Can the Inclusion of Forage Chicory in the Diet of Lactating Dairy Cattle Alter Milk Production and Milk Fatty Acid Composition? Findings of a Multilevel Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Article Search and Screening
- Written in English.
- Be an experimental research article.
- Use lactating dairy cattle as the study population.
- Report on at least one of the primary outcomes: milk production, milk FA composition and milk urea nitrogen (MUN). Publications had to report at least one measure of statistical variance {standard error of the mean (SEM) or standard error of differences (SED) or p-value} for these primary outcome variables.
- Examine the effect of chicory on the primary outcome variables. Publications or treatments within publications that fed chicory in diverse pastures containing other herbs, such as plantain, were not included, since they have shown similar effects to chicory on the primary outcome variables.
- Chicory had to be compared with other forages in the publication. The control or comparator forages were either grass species, legumes or dicotyledonous forages. Chicory treatments were either pure chicory pastures or mixed with a grass or legume at any proportion. Publications or chicory treatments with swards, including other herbs such as plantain with similar effects on production parameters as chicory, were omitted in the analysis. Moreover, chicory and control swards needed to be fed fresh, not conserved (hay/silage).
2.2. Data Extraction
2.3. Statistical Methods
3. Results
3.1. Characteristics of Selected Studies
3.2. Diet Chemical Composition and Nutrient Intakes
3.3. Overall Effect of Chicory
3.4. Moderator Analyses
3.4.1. Milk Yield
3.4.2. Milk Solids
3.4.3. Individual Milk FA Composition
4. Discussion
4.1. Milk Production and Composition
4.2. Individual Milk FA Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, D.A.; Matthew, C.; Crush, J.R. More Feed for New Zealand Dairy Systems. J. N. Z. Grassl. 2001, 63, 283–288. [Google Scholar] [CrossRef]
- Lee, J.M.; Clark, A.J.; Roche, J.R. Climate-Change Effects and Adaptation Options for Temperate Pasture-Based Dairy Farming Systems: A Review. Grass Forage Sci. 2013, 68, 485–503. [Google Scholar] [CrossRef]
- McCahon, A.D.; Ussher, G.R.; McCahon, K. Diversified Pastures at the Front Line of Climate Change in Northland: Farmers Experiences, New Directions and Wider Implications for Other Parts of the Country. J. N. Z. Grassl. 2021, 17, 213–224. [Google Scholar] [CrossRef]
- Garcia, S.C.; Kemp, S.; Clark, C.; Ota, N.; Islam, M.; Kriticos, D. What’s next for the New Zealand Dairy Feed-Base? Learnings from Climate Analogues. J. N. Z. Grassl. 2021, 17, 149–162. [Google Scholar] [CrossRef]
- Glassey, C.B.; Clark, C.E.F.; Roach, C.G.; Lee, J.M. Herbicide Application and Direct Drilling Improves Establishment and Yield of Chicory and Plantain. Grass Forage Sci. 2013, 68, 178–185. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Moate, P.J.; Garner, J.B.; Hannah, M.C.; Giri, K.; Wales, W.J.; Marett, L.C. Dairy Cows Offered Fresh Chicory Instead of Ensiled Pasture during an Acute Heat Challenge Produced More Milk and Had Lower Body Temperatures. Animals 2023, 13, 867. [Google Scholar] [CrossRef]
- Lee, J.M.; Hemmingson, N.R.; Minnee, E.M.K.; Clark, C.E.F. Management Strategies for Chicory (Cichorium intybus) and Plantain (Plantago lanceolata): Impact on Dry Matter Yield, Nutritive Characteristics and Plant Density. Crop Pasture Sci. 2015, 66, 168–183. [Google Scholar] [CrossRef]
- Minneé, E.M.K.; Waghorn, G.C.; Lee, J.M.; Clark, C.E.F.F. Including Chicory or Plantain in a Perennial Ryegrass/White Clover-Based Diet of Dairy Cattle in Late Lactation: Feed Intake, Milk Production and Rumen Digestion. Anim. Feed Sci. Technol. 2017, 227, 52–61. [Google Scholar] [CrossRef]
- Mangwe, M.C.; Bryant, R.H. Partial Replacement of Ryegrass and Clover Herbage with Chicory to Alter Urination Behaviour and Soil Nitrogen Loading of Grazing Dairy Cows. J. N. Z. Grassl. 2021, 83, 179–187. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Tavendale, M.H.; Woodfield, D.R. Methanogenesis from Forages Fed to Sheep. Proc. N. Z. Grassl. Assoc. 2002, 64, 167–171. [Google Scholar] [CrossRef]
- Mangwe, M.C.; Bryant, R.H.; Beck, M.R.; Beale, N.; Bunt, C.; Gregorini, P. Forage Herbs as an Alternative to Ryegrass-White Clover to Alter Urination Patterns in Grazing Dairy Systems. Anim. Feed Sci. Technol. 2019, 252, 11–22. [Google Scholar] [CrossRef]
- Bryant, R.H.; Snow, V.O.; Shorten, P.R.; Welten, B.G. Can Alternative Forages Substantially Reduce N Leaching? Findings from a Review and Associated Modelling. N. Z. J. Agric. Res. 2019, 63, 3–28. [Google Scholar] [CrossRef]
- Pembleton, K.G.; Hills, J.L.; Freeman, M.J.; McLaren, D.K.; French, M.; Rawnsley, R.P. More Milk from Forage: Milk Production, Blood Metabolites, and Forage Intake of Dairy Cows Grazing Pasture Mixtures and Spatially Adjacent Monocultures. J. Dairy Sci. 2016, 99, 3512–3528. [Google Scholar] [CrossRef]
- Chapman, D.F.; Tharmaraj, J.; Nie, Z.N. Milk-Production Potential of Different Sward Types in a Temperate Southern Australian Environment. Grass Forage Sci. 2008, 63, 221–233. [Google Scholar] [CrossRef]
- Rodriguez, R.; Suazo, C.; Balocchi, O.; Alomar, D. Milk Production and Quality from Ewes Grazing a Plantain-Chicory Mixture or a Grass-Based Permanent Sward. Small Rumin. Res. 2019, 170, 91–96. [Google Scholar] [CrossRef]
- Peña-Espinoza, M.; Valente, A.H.; Thamsborg, S.M.; Simonsen, H.T.; Boas, U.; Enemark, H.L.; López-Muñoz, R.; Williams, A.R. Antiparasitic Activity of Chicory (Cichorium intybus) and Its Natural Bioactive Compounds in Livestock: A Review. Parasites Vectors 2018, 11, 475. [Google Scholar] [CrossRef]
- Barry, T.N. The Feeding Value of Chicory (Cichorium Intybus) for Ruminant Livestock. J. Agric. Sci. 1998, 131, 251–257. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Moate, P.J.; Deighton, M.H.; Hannah, M.C.; Wales, W.J.; Jacobs, J.L. Milk Production and Composition, and Methane Emissions from Dairy Cows Fed Lucerne Hay with Forage Brassica or Chicory. Anim. Prod. Sci. 2016, 56, 304–311. [Google Scholar] [CrossRef]
- Muir, S.K.; Ward, G.N.; Jacobs, J.L. Milk Production and Composition of Mid-Lactation Cows Consuming Perennial Ryegrass-and Chicory-Based Diets. J. Dairy Sci. 2014, 97, 1005–1015. [Google Scholar] [CrossRef]
- Elgersma, A. Grazing Increases the Unsaturated Fatty Acid Concentration of Milk from Grass-Fed Cows: A Review of the Contributing Factors, Challenges and Future Perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Muir, S.K.; Ward, G.N.; Jacobs, J.L. Herbage Intake and Milk Production of Late-Lactation Dairy Cows Offered a Second-Year Chicory Crop during Summer. J. Dairy Sci. 2015, 98, 8825–8835. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Kalber, T.; Meier, J.S.; Kreuzer, M.; Leiber, F. Flowering Catch Crops Used as Forage Plants for Dairy Cows: Influence on Fatty Acids and Tocopherols in Milk. J. Dairy Sci. 2011, 94, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.; Nielsen, T.S.; Purup, S.; Kristensen, T.; Eriksen, J.; Søegaard, K.; Sørensen, J.; Fretté, X.C. Phyto-Oestrogens in Herbage and Milk from Cows Grazing White Clover, Red Clover, Lucerne or Chicory-Rich Pastures. Animal 2009, 3, 1189–1195. [Google Scholar] [CrossRef]
- CSIRO. Nutrient Requirements of Domesticated Ruminants; Freer, H., Dove, H., Nolan, J., Eds.; CSIRO Publishing: Melbourne, VIC, Australia, 2007. [Google Scholar]
- AFRC. Energy and Protein Requirements of Ruminants. An Advisory Manual Prepared by the AFRC Technical Committee on Responses to Nutrients; Alderman, G., Cottrill, B.R., Eds.; CABInternational: Wallingford, UK, 1993. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Assink, M.; Wibbelink, C. Fitting Three-Level Meta-Analytic Models in R: A Step-by-Step Tutorial. Quant. Methods Psychol. 2016, 12, 154–174. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Pustejovsky, J.E. ClubSandwich: Cluster-Robust (Sandwich) Variance Estimators with Small-Sample Corrections. 2022. Available online: https://CRAN.R-project.org/package=clubSandwich (accessed on 10 February 2024).
- Viechtbauer, W.; Cheung, M.W.L. Outlier and Influence Diagnostics for Meta-Analysis. Res. Synth. Methods 2010, 1, 112–125. [Google Scholar] [CrossRef]
- Kadlec, D.; Sainani, K.L.; Nimphius, S. With Great Power Comes Great Responsibility: Common Errors in Meta-Analyses and Meta-Regressions in Strength & Conditioning Research. Sport. Med. 2023, 53, 313–325. [Google Scholar] [CrossRef]
- Assink, M.; van der Put, C.E.; Hoeve, M.; de Vries, S.L.A.; Stams, G.J.J.M.; Oort, F.J. Risk Factors for Persistent Delinquent Behavior among Juveniles: A Meta-Analytic Review. Clin. Psychol. Rev. 2015, 42, 47–61. [Google Scholar] [CrossRef]
- Parisi, A.; Roberts, R.L.; Hanley, A.W.; Garland, E.L. Mindfulness-Oriented Recovery Enhancement for Addictive Behavior, Psychiatric Distress, and Chronic Pain: A Multilevel Meta-Analysis of Randomized Controlled Trials. Mindfulness 2022, 13, 2396–2412. [Google Scholar] [CrossRef]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-On Guide; Chapman & Hall/CRC Press: Boca Raton, FL, USA; London, UK, 2020. [Google Scholar]
- Waugh, C.D.; Clark, D.A.; Harris, S.L.; Thom, E.R.; Copeman, P.J.A.; Napper, A.R. Chicory for Milk Production. Proc. N. Z. Grassl. Assoc. 1998, 60, 33–37. [Google Scholar] [CrossRef]
- Fu, R.; Gartlehner, G.; Grant, M.; Shamliyan, T.; Sedrakyan, A.; Wilt, T.J.; Griffith, L.; Oremus, M.; Raina, P.; Ismaila, A.; et al. Conducting Quantitative Synthesis When Comparing Medical Interventions: AHRQ and the Effective Health Care Program. J. Clin. Epidemiol. 2011, 64, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Chay-Canul, A.J.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D. Meta-Analysis of Flavonoids Use into Beef and Dairy Cattle Diet: Performance, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Milk Composition. Front. Vet. Sci. 2023, 10, 1134925. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.K.; Fretté, X.C.; Kristensen, T.; Eriksen, J.; Søegaard, K.; Nielsen, J.H. Fatty Acid, Tocopherol and Carotenoid Content in Herbage and Milk Affected by Sward Composition and Season of Grazing. J. Sci. Food Agric. 2012, 92, 2891–2898. [Google Scholar] [CrossRef]
- Mangwe, M.C.; Bryant, R.H.; Beck, M.R.; Fleming, A.E.; Gregorini, P. Grazed Chicory, Plantain or Ryegrass–White Clover Alters Milk Yield and Fatty Acid Composition of Late-Lactating Dairy Cows. Anim. Prod. Sci. 2020, 60, 107–113. [Google Scholar] [CrossRef]
- Mangwe, M.; Bryant, R.; Gregorini, P. Rumen Fermentation and Fatty Acid Composition of Milk of Mid Lactating Dairy Cows Grazing Chicory and Ryegrass. Animals 2020, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Minneé, E.M.K.; Clark, C.E.F.; McAllister, T.B.; Hutchinson, K.J.; Lee, J.M. Chicory and Plantain as Feeds for Dairy Cows in Late Lactation. In Proceedings of the Australasian Dairy Science Symposium 2012, Proceedings of the 5th Australasian Dairy Science Symposium, Melbourne, Australia, 13–15 November 2012; pp. 426–428.
- Roca-Fernández, A.I.; Peyraud, J.L.; Delaby, L.; Delagarde, R. Pasture Intake and Milk Production of Dairy Cows Rotationally Grazing on Multi-Species Swards. Animal 2016, 10, 1448–1456. [Google Scholar] [CrossRef]
- Soder, K.J.; Sanderson, M.A.; Stack, J.L.; Muller, L.D. Intake and Performance of Lactating Cows Grazing Diverse Forage Mixtures. J. Dairy Sci. 2006, 89, 2158–2167. [Google Scholar] [CrossRef]
- Li, G.; Kemp, P.D. Forage Chicory (Cichorium intybus L.): A Review of Its Agronomy and Animal Production. Adv. Agron. 2005, 88, 187–222. [Google Scholar] [CrossRef]
- Merry, R.J.; Leemans, D.K.; Davies, D.R. Improving the Efficiency of Silage-N Utilisation in the Rumen through the Use of Perennial Ryegrasses High in Water-Soluble Carbohydrate Content. In Proceedings of the XIII International Silage Conference SAC, Auchincruive, Ayr, UK, 11–13 September 2002; pp. 374–375. [Google Scholar]
- Nguyen, T.T.; Navarrete, S.; Horne, D.J.; Donaghy, D.J.; Kemp, P.D. Forage Plantain (Plantago lanceolata L.): Meta-Analysis Quantifying the Decrease in Nitrogen Excretion, the Increase in Milk Production, and the Changes in Milk Composition of Dairy Cows Grazing Pastures Containing Plantain. Anim. Feed Sci. Technol. 2022, 285, 115244. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Banni, S.; Carta, G.; Angioni, E.; Murru, E.; Scanu, P.; Melis, M.P.; Bauman, D.E.; Fischer, S.M.; Ip, C. Distribution of Conjugated Linoleic Acid and Metabolites in Different Lipid Fractions in the Rat Liver. J. Lipid Res. 2001, 42, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Toral, P.G.; Monahan, F.J.; Hervas, G.; Frutos, P.; Moloney, A.P. Review: Modulating Ruminal Lipid Metabolism to Improve the Fatty Acid Composition of Meat and Milk. Challenges and Opportunities. Animal 2018, 12, S272–S281. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, N.; Lipsky, R.H.; Bourourou, M.; Duncan, M.W.; Gorelick, P.B.; Marini, A.M. Alpha-Linolenic Acid: An Omega-3 Fatty Acid with Neuroprotective Properties-Ready for Use in the Stroke Clinic? Biomed Res. Int. 2015, 2015, 519830. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Doreau, M. Effect of Different Types of Forages, Animal Fat or Marine Oils in Cow’s Diet on Milk Fat Secretion and Composition, Especially Conjugated Linoleic Acid (CLA) and Polyunsaturated Fatty Acids. Livest. Prod. Sci. 2001, 70, 31–48. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.R.F.; Scollan, N.D. Increasing the Concentrations of Beneficial Polyunsaturated Fatty Acids in Milk Produced by Dairy Cows in High-Forage Systems. Anim. Feed Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, Rumen Biohydrogenation and Nutritional Quality of Cow and Goat Milk Fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
Reference | Country | Lactation | System | n | Reps | Cattle | Interventions | Chicory Proportion |
---|---|---|---|---|---|---|---|---|
Andersen et al. (2009) [24] | Denmark | mid | Grazing | 6 | 2 | 48 | Pasture type: white and red clover vs. lucerne vs. chicory | 52–72% |
Chapman et al. (2008) [14] | Australia | mid | Grazing | 5 | 2 | 30 | Pasture types: grass mixtures vs. chicory | 80% |
Kalber et al. (2011) [23] | Switzerland | mid | Confined | 4 | 6 | 28 | Pasture types: ryegrass vs. clover vs. phacelia vs. buckwheat vs. chicory | 36% |
Larsen et al. (2012) [40] | Denmark | mid | Grazing | 4 | 2 | 48 | Pasture type: white clover vs. red clover vs. lucerne vs. mixed pasture vs. chicory | 57% |
Mangwe et al. (2019) [11] | New Zealand | mid | Grazing | 2 | 3 | 27 | Pasture types: ryegrass vs. chicory vs. plantain | 100% |
Mangwe et al. (2020) [41] | New Zealand | mid | Grazing | 3 | 3 | 27 | Pasture types: ryegrass vs. chicory | 100% |
Minneé et al. (2017) [8] | New Zealand | late | Confined | 3 | 6 to 9 | 42 | Pasture types: ryegrass vs. chicory vs. plantain (20 and 40%) | 20–40% |
Mangwe et al. (2020) [42] | New Zealand | mid | Grazing | 3 | 3 | 16 | Pasture types: ryegrass vs. chicory AM vs. chicory PM | 50% |
Muir et al. (2015) [21] | Australia | late | Grazing | 3 | 4 | 36 | Pasture types: ryegrass vs. chicory (50 and 100%) | 25–50% |
Muir et al. (2014) [19] | Australia | mid | Grazing | 3 | 4 | 72 | Pasture types: ryegrass vs. chicory (50 and 100%) | 30–60% |
Minneé et al. (2012) [43] | New Zealand | late | Confined | 10 | 2 | 90 | Ryegrass vs. chicory vs. plantain (20, 40 and 60%) | 20–60% |
Mangwe and Bryant (2021) [9] | New Zealand | mid | Grazing | 3 | 3 | 16 | Pasture types: ryegrass vs. chicory AM vs. chicory PM | 50% |
Roca-Fernández et al. (2016) [44] | France | mid | Grazing | 4 | 4 | 37 | Pasture types: ryegrass vs. pasture mix vs. chicory | 30% |
Soder et al. (2006) [45] | USA | mid | Grazing | 2 | 5 | 20 | Pasture types: ryegrass vs. chicory | 20% |
Waugh et al. (1998) [37] | New Zealand | late | Grazing | 3 | 10 | 60 | Pasture types: ryegrass vs. chicory vs. turnips | Not reported |
Variable | Overall | Forage Type | p-Value | |||
---|---|---|---|---|---|---|
Chicory | Grasses | Dicots 1 | ||||
Dry matter (g/kg of FW) | Mean | 153 | 135 b | 200 a | 140 b | <0.001 |
Median | 135 | 119 | 184 | 118 | ||
Range | 81–352 | 81–329 | 131–352 | 96–132 | ||
Organic matter (g/kg DM) | Mean | 881 | 865 b | 900 a | 884 ab | <0.001 |
Median | 879 | 868 | 904 | 879 | ||
Range | 810–918 | 810–894 | 871–918 | 871–879 | ||
Neutral detergent fibre (NDF: g/kg DM) | Mean | 372 | 324 b | 488 a | 360 b | <0.001 |
Median | 377 | 296 | 470 | 302 | ||
Range | 194–635 | 194–488 | 366–635 | 258–678 | ||
Acid detergent fibre (g/kg DM) | Mean | 252 | 226 b | 276 a | 246 ab | <0.001 |
Median | 230 | 225 | 260 | 190 | ||
Range | 163–358 | 163–352 | 224–358 | 181–354 | ||
Non-structural carbohydrates (NSC: g/kg DM) | Mean | 213 | 327 a | 188 b | 306 c | <0.001 |
Median | 255 | 401 | 228 | 207 | ||
Range | 77–454 | 89–454 | 77–261 | 91–384 | ||
Crude protein (CP: g/kg DM) | Mean | 181 | 175 | 176 | 177 | 0.656 |
Median | 191 | 191 | 190 | 196 | ||
Range | 61–265 | 61–249 | 76–232 | 129–265 | ||
Metabolisable energy (ME: MJ/kg) | Mean | 11.3 | 11.4 a | 10.8 b | 11.1 ab | 0.007 |
Median | 11.5 | 11.4 | 10.9 | 11.8 | ||
Range | 7.4–12.9 | 7.4–12.9 | 8.2–12.1 | 9.6–12.9 | ||
CP:NSC (g/g DM) | Mean | 1.33 | 1.09 b | 1.57 a | 0.56 c | <0.001 |
Median | 1.07 | 0.45 | 1.08 | 0.5 | ||
Range | 0.28–3.06 | 0.28–2.46 | 0.61–3.06 | 0.27–1.00 | ||
Dry matter intake (kg/day) | Mean | 17.2 | 17.6 | 16.8 | 17.3 | 0.094 |
Median | 16.1 | 16.6 | 15.9 | 14.9 | ||
Range | 10.6–23.1 | 13.4–23.1 | 10.6–22.9 | 13.6–21.4 | ||
ME intake (MJ/day) | Mean | 186 | 202 a | 180 b | 193 a | 0.003 |
Median | 182 | 189 | 167 | 172 | ||
Range | 101–298 | 154–297 | 101–246 | 146–276 | ||
NDF intake (g/day) | Mean | 6309 | 5523 b | 7585 a | 5986 b | <0.001 |
Median | 6236 | 5816 | 7410 | 4539 | ||
Range | 3010–8381 | 3108–7686 | 6166–8381 | 3962 | ||
Crude protein intake (g/day) | Mean | 3181 | 3246 | 3182 | 3219 | 0.895 |
Median | 3044 | 3119 | 3055 | 2789 | ||
Range | 1092–4992 | 2045–4873 | 1092–4992 | 2480–4936 | ||
CP:ME intake (g/MJ) | Mean | 16 | 15.2 | 16.3 | 15.6 | 0.256 |
Median | 16 | 15.4 | 16.5 | 17.3 | ||
Range | 10.5–21.7 | 10.5–19.6 | 10.8–21.0 | 12.4–21.7 | ||
C16:0 (g/kg DM) Palmitic acid | Mean | 4.6 | 4.9 a | 3.9 b | 5.1 a | 0.006 |
Median | 4.6 | 4.6 | 3.4 | 5.9 | ||
Range | 1.95–6.5 | 3.64–6.1 | 1.95–6.4 | 5.2–6.5 | ||
C18:2 c9, 12 (g/kg DM) Linoleic acid | Mean | 5.8 | 7.2 a | 3.4 b | 5.5 ab | 0.002 |
Median | 5.7 | 7.2 | 3.3 | 5.3 | ||
Range | 1.58–9.67 | 4.1–9.7 | 1.6–5.7 | 5.2–6.7 | ||
C18:3 c9, 12, 15 (g/kg DM) Alpha linolenic acid | Mean | 13.6 | 14 | 13.9 | 12.8 | 0.683 |
Median | 12.2 | 12.2 | 11.1 | 17.4 | ||
Range | 1.53–26.9 | 3.43–24.2 | 1.53–26.4 | 9.8 | ||
C18:2 c9, 12 intake (g/day) Linoleic acid | Mean | 103.8 | 128.1 a | 71.2 b | 112 ab | 0.009 |
Median | 105.5 | 111.1 | 68.6 | 112 | ||
Range | 28.2–186 | 82.0–185.6 | 28.3–107 | 107 | ||
C18:3 c9, 12, 15 intake (g/day) Alpha linolenic acid | Mean | 228 | 231 | 218 | 235 | 0.448 |
Median | 181 | 188.7 | 159 | 372 | ||
Range | 27–470 | 66–433 | 27–411 | 141–471 |
Outcome | Publications | ES 1 | Effect Sizes (WMD) | 95% CI | p-Value | %Var. at Level 1 (I2) | Level 2 Variance | %Var. at Level 2 (I2) | Level 3 Variance | %Var. at Level 3 (I2) | Egger’s |
---|---|---|---|---|---|---|---|---|---|---|---|
Milk yield (kg/cow) | 13 | 29 | 0.624 ± 0.26 | (0.09–1.161) | 0.024 | 28.4 | 0.527 ** | 45.6 | 0.300 | 25.9 | 0.142 |
Milk solids (kg/day) | 9 | 23 | 0.09 ± 0.02 | (0.05–0.13) | 0.001 | 30.6 | 0.003 * | 54.8 | 0.001 | 14.7 | 0.114 |
Milk protein (kg/day) | 5 | 9 | 0.077 ± 0.03 | (0.002–0.16) | 0.055 | 4.9 | 0.000 | 30.3 | 0.004 ** | 64.8 | 0.932 |
Milk fat yield (g/day) | 5 | 9 | 0.100 ± 0.03 | (0.05–0.16) | 0.003 | 17.3 | 0.004 ** | 82.7 | 0.000 | 0.00 | 0.332 |
Milk protein (%) | 11 | 22 | 0.02 ± 0.02 | (−0.23–0.07) | 0.332 | 57.0 | 0.002 | 10.5 | 0.001 | 32.5 | 0.936 |
Milk fat (%) | 11 | 22 | 0.077 ± 0.03 | (−0.01–0.15) | 0.143 | 86.5 | 0.003 | 13.5 | 0.000 | 0.0 | 0.150 |
Milk lactose (%) | 5 | 11 | 0.01 ± 0.02 | (−0.03–0.04) | 0.762 | 66.9 | 0.000 | 0.0 | 0.001 | 33.1 | 0.750 |
C18:2 c9, 12 | 7 | 12 | 0.29 ± 0.05 | (0.21–0.38) | <0.001 | 8.8 | 0.019 ** | 77.4 | 0.003 | 13.8 | 0.162 |
C18:3 c9, 12, 15 | 7 | 12 | 0.154 ± 0.06 | (0.02–0.29) | 0.033 | 5.5 | 0.016 ** | 49.6 | 0.017 | 45.0 | 0.280 |
18:2 cis-9, trans-11 | 7 | 12 | −0.024 ± 0.05 | (−0.14–0.09) | 0.277 | 16.7 | 0.000 | 0.00 | 0.013 ** | 83.7 | 0.421 |
Saturated FA | 5 | 9 | −0.396 ± 0.40 | (−1.3–0.50) | 0.350 | 57.7 | 0.126 | 10.5 | 0.384 | 31.8 | 0.761 |
Monounsaturated FA | 5 | 9 | −0.07 ± 0.66 | (−1.59–1.45) | 0.921 | 48.4 | 0.070 | 2.80 | 1.211 | 48.7 | 0.887 |
Polyunsaturated FA | 5 | 9 | 0.555 ± 0.27 | (−0.05–1.16) | 0.067 | 2.40 | 0.431 * | 75.7 | 0.125 | 21.9 | 0.975 |
Milk urea nitrogen (mg/dL) | 5 | 9 | −1.64 ± 0.83 | (−3.90–0.63) | 0.134 | 0.00 | 8.62 *** | 99.9 | 0.000 | 0.0 | 0.237 |
Outcome | Moderator | n 1 | ES 1 | Intercept 1 | 95% CI | Coefficient | 95% CI | p-Value | F (df1, df2) | σ21 | σ22 | 1I2 | 2I2 | 3I2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Milk yield | Chicory proportion | 13 | 29 | 0.59 * | (0.01–1.09) | 0.011 | (−0.010–0.030) | 0.211 | F(1, 27) = 1.64 | 0.565 | 0.189 | 30.4 | 52.2 | 17.4 |
NDF intake | 12 | 27 | 0.68 * | (0.03–1.33) | −0.011 | (−0.040–0.002) | 0.399 | F(1, 25) = 0.69 | 0.579 | 0.362 | 36.9 | 24.3 | 38.8 | |
CP intake | 13 | 29 | 0.70 * | (0.08–1.32) | 0.022 | (−0.020–0.060) | 0.288 | F(1, 26) = 1.18 | 0.445 | 0.464 | 37.7 | 31.8 | 30.5 | |
ME intake | 11 | 26 | 0.81 * | (0.14–1.48) | 0.079 ** | (0.040–0.120) | 0.001 | F(1, 24) = 14.4 | 0.011 | 0.735 | 41.7 | 0.88 | 57.4 | |
DM intake | 12 | 27 | 0.37 ** | (−0.12–0.87) | 0.091 ** | (0.050–0.130) | <0.001 | F(1, 25) = 18.3 | 0.223 | 0.125 | 61.2 | 13.9 | 24.9 | |
Control forage type | 13 | 29 | <0.001 | F(1, 27) = 38.8 | 0.000 | 0.436 | 43.0 | 0.0 | 57.0 | |||||
Dicots | 7 | 10 | −0.30 | (−0.89–0.29) | ||||||||||
Grass | 11 | 19 | 1.07 *** | (0.54–1.60) | −1.390 | (−1.82–−0.92) | ||||||||
Lactation | 13 | 28 | 0.641 | F(1, 27) = 0.22 | 0.504 | 0.417 | 26.3 | 40.3 | 33.4 | |||||
Mid | 9 | 15 | 0.75 | (−0.03–1.53) | ||||||||||
Late | 4 | 14 | 0.49 | (−0.37–1.34) | −0.266 | (−1.420–0.890) | ||||||||
Milk solids | Chicory proportion | 9 | 23 | 0.10 *** | (0.05–0.14) | −0.001 | (−0.002–0.000) | 0.135 | F(1, 21) = 2.41 | 0.002 | 0.002 | 28.9 | 35.8 | 35.3 |
NDF intake | 8 | 21 | 0.09 *** | (0.05–0.14) | −0.002 * | (−0.004-−0.000) | 0.045 | F(1, 19) = 4.61 | 0.002 | 0.001 | 45.0 | 36.0 | 19.0 | |
CP intake | 8 | 21 | 0.10 | (0.05–0.15) | 0.001 | (−0.001–0.003) | 0.595 | F(1, 19) = 0.29 | 0.002 | 0.004 | 32.7 | 47.0 | 20.2 | |
ME intake | 8 | 21 | 0.11 *** | (0.05–0.16) | 0.004 * | (0.000–0.008) | 0.034 | F(1, 19) = 5.24 | 0.004 | 0.002 | 30.9 | 20.0 | 49.0 | |
DM intake | 8 | 21 | 0.10 *** | (0.05–0.15) | 0.004 | (−0.001–0.006) | 0.103 | F(1, 19) = 2.93 | 0.003 | 0.002 | 34.5 | 36.4 | 29.1 | |
Control forage type | 9 | 23 | 0.048 | F(1, 21) = 4.40 | 0.003 | 0.000 | 34.2 | 64.9 | 0.90 | |||||
Dicots | 5 | 8 | 0.05 | (−0.00–0.10) | ||||||||||
Grass | 9 | 15 | 0.12 *** | 0.08–0.16) | 0.071 * | (0.006–0.142) | ||||||||
Lactation | 9 | 23 | 0.041 | F(1, 21) = 4.76 | 0.003 | 0.000 | 37.2 | 62.8 | 0.00 | |||||
Mid | 6 | 11 | 0.13 *** | (0.08–0.18) | ||||||||||
Late | 3 | 12 | 0.06 * | (0.01–0.10) | −0.069 | (−0.014–0.003) |
Outcome | Moderator 1 | n 1 | ES 1 | Intercept 1 | 95% CI | Coefficient | 95% CI | p-Value | F (df1, df2) | σ21 | σ22 | 1I2 | 2I2 | 3I2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Linoleic acid | Chicory proportion | 7 | 12 | 0.29 * | (0.21–0.38) | 0.0003 | (−0.003–0.004) | 0.813 | F(1, 10) = 0.06 | 0.011 | 0.002 | 12.4 | 70.7 | 15.1 |
NDF intake | 7 | 12 | 0.29 *** | (0.120–0.38) | −0.001 | (−0.007–0.005) | 0.666 | F(1, 10) = 0.20 | 0.009 | 0.005 | 13.8 | 57.1 | 29.1 | |
CP intake | 6 | 11 | 0.29 *** | (0.19–0.38) | −0.001 | (−0.009–0.007) | 0.763 | F(1, 9) = 0.10 | 0.010 | 0.003 | 12.4 | 66.4 | 21.2 | |
ME intake | 6 | 11 | 0.29 *** | (0.20–0.37) | 0.009 | (−0.003–0.022) | 0.124 | F(1, 9) = 2.87 | 0.007 | 0.003 | 16.1 | 55.7 | 28.2 | |
DM intake | 7 | 12 | 0.29 *** | (0.22–0.36) | 0.008 * | 0.001–0.014) | 0.027 | F(1, 10) = 6.69 | 0.005 | 0.002 | 23.5 | 58.7 | 17.7 | |
LA intake | 5 | 10 | 0.28 *** | (0.16–0.40) | 0.0001 | (−0.001–0.001) | 0.814 | F(1, 8) = 0.60 | 0.009 | 0.007 | 12.7 | 49.0 | 38.2 | |
ALA intake | 6 | 11 | 0.29 *** | (0.19–0.39) | −0.0003 | (−0.002–0.001) | 0.625 | F(1, 9) = 0.26 | 0.009 | 0.005 | 12.1 | 57.5 | 30.4 | |
Control forage type | 7 | 12 | 0.137 | F(1, 10) = 2.61 | 0.005 | 0.009 | 13.5 | 30.4 | 56.0 | |||||
Dicots | 3 | 3 | 0.22 ** | (0.07–0.36) | ||||||||||
Grass | 6 | 9 | 0.33 *** | 0.22–0.44) | 0.112 | (0.072–0.360) | ||||||||
Lactation | 7 | 12 | 0.272 | F(1, 10) = 1.35 | 0.009 | 0.002 | 16.1 | 66.7 | 17.2 | |||||
Mid | 6 | 10 | 0.27 *** | (0.18–0.36) | ||||||||||
Late | 1 | 2 | 0.39 | (0.19–0.58) | 0.113 | (−0.100–0.330) | ||||||||
Alpha linolenic acid | Chicory proportion | 7 | 12 | 0.16 * | (0.02–0.30) | 0.001 | (−0.004–0.005) | 0.683 | F(1, 10) = 0.18 | 0.021 | 0.012 | 5.4 | 59.7 | 34.9 |
NDF intake | 7 | 12 | 0.13 | (−0.01–0.28) | −0.007 | (−0.015–0.002) | 0.131 | F(1, 10) = 2.71 | 0.012 | 0.021 | 5.5 | 33.9 | 60.6 | |
CP intake | 6 | 11 | 0.19 * | (0.05–0.32) | 0.003 | (−0.008–0.014) | 0.588 | F(1, 9) = 0.32 | 0.023 | 0.007 | 5.9 | 71.7 | 22.5 | |
ME intake | 6 | 11 | 0.18 * | (0.03–0.33) | 0.01 | (−0.009–0.03) | 0.259 | F(1, 9) = 1.45 | 0.015 | 0.015 | 5.8 | 46.7 | 47.4 | |
DM intake | 7 | 12 | 0.15 * | (0.01–0.29) | 0.011 | (−0.002–0.024) | 0.084 | F(1, 10) = 3.66 | 0.011 | 0.018 | 6.1 | 35.3 | 58.6 | |
LA intake | 5 | 10 | 0.23 * | (0.07–0.37) | −0.0002 | (−0.001–0.001) | 0.541 | F(1, 8) = 0.41 | 0.016 | 0.012 | 7.1 | 52.3 | 40.6 | |
ALA intake | 6 | 11 | 0.15 * | (0.03–0.34) | 0.011 | (−0.002–0.003) | 0.673 | F(1, 9) = 0.19 | 0.000 | 0.183 | 5.2 | 49.0 | 45.8 | |
Control forage type | 7 | 12 | 0.050 | F(1, 10) = 4.95 | 0.009 | 0.018 | 6.7 | 30.2 | 63.2 | |||||
Dicots | 3 | 3 | 0.001 | (−0.20–0.20) | ||||||||||
Grass | 6 | 9 | 0.20 * | (0.06–0.35) | 0.200 | (−0.000–0.4040) | ||||||||
Lactation | 7 | 12 | 0.168 | F(1, 10) = 2.20 | 0.017 | 0.012 | 6.3 | 55.3 | 38.4 | |||||
Mid | 6 | 10 | 0.12 | (−0.02–0.26) | ||||||||||
Late | 1 | 2 | 0.37 ** | (0.02–0.71) | 0.250 | (−0.120–0.610) | ||||||||
Conjugated linoleic acid | Chicory proportion | 6 | 11 | −0.027 | (−0.13–0.07) | −0.001 | (−0.003–0.000) | 0.120 | F(1, 9) = 2.94 | 0.000 | 0.010 | 20.4 | 2.1 | 77.6 |
NDF intake | 6 | 11 | −0.008 | (−0.11–0.09) | 0.004 | (−0.002–000) | 0.172 | F(1, 9) = 2.20 | 0.003 | 0.006 | 21.7 | 27.5 | 50.7 | |
CP intake | 6 | 11 | −0.056 | (−0.16–0.04) | 0.003 | (−0.002–0.008) | 0.165 | F(1, 8) = 2.33 | 0.000 | 0.007 | 28.4 | 0.0 | 71.6 | |
ME intake | 6 | 11 | −0.058 | (−0.17–0.05) | 0.001 | (0.009–0.012) | 0.767 | F(1, 8) = 0.09 | 0.000 | 0.010 | 22.9 | 0.0 | 77.1 | |
DM intake | 6 | 11 | −0.026 | (−0.14–0.09) | −0.001 | (−0.010–0.008) | 0.798 | F(1, 9) = 0.07 | 0.000 | 0.014 | 15.7 | 0.0 | 84.3 | |
LA intake | 5 | 10 | −0.060 | (−0.15–0.03) | 0.0003 | (−0.000–0.001) | 0.194 | F(1, 8) = 2.01 | 0.000 | 0.006 | 32.1 | 0.0 | 67.9 | |
ALA intake | 5 | 10 | −0.061 | (−0.15–0.02) | 0.001 | (−0.000–0.001) | 0.108 | F(1, 8) = 3.27 | 0.001 | 0.004 | 37.7 | 6.4 | 55.8 | |
Control forage type | 6 | 11 | 0.594 | F(1, 9) = 0.31 | 0.000 | 0.013 | 17.2 | 0.0 | 82.8 | |||||
Dicots | 2 | 2 | −0.05 | (−0.21–0.11) | ||||||||||
Grass | 4 | 9 | −0.02 | (−0.13–0.10) | 0.032 | (−0.100–0.160) | ||||||||
Lactation | 6 | 11 | 0.228 | F(1, 9) = 1.68 | 0.000 | 0.011 | 18.5 | 0.0 | 80.5 | |||||
Mid | 5 | 9 | 0.004 | (−0.11–0.12) | ||||||||||
Late | 1 | 2 | −0.160 | (−0.42–0.10) | −0.161 | (−0.440–0.120) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangwe, M.C.; Bryant, R.H.; Olszewski, A.; Herath, H.M.G.P.; Al-Marashdeh, O. Can the Inclusion of Forage Chicory in the Diet of Lactating Dairy Cattle Alter Milk Production and Milk Fatty Acid Composition? Findings of a Multilevel Meta-Analysis. Animals 2024, 14, 1002. https://doi.org/10.3390/ani14071002
Mangwe MC, Bryant RH, Olszewski A, Herath HMGP, Al-Marashdeh O. Can the Inclusion of Forage Chicory in the Diet of Lactating Dairy Cattle Alter Milk Production and Milk Fatty Acid Composition? Findings of a Multilevel Meta-Analysis. Animals. 2024; 14(7):1002. https://doi.org/10.3390/ani14071002
Chicago/Turabian StyleMangwe, Mancoba C., Racheal H. Bryant, Antonia Olszewski, Hitihamy Mudiyanselage Gayani P. Herath, and Omar Al-Marashdeh. 2024. "Can the Inclusion of Forage Chicory in the Diet of Lactating Dairy Cattle Alter Milk Production and Milk Fatty Acid Composition? Findings of a Multilevel Meta-Analysis" Animals 14, no. 7: 1002. https://doi.org/10.3390/ani14071002