Zoo Animal Welfare Assessment: Where Do We Stand?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Fundamental Principles of Zoo Animal Welfare Assessment
3. Main Approaches to Zoo Animal Welfare Assessment
- Species-specific protocols;
- Generic protocols and risk assessment methods;
- Assessment of welfare based on time budgets;
- Keepers’ ratings;
- Cognitive bias testing.
3.1. Species-Specific Protocols
3.2. Generic Protocols and Risk Assessment Methods
3.3. Assessment of Welfare Based on Time Budgets
3.4. Keepers’ Ratings
3.5. Cognitive Bias
4. Animal-Based Welfare Indicators for Zoo Animals
4.1. Indicators Related to Abnormal Behaviours
4.1.1. Abnormal Repetitive Behaviours
4.1.2. Damaging Behaviours
Self-Injurious Behaviours
Regurgitation and Reingestion
4.1.3. Apathy
4.2. Indicators Related to Changes in the Expression of Normal Behaviours
4.2.1. Social Behaviours
Affiliative and Agonistic Behaviours
Maternal Behaviour
Play Behaviour
4.2.2. Maintenance Behaviours
Food Intake
Rumination
Sleep Behaviour
4.2.3. Behaviours Related with Exploration and Interaction with the Environment
Anticipatory Behaviour
Use of Enclosure
4.2.4. Other Behaviours
Displacement Behaviours
Vocalisations
4.3. Physiological Indicators of Welfare: Using Physiological, Pathophysiological, Cellular and Biochemical Biomarkers to Assess Welfare
4.3.1. Physiological Welfare Indicators: General Advantages and Limitations
Selecting the Right Matrix Is as Important as Selecting the Right Indicator
4.3.2. Physiological Indicators Related to Stress
Glucocorticoids
Heart and Respiratory Rates
Heterophil-to-Lymphocyte and Neutrophil-to-Lymphocyte Ratios
Immunoglobulin A
Dehydroepiandrosterone, Dehydroepiandrosterone Sulfate and Their Ratios with Glucocorticoids
Acute Phase Proteins
4.3.3. Other Physiological Indicators of Welfare
Telomere Length and Attrition
Oxytocin
Body Condition
Life Expectancy, Mortality, and Prevalence and Incidence of Diseases
Other Potential Physiological Indicators of Welfare for Zoo Animals
5. Areas Deserving Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraser, D.; Weary, D.; Pajor, E.A.; Milligan, B.N.; Fraser1t, D.; Weary, D.; Pajor, E.A.; Milligan, B.N. A Scientific Conception of Animal Welfare That Reflects Ethical Concerns. Anim. Welf. 1997, 6, 187–205. [Google Scholar] [CrossRef]
- Duncan, I.J.H.; Fraser, D. Understanding Animal Welfare. In Animal Welfare; Appleby, M., Hughes, B., Eds.; CAB International: Wallingford, UK, 1997; pp. 19–31. [Google Scholar]
- Mendl, M. Assessing the Welfare State. Nature 2001, 410, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, A.B.; Vigors, B.; Sandøe, P. What Is so Positive about Positive Animal Welfare?—A Critical Review of the Literature. Animals 2019, 9, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farm Animal Welfare Council. FAWC Updates the Five Freedoms. Vet. Rec. 1992, 17, 357. [Google Scholar]
- Mellor, D.J. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellor, D.; Beausoleil, N. Extending the “Five Domains” Model for Animal Welfare Assessment to Incorporate Positive Welfare States. Anim. Welf. 2015, 24, 241–253. [Google Scholar] [CrossRef]
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 Five Domains Model: Including Human–Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef]
- Orban, D.A.; Soltis, J.; Perkins, L.; Mellen, J.D. Sound at the Zoo: Using Animal Monitoring, Sound Measurement, and Noise Reduction in Zoo Animal Management. Zoo Biol. 2017, 36, 231–236. [Google Scholar] [CrossRef]
- Botreau, R.; Veissier, I.; Pern, P. Overall Assessment of Animal Welfare: Strategy Adopted in Welfare Quality. Anim. Welf. 2009, 18, 363–370. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW). Statement on the Use of Animal-based Measures to Assess the Welfare of Animals. EFSA J. 2012, 10, 2767. [Google Scholar] [CrossRef]
- Clegg, I.; Borger-Turner, J.; Eskelinen, H. C-Well: The Development of a Welfare Assessment Index for Captive Bottlenose Dolphins (Tursiops truncatus). Anim. Welf. 2015, 24, 267–282. [Google Scholar] [CrossRef]
- Tallo-Parra, O.; Delfour, F.; von Fersen, L.; Garcia-Párraga, D.; Manteca, X.; Moneal-Pawlowsky, T.; Pilenga, C.; Ternes, K.; Clegg, I.L.K.; Garcia Hartmann, M.; et al. Dolphin-WET (Welfare Evaluation Tool): A New Conceptual Framework for Welfare Evaluation of Bottlenose Dolphins (Tursiops truncatus) under Human Care. In Proceedings of the EAZA Annual Conference, Valencia, Spain, 17–21 September 2019. [Google Scholar]
- Salas, M.; Manteca, X.; Abáigar, T.; Delclaux, M.; Enseñat, C.; Martínez-Nevado, E.; Quevedo, M.; Fernández-Bellon, H. Using Farm Animal Welfare Protocols as a Base to Assess the Welfare of Wild Animals in Captivity—Case Study: Dorcas Gazelles (Gazella dorcas). Animals 2018, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Yon, L.; Williams, E.; Harvey, N.D.; Asher, L. Development of a Behavioural Welfare Assessment Tool for Routine Use with Captive Elephants. PLoS ONE 2019, 14, e0210783. [Google Scholar] [CrossRef] [Green Version]
- Wemelsfelder, F.; Hunter, T.E.A.; Mendl, M.T.; Lawrence, A.B. Assessing the “Whole Animal”: A Free Choice Profiling Approach. Anim. Behav. 2001, 62, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Skovlund, C.; Kirchner, M.; Moos, L.; Alsted, N.; Manteca, X.; Tallo-Parra, O.; Stelvig, M.; Forkman, B. A Critical Review of Animal-Based Welfare Indicators for Polar Bears (Ursus maritimus) in Zoos: Identification and Evidence of Validity. Anim. Welf. 2021, 30, 1–18. [Google Scholar] [CrossRef]
- Williams, E.; Chadwick, C.; Yon, L.; Asher, L. A Review of Current Indicators of Welfare in Captive Elephants (Loxodonta africana and Elephas maximus). Anim. Welf. 2018, 27, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Brando, S.; Buchanan-Smith, H.M. The 24/7 Approach to Promoting Optimal Welfare for Captive Wild Animals. Behav. Processes 2018, 156, 83–95. [Google Scholar] [CrossRef]
- Sherwen, S.; Hemsworth, L.; Beausoleil, N.; Embury, A.; Mellor, D. An Animal Welfare Risk Assessment Process for Zoos. Animals 2018, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Racciatti, D.S.; Feld, A.; Rial, L.A.; Blanco, C.; Tallo-Parra, O. Ackonc-AWA: A Multi-Species Animal Welfare Assessment Protocol for Wild Animals under Human Care to Overcome the Use of Generic Welfare Checklists. Front. Vet. Sci. 2022, 9, 1033821. [Google Scholar] [CrossRef]
- Watters, J.V.; Krebs, B.L.; Pacheco, E. Measuring Welfare through Behavioral Observation and Adjusting It with Dynamic Environments. In Scientific Foundations of Zoos and Aquariums; Cambridge University Press: Cambridge, UK, 2019; pp. 212–240. [Google Scholar]
- Miller, L.J.; Pisacane, C.B.; Vicino, G.A. Relationship between behavioural diversity and faecal glucocorticoid metabolites: A case study with cheetahs (Acinonyx jubatus). Anim. Welf. 2016, 25, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.J.; Vicino, G.A.; Sheftel, J.; Lauderdale, L.K. Behavioral Diversity as a Potential Indicator of Positive Animal Welfare. Animals 2020, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Cronin, K.A.; Ross, S.R. Technical contribution: A cautionary note on the use of behavioural diversity (H-Index) in animal welfare science. Anim. Welf. 2019, 28, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Whitham, J.C.; Wielebnowski, N. Animal-Based Welfare Monitoring: Using Keeper Ratings as an Assessment Tool. Zoo Biol. 2009, 28, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Wielebnowski, N.C.; Fletchall, N.; Carlstead, K.; Busso, J.M.; Brown, J.L. Noninvasive Assessment of Adrenal Activity Associated with Husbandry and Behavioral Factors in the North American Clouded Leopard Population. Zoo Biol. 2002, 21, 77–98. [Google Scholar] [CrossRef]
- Mendl, M.; Burman, O.H.P.; Parker, R.M.A.; Paul, E.S. Cognitive Bias as an Indicator of Animal Emotion and Welfare: Emerging Evidence and Underlying Mechanisms. Appl. Anim. Behav. Sci. 2009, 118, 161–181. [Google Scholar] [CrossRef]
- Clegg, I. Cognitive Bias in Zoo Animals: An Optimistic Outlook for Welfare Assessment. Animals 2018, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Manteca, X.; Amat, M.; Salas, M.; Temple, D. Animal-Based Indicators to Assess Welfare in Zoo Animals. CAB Rev. 2016, 11, 1–10. [Google Scholar] [CrossRef]
- Binding, S.; Farmer, H.; Krusin, L.; Cronin, K. Status of Animal Welfare Research in Zoos and Aquariums: Where Are We, Where to Next? J. Zoo Aquar. Res. 2020, 8, 166–174. [Google Scholar] [CrossRef]
- Hosey, G.; Melfi, V.; Behaviour, P.S. Zoo Animals: Behaviour, Management and Welfare; Oxford University Press: Oxford, UK, 2009; pp. 82–128. [Google Scholar]
- Hill, S.P.; Broom, D.M. Measuring Zoo Animal Welfare: Theory and Practice. Zoo Biol. 2009, 28, 531–544. [Google Scholar] [CrossRef]
- Freeman, H.D.; Gosling, S.D. Personality in Nonhuman Primates: A Review and Evaluation of Past Research. Am. J. Primatol. 2010, 72, 653–671. [Google Scholar] [CrossRef]
- Watters, J.V.; Powell, D.M. Measuring Animal Personality for Use in Population Management in Zoos: Suggested Methods and Rationale. Zoo Biol. 2012, 31, 1–12. [Google Scholar] [CrossRef]
- Stoinski, T.S.; Jaicks, H.F.; Drayton, L.A. Visitor Effects on the Behavior of Captive Western Lowland Gorillas: The Importance of Individual Differences in Examining Welfare. Zoo Biol. 2012, 31, 586–599. [Google Scholar] [CrossRef]
- Birkett, L.P.; Newton-Fisher, N.E. How Abnormal Is the Behaviour of Captive, Zoo-Living Chimpanzees? PLoS ONE 2011, 6, e20101. [Google Scholar] [CrossRef] [Green Version]
- Mason, G.J. Stereotypies: A Critical Review. Anim. Behav. 1991, 41, 1015–1037. [Google Scholar] [CrossRef] [Green Version]
- Mason, G. Stereotypic Behaviour in Captive Animals: Fundamentals and Implications for Welfare and Beyond. In Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare; CABI: Wallingford, UK, 2006; pp. 325–356. ISBN 978-0-85199-004-0. [Google Scholar]
- Rushen, J.; Mason, G. A Decade-or-More’s Progress in Understanding Stereotypic Behaviour. In Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare; Mason, G., Rushen, J., Eds.; CABI: Wallingford, UK, 2006; pp. 1–18. ISBN 978-0-85199-004-0. [Google Scholar]
- Warwick, C.; Arena, P.; Lindley, S.; Jessop, M.; Steedman, C. Assessing Reptile Welfare Using Behavioural Criteria. Practice 2013, 35, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Ashley, P.J. Fish Welfare: Current Issues in Aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Miller, L.J. Visitor Reaction to Pacing Behavior: Influence on the Perception of Animal Care and Interest in Supporting Zoological Institutions. Zoo Biol. 2012, 31, 242–248. [Google Scholar] [CrossRef]
- Mason, G.; Latham, N. Can’t Stop, Won’t Stop: Is Stereotypy a Reliable Animal Welfare Indicator? Anim. Welf. 2004, 13, S57–S69. [Google Scholar] [CrossRef]
- van Zeeland, Y.R.A.; Spruit, B.M.; Rodenburg, T.B.; Riedstra, B.; van Hierden, Y.M.; Buitenhuis, B.; Korte, S.M.; Lumeij, J.T. Feather Damaging Behaviour in Parrots: A Review with Consideration of Comparative Aspects. Appl. Anim. Behav. Sci. 2009, 121, 75–95. [Google Scholar] [CrossRef]
- Meehan, C.L.; Millam, J.R.; Mench, J.A. Foraging Opportunity and Increased Physical Complexity Both Prevent and Reduce Psychogenic Feather Picking by Young Amazon Parrots. Appl. Anim. Behav. Sci. 2003, 80, 71–85. [Google Scholar] [CrossRef]
- Mellor, E.L.; McDonald Kinkaid, H.K.; Mendl, M.T.; Cuthill, I.C.; van Zeeland, Y.R.A.; Mason, G.J. Nature Calls: Intelligence and Natural Foraging Style Predict Poor Welfare in Captive Parrots. Proc. R. Soc. B 2021, 288, 20211952. [Google Scholar] [CrossRef] [PubMed]
- Dorey, N.R.; Rosales-Ruiz, J.; Smith, R.; Lovelace, B.; Roane, H. Functional analysis and treatment of self-injury in a captive olive baboon. J. Appl. Behav. Anal. 2009, 42, 785–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, C.; Well, A.; Novak, M. Stereotypic and Self-Injurious Behavior in Rhesus Macaques: A Survey and Retrospective Analysis of Environment and Early Experience. Am. J. Primatol. 2003, 60, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.C.; Easley, S.P. An Analysis of Regurgitation and Reingestion in Captive Chimpanzees. Appl. Anim. Behav. Sci. 1996, 49, 403–415. [Google Scholar] [CrossRef]
- Hopper, L.M.; Freeman, H.D.; Ross, S.R. Reconsidering Coprophagy as an Indicator of Negative Welfare for Captive Chimpanzees. Appl. Anim. Behav. Sci. 2016, 176, 112–119. [Google Scholar] [CrossRef]
- Miller, L.J.; Tobey, J.R. Regurgitation and Reingestion in Bonobos (Pan paniscus): Relationships between Abnormal and Social Behavior. Appl. Anim. Behav. Sci. 2012, 141, 65–70. [Google Scholar] [CrossRef]
- Lukas, K.E. A Review of Nutritional and Motivational Factors Contributing to the Performance of Regurgitation and Reingestion in Captive Lowland Gorillas (Gorilla gorilla gorilla). Appl. Anim. Behav. Sci. 1999, 63, 237–249. [Google Scholar] [CrossRef]
- Cathomas, F.; Hartmann, M.; Seifritz, E.; Pryce, C.; Kaiser, S. The Translational Study of Apathy—An Ecological Approach. Front. Behav. Neurosci. 2015, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Marin, R.S.; Firinciogullari, S.; Biedrzycki, R.C. The Sources of Convergence between Measures of Apathy and Depression. J. Affect. Disord. 1993, 28, 117–124. [Google Scholar] [CrossRef]
- Manteca, X. Zoo Animal Welfare: Concepts and Indicators; Multimédica Ediciones Veterinarias: Sant Cugat del Vallès, Spain, 2015; ISBN 978-84-96344-53-5. [Google Scholar]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Forkman, B.; Dimitrov, I.; Langbein, J.; et al. Assessment of Positive Emotions in Animals to Improve Their Welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef]
- Webb, C.E.; Franks, B.; Romero, T.; Higgins, E.T.; de Waal, F.B.M. Individual Differences in Chimpanzee Reconciliation Relate to Social Switching Behaviour. Anim. Behav. 2014, 90, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, R.; Badnell-Waters, A.J.; Lambton, S.; Mason, G. Stereotypic Oral Behaviour in Captive Ungulates: Foraging, Diet and Gastrointestinal Function. In Stereotypic Animal Behaviour. Fundamentals and Applications to Welfare; Mason, G., Rushen, J., Eds.; CAB International: Wallingford, UK, 2006; pp. 19–53. [Google Scholar]
- Herskin, M.S.; Munksgaard, L.; Ladewig, J. Effects of Acute Stressors on Nociception, Adrenocortical Responses and Behavior of Dairy Cows. Physiol. Behav. 2004, 83, 411–420. [Google Scholar] [CrossRef]
- Baxter, E.; Plowman, A.B. The Effect of Increasing Dietary Fibre on Feeding, Rumination and Oral Stereotypies in Captive Giraffes (Giraffa camelopardalis). Anim. Welf. 2001, 10, 281–290. [Google Scholar] [CrossRef]
- Abou-Ismail, U.; Burman, O.; Nicol, C.; Mendl, M. Can Sleep Behaviour Be Used as an Indicator of Stress in Group-Housed Rats (Rattus norvegicus)? Anim. Welf. 2007, 16, 185–188. [Google Scholar] [CrossRef]
- Watters, J.V. Searching for Behavioral Indicators of Welfare in Zoos: Uncovering Anticipatory Behavior. Zoo Biol. 2014, 33, 251–256. [Google Scholar] [CrossRef]
- Krebs, B.L.; Chudeau, K.R.; Eschmann, C.L.; Tu, C.W.; Pacheco, E.; Watters, J.V. Space, Time, and Context Drive Anticipatory Behavior: Considerations for Understanding the Behavior of Animals in Human Care. Front. Vet. Sci. 2022, 9, 972217. [Google Scholar] [CrossRef]
- Brereton, J.E. Directions in Animal Enclosure Use Studies. J. Zoo Aquar. Res. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Pavani, S.; Maestripieri, D.; Schino, G.; Turillazzi, P.G.; Scucchi, S. Factors Influencing Scratching Behaviour in Long-Tailed Macaques (Macaca fascicularis). IJFP 1991, 57, 34–38. [Google Scholar] [CrossRef]
- Maestripieri, D.; Schino, G.; Aureli, F.; Troisi, A. A Modest Proposal: Displacement Activities as an Indicator of Emotions in Primates. Anim. Behav. 1992, 44, 967–979. [Google Scholar] [CrossRef]
- Laméris, D.W.; Verspeek, J.; Salas, M.; Staes, N.; Torfs, J.R.R.; Eens, M.; Stevens, J.M.G. Evaluating Self-Directed Behaviours and Their Association with Emotional Arousal across Two Cognitive Tasks in Bonobos (Pan paniscus). Animals 2022, 12, 3002. [Google Scholar] [CrossRef]
- Seyfarth, R.M.; Cheney, D.L. Production, Usage, and Comprehension in Animal Vocalizations. Brain Lang. 2010, 115, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Laurijs, K.A.; Briefer, E.F.; Reimert, I.; Webb, L.E. Vocalisations in Farm Animals: A Step towards Positive Welfare Assessment. Appl. Anim. Behav. Sci. 2021, 236, 105264. [Google Scholar] [CrossRef]
- Broom, D.M.; Johnson, K.G. (Eds.) Stress and Animal Welfare; Animal Welfare; Springer International Publishing: Cham, Switzerland, 2019; Volume 19, ISBN 978-3-030-32152-9. [Google Scholar]
- Düpjan, S.; Dawkins, M.S. Animal Welfare and Resistance to Disease: Interaction of Affective States and the Immune System. Front. Vet. Sci. 2022, 9, 929805. [Google Scholar] [CrossRef] [PubMed]
- Paul-Murphy, J.; Molter, C. Overview of Animal Welfare in Zoos. In Fowler’s Zoo and Wild Animal Medicine Current Therapy, Volume 9; Elsevier: St. Louis, MO, USA, 2019; pp. 64–72. [Google Scholar]
- Whitham, J.C.; Wielebnowski, N. New Directions for Zoo Animal Welfare Science. Appl. Anim. Behav. Sci. 2013, 147, 247–260. [Google Scholar] [CrossRef]
- Staley, M.; Conners, M.G.; Hall, K.; Miller, L.J. Linking Stress and Immunity: Immunoglobulin A as a Non-Invasive Physiological Biomarker in Animal Welfare Studies. Horm. Behav. 2018, 102, 55–68. [Google Scholar] [CrossRef]
- Bortolotti, G.R.; Marchant, T.A.; Blas, J.; German, T. Corticosterone in Feathers Is a Long-Term, Integrated Measure of Avian Stress Physiology. Funct. Ecol. 2008, 22, 494–500. [Google Scholar] [CrossRef]
- Gormally, B.M.G.; Romero, L.M. What Are You Actually Measuring? A Review of Techniques That Integrate the Stress Response on Distinct Time-Scales. Funct. Ecol. 2020, 34, 2030–2044. [Google Scholar] [CrossRef]
- Dawkins, M.S. Behaviour as a Tool in the Assessment of Animal Welfare. Zoology 2003, 106, 383–387. [Google Scholar] [CrossRef]
- Ralph, C.R.; Tilbrook, A.J. INVITED REVIEW: The Usefulness of Measuring Glucocorticoids for Assessing Animal Welfare. J. Anim. Sci. 2016, 94, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Jenni-Eiermann, S.; Jenni, L. Heterophils/Lymphocytes-Ratio and Circulating Corticosterone Do Not Indicate the Same Stress Imposed on Eurasian Kestrel Nestlings. Funct. Ecol. 2011, 25, 566–576. [Google Scholar] [CrossRef]
- Dickens, M.J.; Romero, L.M. A Consensus Endocrine Profile for Chronically Stressed Wild Animals Does Not Exist. Gen. Comp. Endocrinol. 2013, 191, 177–189. [Google Scholar] [CrossRef]
- Dantzer, B.; Fletcher, Q.E.; Boonstra, R.; Sheriff, M.J. Measures of Physiological Stress: A Transparent or Opaque Window into the Status, Management and Conservation of Species? Conserv. Physiol. 2014, 2, cou023. [Google Scholar] [CrossRef]
- Dantzer, B.; Westrick, S.E.; van Kesteren, F. Relationships between Endocrine Traits and Life Histories in Wild Animals: Insights, Problems, and Potential Pitfalls. Integr. Comp. Biol. 2016, 56, 185–197. [Google Scholar] [CrossRef]
- Guindre-Parker, S. The Evolutionary Endocrinology of Circulating Glucocorticoids in Free-Living Vertebrates: Recent Advances and Future Directions across Scales of Study. Integr. Comp. Biol. 2018, 58, 814–825. [Google Scholar] [CrossRef] [Green Version]
- Cockrem, J.F. Individual Variation in Glucocorticoid Stress Responses in Animals. Gen. Comp. Endocrinol. 2013, 181, 45–58. [Google Scholar] [CrossRef]
- Palme, R. Non-Invasive Measurement of Glucocorticoids: Advances and Problems. Physiol. Behav. 2019, 199, 229–243. [Google Scholar] [CrossRef]
- Touma, C.; Palme, R. Measuring Fecal Glucocorticoid Metabolites in Mammals and Birds: The Importance of Validation. Ann. N. Y. Acad. Sci. 2005, 1046, 54–74. [Google Scholar] [CrossRef] [Green Version]
- Tarlow, E.M.; Blumstein, D.T. Evaluating Methods to Quantify Anthropogenic Stressors on Wild Animals. Appl. Anim. Behav. Sci. 2007, 102, 429–451. [Google Scholar] [CrossRef]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring Stress in Wildlife: Techniques for Quantifying Glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef]
- Reeder, D.M.; Kramer, K.M. Stress in Free-Ranging Mammals: Integrating Physiology, Ecology, and Natural History. J. Mammal. 2005, 86, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Schoenemann, K.L.; Bonier, F. Repeatability of Glucocorticoid Hormones in Vertebrates: A Meta-Analysis. PeerJ 2018, 6, e4398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadoul, B.; Geffroy, B. Measuring Cortisol, the Major Stress Hormone in Fishes. J. Fish Biol. 2019, 94, 540–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, T.W.; Bebus, S.; Bridge, E.; Elderbrock, E.; Ferguson, S.M.; Jones, B.; Schoech, S.J. Stress Responsiveness Influences Baseline Glucocorticoid Levels: Revisting the under 3 Min Sampling Rule. Gen. Comp. Endocrinol. 2017, 247, 152–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staley, M.; Miller, L.J. Salivary Bioscience and Research on Animal Welfare and Conservation Science. In Salivary Bioscience; Springer International Publishing: Cham, Switzerland, 2020; pp. 675–708. [Google Scholar]
- Carbajal, A.; Soler, P.; Tallo-Parra, O.; Isasa, M.; Echevarria, C.; Lopez-Bejar, M.; Vinyoles, D. Towards Non-Invasive Methods in Measuring Fish Welfare: The Measurement of Cortisol Concentrations in Fish Skin Mucus as a Biomarker of Habitat Quality. Animals 2019, 9, 939. [Google Scholar] [CrossRef] [Green Version]
- Palme, R. Measuring Fecal Steroids: Guidelines for Practical Application. Ann. N. Y. Acad. Sci. 2005, 1046, 75–80. [Google Scholar] [CrossRef]
- Champagne, C.D.; Kellar, N.M.; Crocker, D.E.; Wasser, S.K.; Booth, R.K.; Trego, M.L.; Houser, D.S. Blubber Cortisol Qualitatively Reflects Circulating Cortisol Concentrations in Bottlenose Dolphins. Mar. Mammal Sci. 2017, 33, 134–153. [Google Scholar] [CrossRef]
- Heimbürge, S.; Kanitz, E.; Otten, W. The Use of Hair Cortisol for the Assessment of Stress in Animals. Gen. Comp. Endocrinol. 2019, 270, 10–17. [Google Scholar] [CrossRef]
- Monclús, L.; Carbajal, A.; Tallo-Parra, O.; Sabés-Alsina, M.; Darwich, L.; Molina-López, R.A.A.; Lopez-Bejar, M. Relationship between Feather Corticosterone and Subsequent Health Status and Survival in Wild Eurasian Sparrowhawk. J. Ornithol. 2017, 158, 773–783. [Google Scholar] [CrossRef]
- Carbajal, A.; Reyes-López, F.E.; Tallo-Parra, O.; Lopez-Bejar, M.; Tort, L. Comparative Assessment of Cortisol in Plasma, Skin Mucus and Scales as a Measure of the Hypothalamic-Pituitary-Interrenal Axis Activity in Fish. Aquaculture 2019, 506, 410–416. [Google Scholar] [CrossRef]
- Kalliokoski, O.; Jellestad, F.; Murison, R. Are We Overestimating the Utility of Hair Glucocorticoids? A Systematic Review Exploring the Empirical Evidence Supporting Hair Glucocorticoids as a Measure of Stress. bioRxiv 2018, 375667. [Google Scholar] [CrossRef]
- Berkvens, C.N.; Hyatt, C.; Gilman, C.; Pearl, D.L.; Barker, I.K.; Mastromonaco, G.F. Validation of a Shed Skin Corticosterone Enzyme Immunoassay in the African House Snake (Lamprophis fuliginosus) and Its Evaluation in the Eastern Massasauga Rattlesnake (Sistrurus catenatus catenatus). Gen. Comp. Endocrinol. 2013, 194, 1–9. [Google Scholar] [CrossRef]
- Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress Hormones in Mammals and Birds: Comparative Aspects Regarding Metabolism, Excretion, and Noninvasive Measurement in Fecal Samples. Ann. N. Y. Acad. Sci. 2005, 1040, 162–171. [Google Scholar] [CrossRef]
- Romero, L.M. Physiological Stress in Ecology: Lessons from Biomedical Research. Trends Ecol. Evol. 2004, 19, 249–255. [Google Scholar] [CrossRef]
- Mormède, P.; Andanson, S.S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; et al. Exploration of the Hypothalamic-Pituitary-Adrenal Function as a Tool to Evaluate Animal Welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef]
- Moberg, G.P. Biological Response to Stress: Implications for Animal Welfare. In The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CABI: Wallingford, UK, 2000; pp. 1–22. [Google Scholar]
- Romero, L.M.; Butler, L.K. Endocrinology of Stress. Int. J. Comp. Psychol. 2007, 20, 89–95. [Google Scholar] [CrossRef]
- Johnstone, C.P.; Reina, R.D.; Lill, A. Interpreting Indices of Physiological Stress in Free-Living Vertebrates. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2012, 182, 861–879. [Google Scholar] [CrossRef]
- Broom, D. Cortisol: Often Not the Best Indicator of Stress and Poor Welfare. Physiol. News 2017, 5, 30–32. [Google Scholar] [CrossRef]
- Fraser, D. Understanding Animal Welfare: The Science in Its Cultural Context; Wiley-Blackwell Publishing, Inc.: Oxford, UK, 2008; ISBN 978-1-405-13695-2. [Google Scholar]
- Vera, F.; Zenuto, R.; Antenucci, C.D. Expanding the Actions of Cortisol and Corticosterone in Wild Vertebrates: A Necessary Step to Overcome the Emerging Challenges. Gen. Comp. Endocrinol. 2017, 246, 337–353. [Google Scholar] [CrossRef]
- Cook, C.J.; Mellor, D.J.; Harris, P.J.; Ingram, J.R.; Matthews, L.R. Hands-on and Hands-off Measurement of Stress. In The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CABI: Wallingford, UK, 2000; pp. 123–146. [Google Scholar]
- Schreck, C.B.; Tort, L.; Farrell, A.P.; Brauner, C.J. Biology of Stress in Fish; Academic Press: Cambridge, MA, USA, 2016; ISBN 9780128027288. [Google Scholar]
- Davis, A.K.; Maney, D.L. The Use of Glucocorticoid Hormones or Leucocyte Profiles to Measure Stress in Vertebrates: What’s the Difference? Methods Ecol. Evol. 2018, 9, 1556–1568. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The Use of Leukocyte Profiles to Measure Stress in Vertebrates: A Review for Ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Edwards, K.L.; Bansiddhi, P.; Paris, S.; Galloway, M.; Brown, J.L. The Development of an Immunoassay to Measure Immunoglobulin A in Asian Elephant Feces, Saliva, Urine and Serum as a Potential Biomarker of Well-Being. Conserv. Physiol. 2019, 7, coy077. [Google Scholar] [CrossRef] [PubMed]
- Kalimi, M.; Shafagoj, Y.; Loria, R.; Padgett, D.; Regelson, W. Anti-Glucocorticoid Effects of Dehydroepiandrosterone (DHEA). Mol. Cell. Biochem. 1994, 131, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Whitham, J.C.; Bryant, J.L.; Miller, L.J. Beyond Glucocorticoids: Integrating Dehydroepiandrosterone (DHEA) into Animal Welfare Research. Animals 2020, 10, 1381. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.L.; Edes, A.N.; Brown, J.L. Stress, Well-Being and Reproductive Success. In Reproductive Sciences in Animal Conservation; Comizzoli, P., Brown, J.L., Holt, W.V., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2019; pp. 91–162. ISBN 978-3-030-23632-8. [Google Scholar]
- Cray, C.; Zaias, J.; Altman, N.H. Acute Phase Response in Animals: A Review. Comp. Med. 2009, 59, 517–526. [Google Scholar] [PubMed]
- Bertelsen, M.F.; Kjelgaard-Hansen, M.; Grøndahl, C.; Heegaard, P.M.H.; Jacobsen, S. Identification of Acute Phase Proteins and Assays Applicable in Nondomesticated Mammals. J. Zoo Wildl. Med. Off. Publ. Am. Assoc. Zoo Vet. 2009, 40, 199–203. [Google Scholar] [CrossRef]
- Cray, C. Acute Phase Proteins in Animals. In Progress in Molecular Biology and Translational Science; Elsevier: London, UK, 2012; Volume 105, pp. 113–150. ISBN 9780123945969. [Google Scholar]
- Aubert, G.; Lansdorp, P.M. Telomeres and Aging. Physiol. Rev. 2008, 88, 557–579. [Google Scholar] [CrossRef] [Green Version]
- Swanberg, S.E. Telomeres and Telomerase in Birds. In Conn’s Handbook of Models for Human Aging; Elsevier: Cambridge, MA, USA, 2018; pp. 313–322. ISBN 9780128113530. [Google Scholar]
- Bateson, M. Cumulative Stress in Research Animals: Telomere Attrition as a Biomarker in a Welfare Context? BioEssays 2016, 38, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, T.E. Measuring Peripheral Oxytocin and Vasopressin in Nonhuman Primates. Am. J. Primatol. 2018, 80, e22871. [Google Scholar] [CrossRef]
- Chen, S.; Sato, S. Role of Oxytocin in Improving the Welfare of Farm Animals—A Review. Asian-Australas. J. Anim. Sci. 2016, 30, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Rault, J.-L.; van den Munkhof, M.; Buisman-Pijlman, F.T.A. Oxytocin as an Indicator of Psychological and Social Well-Being in Domesticated Animals: A Critical Review. Front. Psychol. 2017, 8, 1521. [Google Scholar] [CrossRef] [Green Version]
- Maple, T.; Perdue, B.M. Zoo Animal Welfare; Animal Welfare; Springer: Berlin/Heidelberg, Germany, 2013; Volume 14, ISBN 978-3-642-35954-5. [Google Scholar]
- Morfeld, K.A.; Lehnhardt, J.; Alligood, C.; Bolling, J.; Brown, J.L. Development of a Body Condition Scoring Index for Female African Elephants Validated by Ultrasound Measurements of Subcutaneous Fat. PLoS ONE 2014, 9, e93802. [Google Scholar] [CrossRef]
- Manteca, X. Bienestar Animal; Multimédica Ediciones Veterinarias: Barcelona, Spain, 2020; ISBN 978-84-96344-96-9. [Google Scholar]
- Broom, D.M. Animal Welfare: Concepts and Measurement. J. Anim. Sci. 1991, 69, 4167–4175. [Google Scholar] [CrossRef]
- Huntingford, F.A.; Adams, C.; Braithwaite, V.A.; Kadri, S.; Pottinger, T.G.; Sandøe, P.; Turnbull, J.F. Current Issues in Fish Welfare. J. Fish Biol. 2006, 68, 332–372. [Google Scholar] [CrossRef] [Green Version]
- Huber, N.; Marasco, V.; Painer, J.; Vetter, S.G.; Göritz, F.; Kaczensky, P.; Walzer, C. Leukocyte Coping Capacity: An Integrative Parameter for Wildlife Welfare within Conservation Interventions. Front. Vet. Sci. 2019, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- Watters, J.V.; Krebs, B.L.; Eschmann, C.L. Assessing Animal Welfare with Behavior: Onward with Caution. J. Zool. Bot. Gard. 2021, 2, 75–87. [Google Scholar] [CrossRef]
- Le Neindre, P.; Bernard, E.; Boissy, A.; Boivin, X.; Calandreau, L.; Delon, N.; Deputte, B.; Desmoulin-Canselier, S.; Dunier, M.; Faivre, N.; et al. Animal Consciousness. EFS3 2017, 14, 1196E. [Google Scholar] [CrossRef]
- Browne, R.K.; Wolfram, K.; García, G.; Bagaturov, M.F. Zoo-Based Amphibian Research and Conservation Breeding Programs. Amphib. Reptile Conserv. 2011, 5, 1–14. [Google Scholar]
- Diana, A.; Salas, M.; Pereboom, Z.; Mendl, M.; Norton, T. A Systematic Review of the Use of Technology to Monitor Welfare in Zoo Animals: Is There Space for Improvement? Animals 2021, 11, 3048. [Google Scholar] [CrossRef]
- Veasey, J.S.; Waran, N.K.; Young, R.J. On Comparing the Behaviour of Zoo Housed Animals with Wild Conspecifics as a Welfare Indicator. Anim. Welf. 1996, 5, 13–24. [Google Scholar] [CrossRef]
Welfare Principles | Welfare Criteria |
---|---|
Good feeding | Absence of prolonged hunger |
Absence of prolonged thirst | |
Good housing | Comfort around resting |
Thermal comfort | |
Ease of movement | |
Good health | Absence of injuries |
Absence of disease | |
Absence of pain induced by management procedures | |
Appropriate behaviour | Expression of social behaviour |
Expression of other behaviours | |
Good human-animal relationship | |
Positive emotional state |
Advantages | Disadvantages | |
---|---|---|
Species-specific protocols |
|
|
Generic protocols and risk assessment methods |
|
|
Time budgets |
|
|
Keepers’ ratings |
|
|
Cognitive bias testing |
|
|
Description | Examples | |
---|---|---|
Single-point matrices | These matrices provide information about the well-being of an animal at a particular moment in time, which is generally very close to the sampling moment or the minutes before. | Blood [93], saliva [94], and cutaneous mucus [95]. |
Intermediate matrices | These matrices accumulate biomarkers over a medium period of time (from a few to several hours) and can represent the welfare state that an animal had several hours before sampling and for a longer timeframe. Their renewal/excretion rates are also intermediate and must be considered. | Faeces [96], and fat [97]. |
Accumulative matrices | These matrices accumulate biomarkers over long periods of time, providing integrated and retrospective information on an animal’s well-being in the long term (days or weeks). Their renewal/excretion rate is usually low. | Hair [98], feathers [99], and fish scales [100]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tallo-Parra, O.; Salas, M.; Manteca, X. Zoo Animal Welfare Assessment: Where Do We Stand? Animals 2023, 13, 1966. https://doi.org/10.3390/ani13121966
Tallo-Parra O, Salas M, Manteca X. Zoo Animal Welfare Assessment: Where Do We Stand? Animals. 2023; 13(12):1966. https://doi.org/10.3390/ani13121966
Chicago/Turabian StyleTallo-Parra, Oriol, Marina Salas, and Xavier Manteca. 2023. "Zoo Animal Welfare Assessment: Where Do We Stand?" Animals 13, no. 12: 1966. https://doi.org/10.3390/ani13121966