; De Vliegher, S.; De Kruif, A.; Opsomer, G.; Barkema, H. Impact of intramammary infections in dairy heifers on future udder health, milk production, and culling. Vet. Microbiol. 2009, 134, 113–120. [Google Scholar] [CrossRef]
- Sargeant, J.M.; Scott, H.M.; Leslie, K.E.; Ireland, M.J.; Bashiri, A. Clinical mastitis in dairy cattle in Ontario: Frequency of occurrence and bacteriological isolates. Can. Vet. J. 1998, 39, 33–38. [Google Scholar]
- Polat, B.; Colak, A.; Cengiz, M.; Yanmaz, L.E.; Oral, H.; Bastan, A.; Kaya, S.; Hayirli, A. Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. J. Dairy Sci. 2010, 93, 3525–3532. [Google Scholar] [CrossRef] [Green Version]
- Bertoni, A.; Mota-Rojas, D.; Álvarez-Macias, A.; Mora-Medina, P.; Guerrero-Legarreta, I.; Morales-Canela, A.; Gómez-Prado, J.; José-Pérez, N.; Martínez-Burnes, J. Scientific findings related to changes in vascular microcirculation using infrared thermography in the river buffalo. J. Anim. Behav. Biometeorol. 2020, 8, 288–297. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river Buffalo to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, K.G.; Lee, C.N.; Larson, J.E.; Davis, J. Alternative cooling of dairy cows by udder wetting. Trans. ASABE 2013, 56, 305–310. [Google Scholar] [CrossRef]
- Berry, R.J.; Kennedy, A.D.; Scott, S.L.; Kyle, B.L.; Schaefer, A.L. Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: Potential for mastitis detection. Can. J. Anim. Sci. 2003, 83, 687–693. [Google Scholar] [CrossRef]
- Kunc, P.; Knizkova, I.; Prikryl, M.; Maloun, J. Infrared thermography as a tool to study the milking process: A review. Agric. Trop. Subtrop. 2007, 40, 29–33. [Google Scholar]
- Bortolami, A.; Fiore, E.; Gianesella, M.; Corrò, M.; Catania, S.; Morgante, M. Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, somatic cell count and thermographic imaging. Pol. J. Vet. Sci. 2015, 18, 799–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colak, A.; Polat, B.; Okumus, Z.; Kaya, M.; Yanmaz, L.E.; Hayirli, A. Short communication: Early detection of mastitis using infrared thermography in dairy cows. J. Dairy Sci. 2008, 91, 4244–4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovinen, M.; Siivonen, J.; Taponen, S.; Hänninen, L.; Pastell, M.; Aisla, A.-M.; Pyörälä, S. Detection of clinical mastitis with the help of a thermal camera. J. Dairy Sci. 2008, 91, 4592–4598. [Google Scholar] [CrossRef] [Green Version]
- Metzner, M.; Sauter-Louis, C.; Seemueller, A.; Petzl, W.; Zerbe, H. Infrared thermography of the udder after experimentally induced Escherichia coli mastitis in cows. Vet. J. 2015, 204, 360–362. [Google Scholar] [CrossRef]
- Pezeshki, A.; Stordeur, P.; Wallemacq, H.; Schynts, F.; Stevens, M.; Boutet, P.; Peelman, L.J.; De Spiegeleer, B.; Duchateau, L.; Bureau, F.; et al. Variation of inflammatory dynamics and mediators in primiparous cows after intramammary challenge with Escherichia coli. Vet. Res. 2011, 42, 1–10. [Google Scholar] [CrossRef] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org (accessed on 4 October 2022).
- Zadoks, R.N.; Allore, H.G.; Barkema, H.W.; Sampimon, O.C.; Grohn, Y.T.; Schukken, Y.H. Analysis of an outbreak of Streptococcus uberis mastitis. J. Dairy Sci. 2001, 84, 590–599. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, D.J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A. Emperor penguin body surfaces cool below air temperature. Biol. Lett. 2013, 9, 20121192. [Google Scholar] [CrossRef]
- Mellish, J.-A.; Hindle, A.; Skinner, J.; Horning, M. Heat loss in air of an Antarctic marine mammal, the Weddell seal. J. Comp. Physiol. B. 2015, 185, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Nääs, I.A.; Romanini, C.E.B.; Neves, D.P.; do Nascimento, G.R.; Vercellino, R.A. Broiler surface temperature distribution of 42 day old chickens. Sci. Agric. 2010, 67, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Gebremedhin, K.G.; Wu, B. Modeling heat loss from the udder of a dairy cow. J. Therm. Biol. 2016, 59, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G. Practical Statistics for Medical Research; Chapman & Hall/CRC: London, UK, 1991. [Google Scholar]
- McCafferty, D.J. Applications of thermal imaging in avian science. Int. J. Avian Sci. 2013, 155, 4–15. [Google Scholar] [CrossRef] [Green Version]
- McCafferty, D.J.; Gallon, S.; Nord, A. Challenges of measuring body temperatures of free-ranging birds and mammals. Anim. Biotelemetry 2015, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Sordillo, L.M.; Streicher, K.L. Mammary gland immunity and mastitis susceptibility. J. Mammary Gland Biol. Neoplasia 2002, 7, 135–146. [Google Scholar] [CrossRef]
- Nyman, A.-K.; Emanuelson, U.; Gustafsson, A.H.; Persson Waller, K. Management practices associated with udder health of first-parity dairy cows in early lactation. Prev. Vet. Med. 2009, 88, 138–149. [Google Scholar] [CrossRef]
- Metzner, M.; Sauter-Louis, C.; Seemueller, A.; Petzl, W.; Klee, W. Infrared thermography of the udder surface of dairy cattle: Characteristics, methods, and correlation with rectal temperature. Vet. J. 2014, 199, 57–62. [Google Scholar] [CrossRef]
- Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Pushpadass, H.A.; Sivaram, M.; Ramesha, K.P.; Das, D.N.; Kataktalware, M.A.; Jayaprakash, G.; Patbandha, T.K. Investigation of body and udder skin surface temperature differentials as an early indicator of mastitis in Holstein Friesian crossbred cows using digital infrared thermography technique. Vet. World 2016, 9, 1386–1391. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.F.S.; Paim, T.P.; Cardoso, C.A.; Dallago, B.S.L.; de Melo, C.B.; Louvandini, H.; McManus, C. Mastitis detection in sheep by infrared thermography. Res. Vet. Sci. 2013, 94, 722–724. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, D.J. The value of infrared thermography for research on mammals: Previous applications and future directions. Mamm. Rev. 2007, 37, 207–223. [Google Scholar] [CrossRef]
- Tan, J.M.Y.; Ng, E.Y.K.; Acharya U., R.; Keith, L.G.; Holmes, J. Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data. J. Med. Syst. 2009, 33, 141–153. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Schaefer, A.L.; Cook, N.J.; Scotr, S.L. Infrared thermography as a non-invasive tool to study animal welfare. Anim. Welf. 2005, 14, 319–325. [Google Scholar]
- Rekant, S.I.; Lyons, M.A.; Pacheco, J.M.; Arzt, J.; Rodriguez, L.L. Veterinary applications of infrared thermography. Am. J. Vet. Res. 2016, 77, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Takemura, K.; Sato, S. Investigation of various essential factors for optimum infrared thermography. J. Vet. Med. Sci. 2013, 75, 1349–1353. [Google Scholar] [CrossRef] [Green Version]
- Lefcourt, A.M.; Huntington, J.B.; Akers, R.M.; Wood, D.L.; Bitman, J. Circadian and ultradian rhythms of body temperature and peripheral concentrations of insulin and nitrogen in lactating dairy cows. Domest. Anim. Endocrinol. 1999, 16, 41–55. [Google Scholar] [CrossRef]
- Salles, M.S.V.; da Silva, S.C.; Salles, F.A.; Roma, L.C.; El Faro, L.; Mac Lean, P.A.B.; Lins de Oliveira, C.E.; Martello, L.S. Mapping the body surface temperature of cattle by infrared thermography. J. Therm. Biol. 2016, 62, 63–69. [Google Scholar] [CrossRef]
- Kwon, C.J.; Brundage, C.M. Quantifying body surface temperature differences in canine coat types using infrared thermography. J. Therm. Biol. 2019, 82, 18–22. [Google Scholar] [CrossRef]
Temperature (°C) | |||||
---|---|---|---|---|---|
IRT | Udder Region | Projection | Median [Q1–Q3] | IQR | |
1st IRT | Quarter | Cd-Cr | Ts‘min’ | 23.55 [20.4–26.0] | 5.6 |
Ts‘max’ | 34.00 [32.5–34.7] | 2.2 | |||
dT‘min’ | 15.70 [13.3–17.9] | 4.6 | |||
dT‘max’ | 25.95 [24.5–28.0] | 11.5 | |||
Vt-Dr | Ts‘min’ | 25.25 [22.2–27.8] * | 5.6 | ||
Ts‘max’ | 34.50 [33.5–35.2] * | 1.7 | |||
dT‘min’ | 17.00 [14.5–19.9] * | 5.4 | |||
dT‘max’ | 26.20 [24.7–29.1] * | 4.4 | |||
Teat | Cd-Cr | Ts‘min’ | 23.20 [19.9–26.4] | 7.2 | |
Ts‘max’ | 29.30 [27.1–31.5] | 4.4 | |||
dT‘min’ | 15.10 [12.2–18.0] | 5.9 | |||
dT‘max’ | 21.40 [19.8–23.1] | 3.3 | |||
Vt-Dr | Ts‘min’ | 24.05 [19.9–27.5] * | 7.7 | ||
Ts‘max’ | 31.05 [29.8–33.0] * | 3.2 | |||
dT‘min’ | 16.40 [12.8–18.7] * | 5.9 | |||
dT‘max’ | 23.40 [22.2–25.5] * | 3.3 | |||
2nd IRT | Quarter | Cd-Cr | Ts‘min’ | 25.95 [23.6–28.2] | 4.6 |
Ts‘max’ | 34.40 [33.5–34.9] | 1.4 | |||
dT‘min’ | 16.70 [14.4–18.8] | 4.4 | |||
dT‘max’ | 25.75 [22.0–27.5] | 5.5 | |||
Vt-Dr | Ts‘min’ | 28.10 [25.8–29.7] * | 3.9 | ||
Ts‘max’ | 36.80 [34.4–35.6] * | 1.2 | |||
dT‘min’ | 18.50 [15.7–21.2] * | 5.5 | |||
dT‘max’ | 26.70 [23.0–28.5] * | 5.5 | |||
Teat | Cd-Cr | Ts‘min’ | 28.80 [26.9–30.1] | 3.3 | |
Ts‘max’ | 32.10 [30.8–33.0] | 2.2 | |||
dT‘min’ | 19.25 [15.6–21.6] | 6.1 | |||
dT‘max’ | 22.80 [19.2–25.5] | 6.3 | |||
Vt-Dr | Ts‘min’ | 29.30 [27.8–31.9] * | 3.0 | ||
Ts‘max’ | 33.10 [30.7–33.8] * | 1.9 | |||
dT‘min’ | 19.70 [16.3–22.5] * | 6.2 | |||
dT‘max’ | 23.75 [20.7–26.3] * | 5.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, P.B.A.; Viora, L.; Pepler, P.T.; Geraghty, T.; McCafferty, D.J.; Zadoks, R.N. Evaluation of a Novel Infrared Thermography Projection to Assess Udder Health in Primigravid Dairy Heifers. Animals 2022, 12, 3410. https://doi.org/10.3390/ani12233410
Simões PBA, Viora L, Pepler PT, Geraghty T, McCafferty DJ, Zadoks RN. Evaluation of a Novel Infrared Thermography Projection to Assess Udder Health in Primigravid Dairy Heifers. Animals. 2022; 12(23):3410. https://doi.org/10.3390/ani12233410
Chicago/Turabian StyleSimões, Patrícia B. A., Lorenzo Viora, Pieter T. Pepler, Timothy Geraghty, Dominic J. McCafferty, and Ruth N. Zadoks. 2022. "Evaluation of a Novel Infrared Thermography Projection to Assess Udder Health in Primigravid Dairy Heifers" Animals 12, no. 23: 3410. https://doi.org/10.3390/ani12233410