Evaluation of Two Species of Macroalgae from Azores Sea as Potential Reducers of Ruminal Methane Production: In Vitro Ruminal Assay
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Seaweed Collection and Preparation
2.3. Chemical Analysis and Digestibility
2.4. Rumen Fluid Collection
2.5. Gas Production and Methane Measure
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Digestibility
3.2. Total Volume of Gas and Methane Produced
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunes, H.P.; Borba, A.E.; Silva, J.F. Impacts of trace element supplementation on productive/reproductive postpartum performances of grazing dairy heifers from volcanic soils. J. Anim. Behav. Biometeorol. 2022, 10, 2236. [Google Scholar] [CrossRef]
- Secretaria Regional do Ambiente e Alterações Climáticas. IRERPA—Inventário Regional de Emissões por Fontes e Remoções por Sumidouros de Poluentes Atmosféricos; Secretaria Regional do Ambiente e Alterações Climáticas: Horta, Portugal, 2021.
- Roque, B.; Brooke, C.; Ladau, J.; Polley, T.; Marsh, L.; Najafi, N.; Pandey, P.; Singh, L.; Kinley, R.; Salwen, J.K.; et al. Effect of the macroalgae Asparagopsis taxiformis on methane production and the rumen microbiome assemblage. Anim. Microbiome 2019, 1, 3. [Google Scholar]
- Brooke, C.G.; Roque, B.M.; Shaw, C.; Najafi, N.; Gonzalez, M.; Pfefferlen, A.; De Anda, V.; Ginsburg, D.W.; Harden, M.C.; Nuzhdin, S.V.; et al. Methane reduction potential of two Pacific coast macroalgae during in vitro ruminant fermentation. Front. Mar. Sci. 2020, 7, 561. [Google Scholar] [CrossRef]
- Mihaila, A.A.; Glasson, C.R.; Lawton, R.; Muetzel, S.; Molano, G.; Magnusson, M. New temperate seaweed targets for mitigation of ruminant methane emissions: An in vitro assessment. Appl. Phycol. 2022, 3, 274–284. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.; Hector, B.; Feldmann, J. A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep. Anim. Feed. Sci. Technol. 2003, 105, 21–28. [Google Scholar] [CrossRef]
- Marín, A.; Casas-Valdez, M.; Carrillo, S.; Hernández, H.; Monroy, A.; Sanginés, L.; Pérez-Gil, F. The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions. Rev. Biol. Trop. 2009, 57, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Pinto, D.C.G.A.; Lesenfants, M.L.; Rosa, G.P.; Barreto, M.C.; Silva, A.M.S.; Seca, A.M.L. GC- and UHPLC-MS Profiles as a Tool to Valorize the Red Alga Asparagopsis armata. Appl. Sci. 2022, 12, 892. [Google Scholar] [CrossRef]
- Buddle, B.M.; Denis, M.; Attwood, G.T.; Altermann, E.; Janssen, P.H.; Ronimus, R.S.; Neil Wedlock, D. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet. J. 2011, 188, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.; Cacabelos, E.; Faria, J.; Álvaro, N.; Prestes, A.; Neto, A. Patterns of distribution of the invasive alga Asparagopsis armata Harvey: A multi-scaled approach. Aquat. Invasions 2019, 14, 582–593. [Google Scholar] [CrossRef]
- Tittley, I.; Neto, A.I. The marine algal (seaweed) flora of the Azores: Additions and amendments. Bot. Mar. 2005, 48, 248–255. [Google Scholar] [CrossRef]
- Price, J.H.; John, D.M.; Lawson, G.W. Seaweeds of the western coast of tropical Africa and adjacent islands: A critical assessment. IV. Rhodophyta (Florideae). 1. Genera A–F. Bull. Br. Mus. (Nat. Hist.) Bot. 1986, 15, 1–122. [Google Scholar]
- Levring, T. The marine algae of the Archipelago of Madeira. Bol. Mus. Munic. Funchal (História Nat.) 1974, 28, 5–111. [Google Scholar]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 59, 120836. [Google Scholar] [CrossRef]
- Huaiquipán, R.; Quiñones, J.; Díaz, R.; Velásquez, C.; Sepúlveda, G.; Velázquez, L.; Paz, E.A.; Tapia, D.; Cancino, D.; Sepúlveda, N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023, 11, 2219. [Google Scholar] [CrossRef] [PubMed]
- Nunes, H.P.B.; Teixeira, S.; Maduro Dias, C.S.A.M.; Borba, A.E.S. Alternative Forages as Roughage for Ruminant: Nutritional Characteristics and Digestibility of Six Exotic Plants in Azores Archipelago. Animals 2022, 12, 3587. [Google Scholar] [CrossRef] [PubMed]
- AOAC. AOAC Official Methods of Analysis, 20th ed.; Association of Official Agricultural Chemists: Washington, DC, USA, 2016; pp. 136–138. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses, nº379, Agricultural Handbook; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1970.
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Alexander, R.H.; McGowan, M. The routine determination of in vitro digestibility of organic matter in forages. An investigation of the problems associated with continuous large-scale operation. J. Br. Grassl. Soc. 1966, 21, 140–147. [Google Scholar] [CrossRef]
- Borba, A.E.S.; Correia, P.J.A.; Fernandes, J.M.M.; Borba, A.F.R.S. Comparison of three sources of inocula for predicting apparent digestibility of ruminant feedstuffs. Anim. Res. 2001, 50, 265–274. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 9–52. [Google Scholar]
- Nunes, H.P.B.; Maduro Dias, C.; Borba, A.E.S. Bioprospecting essential oils of exotic species as potential mitigations of ruminant enteric methanogenesis. Heliyon 2023, 9, e12786. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, D.; Souza Araújo, G.; Cotas, J.; Gaspar, R.; Neto, J.; Pereira, L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar. Drugs 2020, 18, 560. [Google Scholar] [CrossRef] [PubMed]
- De Bhowmick, G.; Hayes, M. Potential of Seaweeds to Mitigate Production of Greenhouse Gases during Production of Ruminant Proteins. Glob. Chall. 2023, 7, 2200145. [Google Scholar] [CrossRef] [PubMed]
- Duplessis, M.; Royer, I. MiniReview: The importance of an integrated approach to assess trace mineral feeding practices in dairy cows. Front. Anim. Sci. 2023, 4, 1155361. [Google Scholar] [CrossRef]
- Linhares, D.; Pimentel, A.; Garcia, P.; Rodrigues, A. Deficiency of essential elements in volcanic soils: Potential harmful health effects on grazing cattle. Environ. Geochem. Health 2021, 43, 3883–3895. [Google Scholar] [CrossRef]
- National Research Council (U.S.). Nutrient Requirements of Dairy Cattle, Subcommittee on Dairy Cattle Nutrition; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Santander, D.; Clariget, J.; Banchero, G.; Alecrim, F.; Simon Zinno, C.; Mariotta, J.; Gere, J.; Ciganda, V.S. Beef Steers and Enteric Methane: Reducing Emissions by Managing Forage Diet Fiber Content. Animals 2023, 13, 1177. [Google Scholar] [CrossRef]
- Lean, I.J.; Golder, H.M.; Grant, T.M.D.; Moate, P.J. A meta-analysis of effects of dietary seaweed on beef and dairy cattle performance and methane yield. PLoS ONE 2021, 16, e0249053. [Google Scholar] [CrossRef]
- SREA. Regional Statistics on Milk Production, Dairy Production, and Commercialization; Serviço Regional de Estatística dos Açores: Angra do Heroísmo, Portugal, 2023. Available online: https://srea.azores.gov.pt/ (accessed on 23 October 2023).
Parameters | DM (%) | CP (%DM) | NDF (%DM) | ADF (%DM) | ADL (%DM) | EE (%DM) | Ash (%DM) | DMD (%) | OMD (%) |
---|---|---|---|---|---|---|---|---|---|
A. taxiformis | 6.55 ± 1.25 | 22.69 ± 5.96 | 69.81 ± 5.12 | 15.05 ± 2.08 | 4.01 ± 0.96 | 0.53 ± 0.02 | 37.5 ± 1.56 | 68.45 ± 10.00 | 55.30 ± 3.79 |
A. armata | 7.68 ± 1.07 | 24.23 ± 4.26 | 37.88 ± 7.23 | 12.04 ± 1.87 | 10.24 ± 1.22 | 0.38 ± 0.03 | 36.7 ± 1.98 | 40.61 ± 8.04 | 34.93 ± 4.10 |
Basal Diet | 10.35 ± 2.49 | 19.79 ± 3.99 | 64.14 ± 4.01 | 33.9 ± 4.40 | 3.34 ± 0.43 | 1.09 ± 0.02 | 14.56 ± 0.87 | 76.03 ± 6.54 | 72.41 ± 3.21 |
Parameters | Ca | P | Mg | K | Na | Cu | Fe | Zn | Mn |
---|---|---|---|---|---|---|---|---|---|
%DM | %DM | %DM | %DM | %DM | ppm | Ppm | ppm | Ppm | |
A. taxiformis | 3.7 ± 0.07 | 0.20 ± 0.06 | 0.96 ± 0.09 | 2.01 ± 0.49 | 8.41 ± 0.62 | 7.00 ± 0.68 | 4524.67 ± 342.65 | 38 ± 3.56 | 110.7 ± 25.67 |
A. armata | 3.9 ± 0.05 | 0.21 ± 0.02 | 1.35 ± 0.08 | 1.45 ± 0.25 | 8.72 ± 0.58 | 12.90 ± 0.24 | 1178 ± 225.87 | 65.7 ± 12.2 | 61 ± 12.95 |
Substrate | 0.42 ± 0.05 | 0.18 ± 0.04 | 0.25 ± 0.02 | 2.17 ± 0.71 | 0.31 ± 0.09 | 8.86 ± 0.54 | 587.62 ± 120.44 | 47.21 ± 9.99 | 99.4 ± 19.81 |
Incubation Time (h) | Treatment | SEM | Contrast | ||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | Linear | Quadratic | Cubic | ||
Total Gas Production (mL/g DM of Substrate) | |||||||||
Asparagopsis armata | |||||||||
6 | 28.01 | 24.64 | 25.10 | 24.77 | 25.18 | 0.64 | 0.086 | 0.228 | 0.199 |
12 | 66.63 | 63.01 | 59.74 | 59.98 | 44.56 | 0.29 | 0.315 | 0.888 | 0.764 |
24 | 125.86 | 115.18 | 97.33 | 93.24 | 75.52 | 0.32 | 0.101 | 0.035 | 0.085 |
48 | 157.70 | 156.81 | 153.85 | 149.00 | 128.40 | 0.38 | 0.047 | 0.024 | 0.032 |
72 | 175.32 | 168.94 | 169.34 | 159.50 | 153.85 | 0.68 | 0.035 | 0.044 | 0.031 |
Asparagopsis taxiformis | |||||||||
6 | 33.65 | 29.32 | 23.05 | 21.54 | 12.72 | 0.64 | 0.029 | 0.285 | 0.217 |
12 | 70.29 | 59.41 | 46.05 | 41.14 | 23.03 | 0.29 | <0.001 | 0.423 | 0.051 |
24 | 136.85 | 118.41 | 95.78 | 89.52 | 73.25 | 0.32 | <0.001 | 0.224 | 0.057 |
48 | 173.70 | 151.45 | 128.41 | 113.94 | 105.31 | 0.38 | <0.001 | 0.247 | 0.046 |
72 | 180.92 | 169.96 | 154.92 | 141.55 | 127.76 | 0.68 | <0.001 | 0.049 | <0.001 |
Incubation Time (h) | Treatment | SEM | Contrast | ||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | Linear | Quadratic | Cubic | ||
Methane Production (mL/g DM of Substrate) | |||||||||
Asparagopsis armata | |||||||||
6 | 7.24 | 8.20 | 7.41 | 3.65 | 3.60 | 0.64 | 0.658 | 0.682 | 0.407 |
12 | 14.52 | 14.08 | 14.42 | 10.84 | 6.94 | 0.29 | 0.042 | 0.423 | 0.687 |
24 | 27.60 | 26.69 | 22.83 | 18.22 | 16.38 | 0.32 | 0.032 | 0.224 | 0.312 |
48 | 32.24 | 32.20 | 30.77 | 25.62 | 22.26 | 0.38 | 0.047 | 0.247 | 0.225 |
72 | 34.42 | 34.62 | 35.10 | 28.46 | 25.97 | 0.68 | 0.035 | 0.568 | 0.722 |
Asparagopsis taxiformis | |||||||||
6 | 7.81 | 2.68 | 2.02 | 1.27 | 1.34 | 0.05 | 0.044 | 0.487 | 0.684 |
12 | 12.08 | 7.62 | 4.69 | 1.34 | 2.71 | 0.08 | 0.039 | 0.325 | 0.551 |
24 | 24.04 | 14.73 | 11.59 | 3.13 | 5.77 | 0.12 | 0.027 | 0.158 | 0.256 |
48 | 28.33 | 19.44 | 14.75 | 6.42 | 7.88 | 0.26 | <0.001 | 0.067 | 0.088 |
72 | 29.28 | 20.92 | 16.54 | 7.55 | 9.28 | 0.42 | <0.001 | 0.048 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, H.P.B.; Maduro Dias, C.S.A.M.; Álvaro, N.V.; Borba, A.E.S. Evaluation of Two Species of Macroalgae from Azores Sea as Potential Reducers of Ruminal Methane Production: In Vitro Ruminal Assay. Animals 2024, 14, 967. https://doi.org/10.3390/ani14060967
Nunes HPB, Maduro Dias CSAM, Álvaro NV, Borba AES. Evaluation of Two Species of Macroalgae from Azores Sea as Potential Reducers of Ruminal Methane Production: In Vitro Ruminal Assay. Animals. 2024; 14(6):967. https://doi.org/10.3390/ani14060967
Chicago/Turabian StyleNunes, Helder P. B., Cristiana S. A. M. Maduro Dias, Nuno V. Álvaro, and Alfredo E. S. Borba. 2024. "Evaluation of Two Species of Macroalgae from Azores Sea as Potential Reducers of Ruminal Methane Production: In Vitro Ruminal Assay" Animals 14, no. 6: 967. https://doi.org/10.3390/ani14060967