Bean Sprouts, Lettuce, and Milk as Water Sources in Tenebrio molitor Larval Growth
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects, Housing, Main Fodder, and Water Sources
2.2. Experimental Design and Procedures
2.3. Analysis of Larval Nutrient Composition
2.4. Statistical Analysis
3. Results
3.1. Effects of Milk and Lettuce as Water Sources on Larval Growth Rates
3.2. Larval Growth Depending on Water Supply Levels and Sources with or without Milk—Main Effects
3.3. Larval Growth Depending on Water Supply Levels and Sources with or without Milk—Interactions
3.4. Evaluation of Nutrient Composition of Larvae Fed with Different Water Sources
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lange, K.W.; Nakamura, Y. Edible insects as future food: Chances and challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- McLeod, A. World Livestock 2011-Livestock in Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- Halloran, A.; Hanboonsong, Y.; Roos, N.; Bruun, S. Life cycle assessment of cricket farming in north-eastern Thailand. J. Clean. Prod. 2017, 156, 83–94. [Google Scholar] [CrossRef]
- Jongema, Y. Worldwide List of Recorded Edible Insects; Department of Entomology, Wageningen University & Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Ribeiro, N.; Abelho, M.; Costa, R. A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2018, 53, 434–454. [Google Scholar]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar]
- Shafique, L.; Abdel-Latif, H.M.; Hassan, F.-u.; Alagawany, M.; Naiel, M.A.; Dawood, M.A.; Yilmaz, S.; Liu, Q. The feasibility of using yellow mealworms (Tenebrio molitor): Towards a sustainable aquafeed industry. Animals 2021, 11, 811. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, N.F.; Allergens, F.; Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of frozen and dried formulations from whole yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06778. [Google Scholar] [CrossRef]
- Murray, D. The importance of water in the normal growth of larvae of Tenebrio molitor. Entomol. Exp. Appl. 1968, 11, 149–168. [Google Scholar] [CrossRef]
- Miglietta, P.P.; De Leo, F.; Ruberti, M.; Massari, S. Mealworms for food: A water footprint perspective. Water 2015, 7, 6190–6203. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, J.B.; Lee, Y.B.; Yoon, H.J.; Lee, K.Y.; Kim, N.J. Growth characteristics of mealworm Tenebrio molitor. J. Sericultural Entomol. Sci. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Hagstrum, D. Atlas of Stored-Product Insects and Mites; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Deruytter, D.; Coudron, C.; Claeys, J. The influence of wet feed distribution on the density, growth rate and growth variability of Tenebrio molitor. J. Insects Food Feed. 2021, 7, 141–149. [Google Scholar] [CrossRef]
- Urs, K.; Hopkins, T. Effect of moisture on growth rate and development of two strains of Tenebrio molitor L. (Coleoptera, Tenebrionidae). J. Stored Prod. Res. 1973, 8, 291–297. [Google Scholar] [CrossRef]
- Gallon, M.E.; Gobbo-Neto, L. Plant metabolites involved in the differential development of a heliantheae-specialist insect. Metabolites 2021, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Hardouin, J.; Mahoux, G. Zootechnie d’insectes-Elevage et utilisation au bénéfice de l’homme et de certains animaux. Tropicultura 2004, 22, 95–96. [Google Scholar]
- Ortiz, J.C.; Ruiz, A.T.; Morales-Ramos, J.; Thomas, M.; Rojas, M.; Tomberlin, J.; Yi, L.; Han, R.; Giroud, L.; Jullien, R. Insect mass production technologies. In Insects as Sustainable Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2016; pp. 153–201. [Google Scholar]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-Llan, D.I.; Tedders, W.L. Use of nutrient self-selection as a diet refining tool in Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2013, 48, 206–221. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Chapman, R.F. The Insects: Structure and Function; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Cohen, A.C. Insect Diets: Science and Technology; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Gan, R.Y.; Wang, M.F.; Lui, W.Y.; Wu, K.; Corke, H. Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts. Int. J. Food Sci. Technol. 2016, 51, 2090–2098. [Google Scholar] [CrossRef]
- Guo, X.; Li, T.; Tang, K.; Liu, R.H. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J. Agric. Food Chem. 2012, 60, 11050–11055. [Google Scholar] [CrossRef]
- Konala, N.; Abburi, P.; Bovillac, V.R.; Mamillapalli, A. The effect of bovine milk on the growth of Bombyx mori. J. Insect Sci. 2013, 13, 98. [Google Scholar] [CrossRef]
- Downer, R.G. Functional role of lipids in insects. Biochem. Insect 1978, 57–92. [Google Scholar] [CrossRef]
- Hobson, R.P. On a fat-soluble growth factor required by blow-fly larvae: Identity of the growth factor with cholesterol. Biochem. J. 1935, 29, 2023. [Google Scholar] [CrossRef]
- Ritter, K.S.; Nes, W.R. The effects of cholesterol on the development of Heliothis zea. J. Insect Physiol. 1981, 27, 175–181. [Google Scholar] [CrossRef]
- Guo, Z.; Döll, K.; Dastjerdi, R.; Karlovsky, P.; Dehne, H.-W.; Altincicek, B. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor). PLoS ONE 2014, 9, e100112. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Masri, J.; Perez, V.; Maya, C.; Zhao, J. Growth performance and nutrient composition of mealworms (Tenebrio molitor) fed on fresh plant materials-supplemented diets. Foods 2020, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Athanassiou, C.G. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci. Rep. 2020, 10, 11224. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Oonincx, D.G.; Van Huis, A.; Van Loon, J.J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef]
Nutrients 1 | Main Fodder | Water Sources | ||
---|---|---|---|---|
Wheat Bran | Lettuce | Bean Sprout | Milk | |
GE (kcal/kg) | 4071 | 335 | 777 | 677 |
Dry matter (%) | 87.31 | 8.79 | 14.24 | 11.89 |
Moisture (%) | 12.69 | 91.21 | 85.76 | 88.11 |
Crude protein (%) | 15.19 | 2.44 | 7.22 | 2.99 |
Crude fat (%) | 3.90 | 0.56 | 2.38 | 2.35 |
Crude ash (%) | 4.17 | 1.98 | 0.99 | 0.67 |
Crude fiber (%) | 9.59 | 0.74 | 1.04 | 0.00 |
NFE (%) | 54.46 | 3.07 | 2.61 | 5.87 |
Ca (%) | 0.27 | 0.20 | 0.05 | 0.11 |
P (%) | 2.40 | 0.04 | 0.12 | 0.08 |
Mg (%) | 0.42 | 0.05 | 0.05 | 0.01 |
Fe (ppm) | 134.12 | 10.55 | 9.17 | 1.20 |
Treatment Group | Vegetable Water Source | Milk 1 | Level 2 |
---|---|---|---|
L-1 | Lettuce | − | Low |
B-1 | Bean sprouts | − | Low |
LM-1 | Lettuce | + | Low |
BM-1 | Bean sprouts | + | Low |
L-2 | Lettuce | − | High |
B-2 | Bean sprouts | − | High |
LM-2 | Lettuce | + | High |
BM-2 | Bean sprouts | + | High |
Age (Days Post Hatching) | Larval Weights (mg) | SEM | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Effects | Main Effects | Interactions | ||||||||||||
Level | Source | Milk | Level | Source | Milk | Level × Source | Source × Milk | Milk × Level | Level × Source × Milk | |||||
Low | High | Lettuce | Bean Sprouts | − | + | |||||||||
Day 10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Day 21 | 1.42 | 1.84 | 1.59 | 1.67 | 1.42 | 1.84 | 0.208 | 0.0399 | 0.6607 | 0.0399 | 0.6607 | 0.6607 | 0.6607 | 0.6607 |
Day 32 | 4.92 | 5.00 | 4.92 | 5.00 | 5.17 | 4.75 | 0.550 | 0.8375 | 0.8375 | 0.3126 | 0.5404 | 0.8375 | 0.8375 | 0.8375 |
Day 46 | 13.00 | 15.08 | 14.25 | 13.84 | 14.00 | 14.08 | 0.281 | <0.0001 | 0.0962 | 0.7283 | 0.7283 | 0.3046 | 0.7283 | 0.7283 |
Day 56 | 26.25 | 34.58 | 28.00 | 32.84 | 27.42 | 33.42 | 0.784 | <0.0001 | <0.0001 | <0.0001 | 0.1220 | 0.7890 | <0.0001 | 0.0027 |
Day 67 | 44.67 | 77.84 | 58.84 | 63.67 | 55.34 | 67.17 | 1.682 | <0.0001 | 0.0089 | <0.0001 | 0.0007 | 0.2757 | 0.0002 | 0.0002 |
Day 77 | 64.83 | 115.34 | 84.67 | 95.50 | 79.50 | 100.67 | 1.834 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0024 | 0.0003 | 0.3981 |
Day 87 | 90.00 | 159.50 | 117.17 | 132.33 | 108.84 | 140.67 | 1.237 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0657 |
Day 97 | 117.00 | 199.17 | 147.67 | 168.50 | 140.67 | 175.50 | 2.649 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0003 | 0.0004 | 0.0431 |
Day 108 | 141.25 | 217.08 | 168.84 | 189.50 | 171.00 | 187.33 | 2.590 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.7064 | 0.0011 | 0.1644 |
Nutrients | L | B | LM | p-Value |
---|---|---|---|---|
Crude Protein (%) | 54.85 ± 0.94 | 55.32 ± 1.32 | 55.03 ± 2.50 | 0.8949 |
Crude Fat (%) | 33.57 ± 0.81 | 33.58 ± 1.60 | 34.10 ± 2.29 | 0.8256 |
Crude Ash (%) | 4.21 ± 0.14 | 4.23 ± 0.10 | 4.37 ± 0.61 | 0.7121 |
GE (kcal/kg) | 6672 ± 51 | 6744 ± 123 | 6811 ± 85 | 0.0567 |
Ca (%) | 0.16 ± 0.06 | 0.17 ± 0.04 | 0.17 ± 0.04 | 0.8050 |
P (%) | 0.79 ± 0.08 | 0.85 ± 0.05 | 0.80 ± 0.08 | 0.3331 |
Essential amino acids | ||||
Arginine (%) | 2.68 ± 0.15 | 2.73 ± 0.11 | 2.73 ± 0.08 | 0.7336 |
Histidine (%) | 1.70 ± 0.10 | 1.71 ± 0.09 | 1.70 ± 0.07 | 0.9526 |
Isoleucine (%) | 2.31 ± 0.14 | 2.37 ± 0.08 | 2.38 ± 0.10 | 0.4879 |
Leucine (%) | 3.77 ± 0.19 | 3.85 ± 0.14 | 3.87 ± 0.16 | 0.5761 |
Lysine (%) | 2.98 ± 0.26 | 3.15 ± 0.11 | 3.17 ± 0.08 | 0.1489 |
Methionine (%) | 0.73 ± 0.06 | 0.78 ± 0.04 | 0.78 ± 0.06 | 0.2477 |
Phenylalanine (%) | 1.79 ± 0.09 | 1.83 ± 0.06 | 1.88 ± 0.05 | 0.1229 |
Threonine (%) | 1.89 ± 0.10 | 1.9 ± 0.08 | 1.89 ± 0.05 | 0.9065 |
Valine (%) | 3.54 ± 0.19 | 3.58 ± 0.17 | 3.56 ± 0.12 | 0.9150 |
Non-essential amino acids | ||||
Alanine (%) | 4.42 ± 0.30 | 4.43 ± 0.29 | 4.49 ± 0.18 | 0.8960 |
Aspartic acid (%) | 3.91 ± 0.20 | 3.98 ± 0.19 | 3.97 ± 0.21 | 0.8240 |
Cystine (%) | 0.58 ± 0.06 | 0.62 ± 0.04 | 0.58 ± 0.07 | 0.3448 |
Glutamic acid (%) | 5.43 ± 0.30 | 5.58 ± 0.20 | 5.62 ± 0.21 | 0.3767 |
Glycine (%) | 2.81 ± 0.16 | 2.86 ± 0.14 | 2.86 ± 0.11 | 0.7738 |
Proline (%) | 3.27 ± 0.23 | 3.50 ± 0.18 | 3.45 ± 0.11 | 0.1140 |
Serine (%) | 1.96 ± 0.10 | 1.94 ± 0.11 | 1.90 ± 0.04 | 0.4718 |
Tyrosine (%) | 3.10 ± 0.15 | 3.00 ± 0.22 | 3.01 ± 0.33 | 0.7418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Bugenyi, A.W.; Lee, H.; Heo, J. Bean Sprouts, Lettuce, and Milk as Water Sources in Tenebrio molitor Larval Growth. Animals 2024, 14, 895. https://doi.org/10.3390/ani14060895
Lee S, Bugenyi AW, Lee H, Heo J. Bean Sprouts, Lettuce, and Milk as Water Sources in Tenebrio molitor Larval Growth. Animals. 2024; 14(6):895. https://doi.org/10.3390/ani14060895
Chicago/Turabian StyleLee, Seokhyun, Andrew Wange Bugenyi, Hakkyo Lee, and Jaeyoung Heo. 2024. "Bean Sprouts, Lettuce, and Milk as Water Sources in Tenebrio molitor Larval Growth" Animals 14, no. 6: 895. https://doi.org/10.3390/ani14060895