Characterization and Spike Gene Analysis of a Candidate Attenuated Live Bovine Coronavirus Vaccine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Passage and Indirect Immunofluorescence Assay
2.2. Phylogenetic Analysis of BCoV
2.3. Comparison of the S Genes of Passaged BCoV Strains
2.4. Calf Experiments
2.5. Detection of BCoV RNA via RT-PCR
3. Results and Discussion
3.1. Changes in Cell Morphology Induced by the KBR-1 Strain
3.2. Amino Acid Mutations in the Spike Genes of Passaged KBR-1 Strains
3.3. Phylogenetic Tree of BCoV Strains
3.4. Clinical Signs/Symptoms and Virus Shedding by Infected Calves
3.5. Organs from Calves Inoculated with BCoV
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spaan, W.J.M.; Brian, D.A.; Cavanagh, D.; de Groot, R.J.; Enjuanes, L.; Gorbalenya, A.E.; Holmes, K.V.; Masters, P.S.; Rottier, P.J.M.; Taguchi, F.; et al. Virus Taxonomy, VIIIth Report of the ICTV; Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A., Eds.; Elsevier/Academic Press: London, UK, 2005; pp. 947–964. [Google Scholar]
- Mebus, C.A.; Stair, E.L.; Rhodes, M.B.; Twiehaus, M.J. Neonatal calf diarrhea: Propagation, attenuation, and characteristics of a coronavirus-like agent. Am. J. Vet. Res. 1973, 34, 145–150. [Google Scholar] [PubMed]
- Saif, L.J.; Redman, D.R.; Brock, K.V.; Kohler, E.M.; Heckert, R.A. Winter dysentery in adult dairy cattle: Detection of coronavirus in the faeces. Vet. Rec. 1988, 123, 300–301. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.O.; Hoet, A.E.; Loerch, S.C.; Wittum, T.E.; Saif, L.J. Evaluation of concurrent shedding of bovine coronavirus via the respiratory tract and enteric route in feedlot cattle. Am. J. Vet. Res. 2001, 62, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Elia, G.; Campolo, M.; Desario, C.; Mari, V.; Radogna, A.; Colaianni, M.L.; Cirone, F.; Tempesta, M.; Buonavoglia, C. Detection of bovine coronavirus using a TaqMan-based real-time RT-PCR assay. J. Virol. Methods. 2008, 151, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.H.K.V. Coronaviridae: The viruses and their replication. In Fields Virology; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott–Raven: Philadelphia, PA, USA, 2001; pp. 1163–1186. [Google Scholar]
- Collins, A.R.; Knobler, R.L.; Powell, H.; Buchmeier, M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell–cell fusion. Virology 1982, 119, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Kubo, H.; Yamada, Y.K.; Taguchi, F. Localization of neutralizing epitopes and the receptor-binding site within the aminoterminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 1994, 68, 5403–5410. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; Deregt, D. A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin. Diagn. Lab. Immunol. 2001, 8, 297–302. [Google Scholar] [CrossRef]
- Schultze, B.; Gross, H.J.; Brossmer, R.; Herrler, G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-Oacetylated sialic acid as a receptor determinant. J. Virol. 1991, 65, 6232–6237. [Google Scholar] [CrossRef]
- Brandao, P.E.; Gregori, F.; Richtzenhain, L.J.; Rosales, C.A.; Villarreal, L.Y.; Jerez, J.A. Molecular analysis of Brazilian strains of bovine coronavirus (BCoV) reveals a deletion within the hypervariable region of the S1 subunit of the spike glycoprotein also found in human coronavirus OC43. Arch. Virol. 2006, 151, 1735–1748. [Google Scholar] [CrossRef]
- Hasoksuz, M.; Sreevatsan, S.; Cho, K.O.; Hoet, A.E.; Saif, L.J. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res. 2002, 84, 101–109. [Google Scholar] [CrossRef]
- Ballesteros, M.L.; Sanchez, C.M.; Enjuanes, L. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 1997, 227, 378–388. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Kim, G.-Y.; Yoon, S.-S.; Park, S.-J.; Kim, Y.-J.; Sung, C.-M.; Jang, O.-J.; Shin, S.-S.; Koh, H.-B.; Lee, B.-J.; et al. Detection and isolation of winter dysentery bovine coronavirus circulated in Korea during 2002–2004. J. Vet. Med. Sci. 2005, 67, 187–189. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, G.Y.; Choy, H.E.; Hong, Y.J.; Saif, L.J.; Jeong, J.H.; Park, S.I.; Kim, H.H.; Kim, S.K.; Shin, S.S.; et al. Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves. Arch. Virol. 2007, 152, 1885–1900. [Google Scholar] [CrossRef]
- Kim, E.-M.; Cho, H.-C.; Shin, S.-U.; Park, J.; Choi, K.-S. Prevalence and genetic characterization of bovine coronavirus identified from diarrheic pre-weaned native Korean calves from 2019 to 2021. Infect. Genet. Evol. 2022, 100, 105263. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Choe, S.; Park, G.-N.; Song, S.; Kim, K.-S.; An, B.-H.; Hyun, B.-H.; An, D.-J. Isolation and Genetic Characterization of a Bovine Coronavirus KBR-1 Strain from Calf Feces in South Korea. Viruses 2022, 14, 2376. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids. Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Park, S.-J.; Jeong, C.; Yoon, S.-S.; Choy, H.E.; Saif, L.J.; Park, S.-H.; Kim, Y.-J.; Jeong, J.-H.; Park, S.-I.; Kim, H.-H.; et al. Detection and Characterization of Bovine Coronaviruses in Fecal Specimens of Adult Cattle with Diarrhea during the Warmer Seasons. J. Clin. Microbio. 2006, 44, 3178–3188. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-I.; Kim, W.-I.; Liu, S.; Kinyon, J.M.; Yoon, K.J. Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces. J. Vet. Diagn. Investig. 2010, 22, 509–517. [Google Scholar] [CrossRef]
- Seid, U.; Dawo, F.; Tesfaye, A.; Ahmednur, M. Isolation and Characterization of Coronavirus and Rotavirus Associated with Calves in Central Part of Oromia, Ethiopia. Vet. Med. Int. 2020, 2020, 8869970. [Google Scholar] [CrossRef]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1282, pp. 1–23. [Google Scholar]
- Yu, J.; Qiao, S.; Guo, R.; Wang, X. Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Nat. Commun. 2020, 11, 3070. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Xu, L.; Lin, Y.-L.; Chen, L.; Pasquarella, J.R.; Holmes, K.V.; Li, F. Crystal structure of bovine coronavirus spike protein lectin domain. J. Biol. Chem. 2012, 287, 41931–41938. [Google Scholar] [CrossRef] [PubMed]
- Bidokhti, M.R.M.; Traven, M.; Krishna, N.K.; Munir, M.; Belak, S.; Alenius, S.; Cortey, M. Evolutionary dynamics of bovine coronaviruses: Natural selection pattern of the spike gene implies adaptive evolution of the strains. J. Gen. Virol. 2013, 94 Pt 9, 2036–2049. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, B.; Sun, D. Advances in Bovine Coronavirus Epidemiology. Viruses 2022, 14, 1109. [Google Scholar] [CrossRef]
- Chae, J.-B.; Kim, H.-C.; Kang, J.-G.; Choi, K.-S.; Chae, J.-S.; Yu, D.-H.; Park, B.-K.; Oh, Y.-S.; Choi, H.-J.; Park, J. The prevalence of causative agents of calf diarrhea in Korean native calves. J. Anim. Sci. Technol. 2021, 63, 864–871. [Google Scholar] [CrossRef]
Host Cell | No. P * | Positions of Amino Acid Mutations in the Spike Gene of Bovine Coronavirus KBR-1 Strain | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25 | 85 | 115 | 174 | 179 | 268 | 367 | 554 | 640 | 714 | 903 | 965 | 1118 | 1238 | 1256 | 1340 | ||
HRT-18 | 0 | S | L | D | P | Q | K | I | Y | T | N | L | E | Q | P | S | K |
10 | H | ||||||||||||||||
20 | R | H | V | ||||||||||||||
30 | R | H | V | S | |||||||||||||
40 | R | H | D | S | L | ||||||||||||
50 | R | H | D | S | L | ||||||||||||
60 | R | R | H | D | H | S | L | ||||||||||
70 | R | R | H | D | H | S | L | ||||||||||
MDBK | 80 | A | R | G | R | T | H | D | S | L | |||||||
90 | A | R | G | R | R | T | H | I | D | S | S | L | N | ||||
100 | A | R | G | R | R | T | H | I | D | S | S | L | N | ||||
110 | A | R | G | R | R | T | H | I | D | S | S | L | N | ||||
120 | A | R | G | R | R | T | H | I | D | S | S | L | N |
Group | No. Calve | Symptom | Clinical Score/RNA Copy Number (ct Value) of BCoV by DPI * | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
G1 (KBR-1-p120, 107.0 TCID50/mL/dose) | G1-1 | Diarrhea | 0/- | 0/- | 0/- | 0/- | 0/37.6 | 0/- | 0/38.1 | 0/- |
Nasal | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | ||
Appetite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Activity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
G1-2 | Diarrhea | 0/- | 0/- | 0/- | 0/- | 0/37.5 | 0/36.2 | 0/- | 0/- | |
Nasal | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | ||
Appetite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Activity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
G2 (Small intestine emulsion from G1, 5 mL/dose) | G2-1 | Diarrhea | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- |
Nasal | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | ||
Appetite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Activity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
G2-2 | Diarrhea | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | |
Nasal | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | ||
Appetite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Activity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
G3 (Small intestine emulsion from G1; 5 mL/dose) | G3-1 | Diarrhea | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- |
Nasal | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | ||
Appetite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Activity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
G3-2 | Diarrhea | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | |
Nasal | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | 0/- | ||
Appetite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Activity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
G4 (KBR-1-p10, 105.0 TCID50/mL/dose) | G4-1 | Diarrhea | 0/- | 0/- | 0/- | 0/29.5 | 1/27.4 | 1/24.8 | 2/28.6 | 1/33.9 |
Nasal | 0/- | 0/- | 0/- | 0/- | 0/0 | 0/0 | 0/0 | 0/0 | ||
Appetite | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||
Activity | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ||
G4-2 | Diarrhea | 0/- | 0/- | 0/- | 0/- | 1/30.8 | 2/27.2 | 2/25.1 | 1/34.2 | |
Nasal | 0/- | 0/- | 0/- | 0/- | 0/0 | 0/- | 0/- | 0/- | ||
Appetite | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | ||
Activity | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
Organ | RNA Copy Number (ct Value) of BCoV by DPI * | |||||||
---|---|---|---|---|---|---|---|---|
G1-1 | G1-2 | G2-1 | G2-2 | G3-1 | G3-2 | G4-1 | G4-2 | |
Large intestine | - ** | - | - | - | - | - | - | - |
Duodenum | - | - | - | - | - | - | 27.9 | 25.3 |
Jejunum | 37.4 | - | - | - | - | 20.5 | 18.8 | |
Ileum | 38.2 | 36.9 | - | - | - | - | 19.6 | 20.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, G.-N.; Choe, S.; Song, S.; Kim, K.-S.; Shin, J.; An, B.-H.; Moon, S.H.; Hyun, B.-H.; An, D.-J. Characterization and Spike Gene Analysis of a Candidate Attenuated Live Bovine Coronavirus Vaccine. Animals 2024, 14, 389. https://doi.org/10.3390/ani14030389
Park G-N, Choe S, Song S, Kim K-S, Shin J, An B-H, Moon SH, Hyun B-H, An D-J. Characterization and Spike Gene Analysis of a Candidate Attenuated Live Bovine Coronavirus Vaccine. Animals. 2024; 14(3):389. https://doi.org/10.3390/ani14030389
Chicago/Turabian StylePark, Gyu-Nam, SeEun Choe, Sok Song, Ki-Sun Kim, Jihye Shin, Byung-Hyun An, Soo Hyun Moon, Bang-Hun Hyun, and Dong-Jun An. 2024. "Characterization and Spike Gene Analysis of a Candidate Attenuated Live Bovine Coronavirus Vaccine" Animals 14, no. 3: 389. https://doi.org/10.3390/ani14030389