Rumen-Protected Choline Improves Metabolism and Lactation Performance in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows and Housing
2.2. Experimental Design and Treatments
2.3. Diets, Diet Sampling, and Nutrient Analyses
2.4. Lactation Performance and Body Condition Scoring
2.5. Blood Sampling and Analyses of Blood Metabolites
2.6. Liver Tissue Collection and Analysis
2.7. Statistical Analyses
3. Results
3.1. Productive Performance
3.2. Concentrations of Choline, Glucose, and Nonesterified Fatty Acids in Plasma
3.3. Concentration of BHB in Plasma, Hyperketonemia, and Hepatic Tissue Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drackley, J.K. ADSA Foundation Scholar Award. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef] [PubMed]
- Komaragiri, M.V.; Erdman, R.A. Factors affecting body tissue mobilization in early lactation dairy cows. 1. Effect of dietary protein on mobilization of body fat and protein. J. Dairy Sci. 1997, 80, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Grummer, R.R. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 1995, 73, 2820–2833. [Google Scholar] [CrossRef] [PubMed]
- Arshad, U.; Zenobi, M.G.; Staples, C.R.; Santos, J.E.P. Meta-analysis of the effects of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. J. Dairy Sci. 2020, 103, 282–300. [Google Scholar] [CrossRef] [PubMed]
- Vance, D.E.; Vance, J.E. Physiological consequences of disruption of mammalian phospholipid biosynthetic genes. J. Lipid Res. 2009, 50, S132–S137. [Google Scholar] [CrossRef] [PubMed]
- Imhasly, S.; Bieli, C.; Naegeli, H.; Nystrom, L.; Ruetten, M.; Gerspach, C. Blood plasma lipidome profile of dairy cows during the transition period. BMC Vet. Res. 2015, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Humer, E.; Bruggeman, G.; Zebeli, Q. A meta-analysis on the impact of the supplementation of rumen-protected choline on the metabolic health and performance of dairy cattle. Animals 2019, 9, 566. [Google Scholar] [CrossRef] [PubMed]
- Gaal, T.; Roberts, C.J.; Reid, I.M.; Dew, A.M.; Copp, C.M. Blood composition and liver fat in post parturient dairy cows. Vet. Rec. 1983, 113, 53–54. [Google Scholar] [CrossRef]
- Zenobi, M.G.; Scheffler, T.L.; Zuniga, J.E.; Poindexter, M.B.; Campagna, S.R.; Castro Gonzalez, H.F.; Farmer, A.T.; Barton, B.A.; Santos, J.E.P.; Staples, C.R. Feeding increasing amounts of ruminally protected choline decreased fatty liver in nonlactating, pregnant Holstein cows in negative energy status. J. Dairy Sci. 2018, 101, 5902–5923. [Google Scholar] [CrossRef]
- Arshad, U.; Husnain, A.; Poindexter, M.B.; Zimpel, R.; Nelson, C.D.; Santos, J.E.P. Rumen-protected choline reduces hepatic lipidosis by increasing hepatic triacylglycerol-rich lipoprotein secretion in dairy cows. J. Dairy Sci. 2023, 106, 7630–7650. [Google Scholar] [CrossRef] [PubMed]
- Arshad, U.; Santos, J.E.P. Exploring choline’s important roles as a nutrient for transition dairy cows. J. Dairy Sci. 2024, 107. [Google Scholar] [CrossRef]
- Zom, R.L.; van Baal, J.; Goselink, R.M.; Bakker, J.A.; de Veth, M.J.; van Vuuren, A.M. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle. J. Dairy Sci. 2011, 94, 4016–4027. [Google Scholar] [CrossRef] [PubMed]
- Elek, P.; Gaal, T.; Husveth, F. Influence of rumen-protected choline on liver composition and blood variables indicating energy balance in periparturient dairy cows. Acta Vet. Hung. 2013, 61, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Elek, P.; Newbold, J.R.; Gaal, T.; Wagner, L.; Husveth, F. Effects of rumen-protected choline supplementation on milk production and choline supply of periparturient dairy cows. Animal 2008, 2, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Piepenbrink, M.S.; Overton, T.R. Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the periparturient period. J. Dairy Sci. 2003, 86, 1722–1733. [Google Scholar] [CrossRef] [PubMed]
- Zahra, L.C.; Duffield, T.F.; Leslie, K.E.; Overton, T.R.; Putnam, D.; LeBlanc, S.J. Effects of rumen-protected choline and monensin on milk production and metabolism of periparturient dairy cows. J. Dairy Sci. 2006, 89, 4808–4818. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirement of Dairy Cattle, 7th ed.; The National Academy Press: Washington, DC, USA, 2001; 405p. [Google Scholar]
- Association of Officiating Analytical Chemists. Official Method of Analysis, 18th ed.; Association of Officiating Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock Pub.: Ithaca, NY, USA, 1994; 476p. [Google Scholar]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.M.; Peters, J.P. Technical note: An improved method to quantify nonesterified fatty acids in bovine plasma. J. Anim. Sci. 1993, 71, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Holm, P.I.; Ueland, P.M.; Kvalheim, G.; Lien, E.A. Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin. Chem. 2003, 49, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, E.; Pedersen, A.R. How to Obtain Those Nasty Standard Errors from Transformed Data—And Why They Should Not be Used; Aarhus University: Tjele, Denmark, 1998; pp. 1–20. [Google Scholar]
- Davidson, S.; Hopkins, B.A.; Odle, J.; Brownie, C.; Fellner, V.; Whitlow, L.W. Supplementing limited methionine diets with rumen-protected methionine, betaine, and choline in early lactation Holstein cows. J. Dairy Sci. 2008, 91, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Erdman, R.A.; Sharma, B.K. Effect of dietary rumen-protected choline in lactating dairy cows. J. Dairy Sci. 1991, 74, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, J.R.; Cecava, M.J.; Donkin, S.S. Impact of dietary rumen undegradable protein and rumen-protected choline on intake, peripartum liver triacylglyceride, plasma metabolites and milk production in transition dairy cows. J. Dairy Sci. 2000, 83, 2907–2917. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.H.; Brown, N.E.; Martinez, C.M.; Cassidy, T.W.; Varga, G.A. Effects of rumen-protected choline and dry propylene glycol on feed intake and blood parameters for Holstein dairy cows in early lactation. J. Dairy Sci. 2009, 92, 2729–2736. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Pinotti, L. Choline metabolism in high-producing dairy cows: Metabolic and nutritional basis. Can. J. Anim. Sci. 2006, 86, 207–212. [Google Scholar] [CrossRef]
- Guretzky, N.A.; Carlson, D.B.; Garrett, J.E.; Drackley, J.K. Lipid metabolite profiles and milk production for Holstein and Jersey cows fed rumen-protected choline during the periparturient period. J. Dairy Sci. 2006, 89, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Sharma, B.K.; Erdman, R.A. Abomasal infusion of choline and methionine with or without 2-amino-2-methyl-1-propanol for lactating dairy cows. J. Dairy Sci. 1988, 71, 2406–2411. [Google Scholar] [CrossRef]
- Moore, S.J.; VandeHaar, M.J.; Sharma, B.K.; Pilbeam, T.E.; Beede, D.K.; Bucholtz, H.F.; Liesman, J.S.; Horst, R.L.; Goff, J.P. Effects of altering dietary cation-anion difference on calcium and energy metabolism in peripartum cows. J. Dairy Sci. 2000, 83, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- de Veth, M.J.; Artegoitia, V.M.; Campagna, S.R.; Lapierre, H.; Harte, F.; Girard, C.L. Choline absorption and evaluation of bioavailability markers when supplementing choline to lactating dairy cows. J. Dairy Sci. 2016, 99, 9732–9744. [Google Scholar] [CrossRef] [PubMed]
- Chandler, T.L.; Pralle, R.S.; Dorea, J.R.R.; Poock, S.E.; Oetzel, G.R.; Fourdraine, R.H.; White, H.M. Predicting hyperketonemia by logistic and linear regression using test-day milk and performance variables in early-lactation Holstein and Jersey cows. J. Dairy Sci. 2018, 101, 2476–2491. [Google Scholar] [CrossRef] [PubMed]
Diets 1 | ||||
---|---|---|---|---|
Experiment 1 | Experiment 2 | |||
Item | Prepartum | Postpartum | Prepartum | Postpartum |
g/kg, dry matter basis | ||||
Corn silage | 348 | 195 | 444 | 322 |
Alfalfa hay, dry cow | 218 | --- | 222 | --- |
Alfalfa hay, lactating cow | --- | 133 | --- | 136 |
Alfalfa silage | --- | 62 | --- | --- |
Sudan grass silage | --- | 44 | --- | --- |
Citrus pulp | 217 | 89 | --- | 59 |
Grain mixture | 217 | 477 | 334 | 483 |
Composition of grain mixtures | ||||
Steam-flaked corn, 390 g/L | --- | 550 | 269 | 422 |
Corn distillers’ grains | 784 | 130 | 201 | 41 |
Almond hulls | --- | --- | 332 | 106 |
Canola meal, solvent extract | --- | --- | --- | 70 |
Soybean meal, solvent extract | --- | --- | --- | 70 |
Heat-treated soybean meal 2 | --- | --- | 132 | 70 |
Whole cottonseed | --- | 130 | --- | 105 |
Ca salts of palm fatty acids 3 | --- | 22 | --- | --- |
Prepartum mineral supplement 4 | 124 | --- | 66 | --- |
Protein–mineral supplement 5 | --- | 137 | --- | 106 |
Monensin–Se supplement 6 | 92 | 31 | --- | --- |
Beef tallow | --- | --- | --- | 10 |
Diets 2 | ||||
---|---|---|---|---|
Experiment 1 | Experiment 2 | |||
Item | Prepartum | Postpartum | Prepartum | Postpartum |
Dry matter, % | 43.2 ± 4.0 | 50.8 ± 6.0 | 51.1 ± 1.8 | 52.6 ± 2.5 |
dry matter basis | ||||
Net energy for lactation, 3 Mcal/kg | 1.56 | 1.66 | 1.57 | 1.67 |
Crude protein, % | 15.5 ± 0.8 | 17.0 ± 0.4 | 15.1 ± 0.4 | 18.1 ± 0.3 |
Rumen-degradable protein, 3 % | 9.8 | 9.2 | 9.6 | 9.8 |
Metabolizable protein, 3 % | 9.3 | 11.6 | 10.4 | 12.0 |
Neutral detergent fiber, % | 40.2 ± 2.8 | 34.6 ± 1.5 | 42.4 ± 4.6 | 31.0 ± 0.6 |
Acid detergent fiber, % | 34.2 ± 4.6 | 24.5 ± 1.0 | 28.3 ± 1.7 | 22.2 ± 2.4 |
Lignin, % | 5.4 ± 1.4 | 3.9 ± 0.1 | 4.9 ± 0.5 | 3.4 ± 0.2 |
Nonfibrous carbohydrates, 4 % | 31.0 | 33.6 | 30.7 | 37.0 |
Fat, % | 5.0 ± 0.2 | 5.8 ± 0.6 | 3.9 ± 0.1 | 7.0 ± 0.9 |
Ash, % | 8.4 ± 0.8 | 9.0 ± 0.4 | 7.9 ± 0.6 | 6.9 ± 0.1 |
Ca, % | 1.11 ± 0.09 | 0.93 ± 0.06 | 0.72 ± 0.04 | 0.67 ± 0.04 |
P, % | 0.31 ± 0.01 | 0.46 ± 0.02 | 0.43 ± 0.01 | 0.47 ± 0.02 |
K, % | 1.60 ± 0.12 | 1.73 ± 0.11 | 1.35 ± 0.01 | 1.70 ± 0.04 |
Mg, % | 0.38 ± 0.01 | 0.40 ± 0.04 | 0.35 ± 0.01 | 0.45 ± 0.01 |
S, % | 0.30 ± 0.05 | 0.21 ± 0.02 | 0.21 ± 0.01 | 0.33 ± 0.01 |
Na, % | 0.25 ± 0.05 | 0.46 ± 0.01 | 0.14 ± 0.03 | 0.37 ± 0.02 |
Cl, % | 0.80 ± 0.04 | 0.41 ± 0.01 | 0.31 ± 0.05 | 0.20 ± 0.01 |
Zn, mg/kg | 54 ± 8 | 72 ± 20 | 66 ± 1 | 60 ± 1 |
Cu, mg/kg | 15 ± 1 | 14 ± 2 | 19 ± 1 | 14 ± 1 |
Mn, mg/kg | 41 ± 5 | 55 ± 11 | 58 ± 3 | 55 ± 5 |
Dietary cation–anion difference, 5 mEq/kg | 7.2 | 216 | 133 | 188 |
Lysine, 3 % of metabolizable protein | 6.61 | 6.40 | 6.86 | 6.74 |
Methionine, 3 % of metabolizable protein | 2.21 | 2.10 | 2.23 | 2.21 |
Experiment 1 2 | Experiment 2 2 | |||||||
---|---|---|---|---|---|---|---|---|
Corn Silage | A. Silage | Sudan Silage | AHP | AHL | Corn Silage | AHP | AHL | |
Dry matter % | 28.1 ± 1.0 | 53.0 ± 0.5 | 27.8 ± 0.7 | 91.1 ± 0.3 | 86.5 ± 2.1 | 33.2 ± 2.4 | 90.1 ± 0.4 | 89.7 ± 0.5 |
% (dry matter basis) | ||||||||
CP | 9.3 ± 0.6 | 22.2 ± 0.4 | 12.1 ± 1.6 | 18.6 ± 0.2 | 24.2 ± 1.1 | 8.4 ± 0.4 | 19.8 ± 0.2 | 20.6 ± 2.0 |
NDF | 49.4 ± 0.2 | 38.2 ± 0.4 | 56.7 ± 3.4 | 39.8 ± 0.2 | 36.6 ± 3.6 | 45.2 ± 1.6 | 40.1 ± 0.9 | 37.8 ± 0.9 |
ADF | 32.4 ± 0.3 | 29.1 ± 0.5 | 39.2 ± 2.9 | 30.3 ± 0.1 | 29.3 ± 0.9 | 29.0 ± 1.1 | 31.4 ± 0.2 | 29.1 ± 0.8 |
Lignin | 4.3 ± 0.5 | 6.8 ± 0.8 | 4.0 ± 1.4 | 7.9 ± 0.3 | 7.0 ± 0.7 | 4.3 ± 0.2 | 6.9 ± 0.4 | 6.9 ± 0.1 |
NDICP 3 | 1.5 ± 0.1 | 3.6 ± 0.1 | 1.9 ± 0.3 | 2.9 ± 0.3 | 3.9 ± 0.2 | 1.4 ± 0.1 | 3.3 ± 0.7 | 3.3 ± 0.3 |
Fat | 3.9 ± 0.1 | 3.5 ± 0.1 | 3.4 ± 0.3 | 2.7 ± 0.1 | 2.7 ± 0.1 | 3.9 ± 0.2 | 2.9 ± 0.1 | 2.7 ± 0.2 |
Ash | 5.3 ± 0.5 | 14.4 ± 0.3 | 16.0 ± 5.0 | 8.1 ± 0.4 | 10.4 ± 0.3 | 5.1 ± 0.9 | 8.2 ± 0.7 | 10.1 ± 0.9 |
Ca | 0.26 ± 0.12 | 1.38 ± 0.1 | 0.57 ± 0.11 | 1.60 ± 0.20 | 1.78 ± 0.1 | 0.28 ± 0.05 | 1.53 ± 0.30 | 1.65 ± 0.15 |
P | 0.30 ± 0.04 | 0.31 ± 0.01 | 0.33 ± 0.03 | 0.24 ± 0.01 | 0.36 ± 0.4 | 0.23 ± 0.01 | 0.31 ± 0.02 | 0.36 ± 0.01 |
K | 1.72 ± 0.15 | 3.35 ± 0.01 | 2.94 ± 0.26 | 1.51 ± 0.25 | 2.97 ± 0.2 | 0.96 ± 0.06 | 2.57 ± 0.30 | 2.60 ± 0.38 |
Mg | 0.15 ± 0.03 | 0.31 ± 0.01 | 0.30 ± 0.02 | 0.46 ± 0.05 | 0.24 ± 0.03 | 0.16 ± 0.03 | 0.31 ± 0.04 | 0.35 ± 0.05 |
S | 0.12 ± 0.01 | 0.37 ± 0.01 | 0.15 ± 0.01 | 0.35 ± 0.02 | 0.42 ± 0.07 | 0.11 ± 0.01 | 0.30 ± 0.04 | 0.31 ± 0.01 |
Na | 0.03 ± 0.01 | 0.41 ± 0.02 | 0.14 ± 0.05 | 0.36 ± 0.10 | 0.20 ± 0.02 | 0.04 ± 0.02 | 0.14 ± 0.03 | 0.19 ± 0.11 |
Cl | 0.40 ± 0.01 | 0.76 ± 0.04 | 1.49 ± 0.55 | 0.92 ± 0.12 | 1.10 ± 0.13 | 0.24 ± 0.03 | 0.61 ± 0.10 | 0.62 ± 0.15 |
mg/kg (dry matter basis) | ||||||||
Zn | 33 ± 5.0 | 32 ± 4.2 | 50 ± 14.1 | 25 ± 3.9 | 21 ± 0.7 | 31 ± 3.8 | 24 ± 3.0 | 21 ± 2.1 |
Cu | 11 ± 0.7 | 15 ± 2.1 | 24 ± 6.4 | 12 ± 0.8 | 11 ± 0.7 | 10 ± 3.1 | 11 ± 2.0 | 13 ± 2.1 |
Mn | 27 ± 5.0 | 54 ± 9.2 | 59 ± 11.5 | 25 ± 4.2 | 62 ± 9.2 | 39 ± 5.5 | 36 ± 5.0 | 35 ± 4.2 |
Experiment 1 | Experiment 2 | |||||
---|---|---|---|---|---|---|
Citrus Pulp | Prepartum Mix | Postpartum Mix | Citrus Pulp | Prepartum Mix | Postpartum Mix | |
Dry matter, % | 28.8 ± 4.0 | 89.1 | 89.4 | 29.2 ± 3.4 | 89.8 | 90.4 |
% (dry matter basis) | ||||||
CP | 7.5 ± 1.1 | 25.7 | 19.9 | 7.5 ± 1.0 | 18.7 | 23.2 |
NDF | 27.7 ± 1.0 | 22.9 | 20.1 | 27.8 ± 0.9 | 20.9 | 18.3 |
ADF | 26.7 ± 0.4 | 9.1 | 10.7 | 23.7 ± 3.8 | 12.6 | 11.0 |
Lignin | 4.7 ± 2.1 | 2.2 | 2.4 | 4.6 ± 2.0 | 4.3 | 3.2 |
NDICP 2 | 1.1 ± 0.1 | 7.8 | 4.6 | 1.1 ± 0.04 | 4.8 | 4.0 |
Fat | 1.7 ± 0.1 | 10.1 | 8.8 | 1.6 ± 0.1 | 4.9 | 6.8 |
Ash | 7.7 ± 0.3 | 16.0 | 7.1 | 7.6 ± 0.1 | 6.2 | 8.3 |
Ca | 1.92 ± 0.22 | 1.74 | 0.59 | 1.91 ± 0.23 | 0.31 | 0.52 |
P | 0.20 ± 0.01 | 0.87 | 0.60 | 0.19 ± 0.02 | 0.61 | 0.57 |
K | 1.74 ± 0.13 | 1.16 | 0.68 | 1.70 ± 0.07 | 1.21 | 1.12 |
Mg | 0.11 ± 0.01 | 1.15 | 0.53 | 0.11 ± 0.01 | 0.48 | 0.55 |
S | 0.09 ± 0.01 | 1.24 | 0.27 | 0.09 ± 0.01 | 0.37 | 0.43 |
Na | 0.06 ± 0.01 | 0.18 | 0.64 | 0.06 ± 0.01 | 0.08 | 0.57 |
Cl | 0.05 ± 0.01 | 3.1 | 0.10 | 0.06 ± 0.01 | 0.09 | 0.08 |
mg/kg (dry matter basis) | ||||||
Zn | 11 ± 3.5 | 210 | 82 | 10 ± 2.8 | 122 | 81 |
Cu | 5 ± 0.1 | 61 | 16 | 5 ± 0.7 | 41 | 18 |
Mn | 7 ± 1.4 | 107 | 50 | 7.5 ± 2.1 | 65 | 31 |
Treatment 1 | ||||
---|---|---|---|---|
Item | Control | RPC | SEM | p-Value 2 |
Dry matter intake, kg/day | ||||
Prepartum | 11.9 | 12.5 | 0.2 | 0.10 |
Postpartum | 22.2 | 23.2 | 0.3 | 0.06 |
Milk, kg/day | 41.8 | 43.2 | 0.6 | 0.10 |
3.5% fat-corrected milk, kg/day | 42.8 | 44.8 | 0.5 | 0.05 |
Energy-corrected milk, kg/day | 38.5 | 40.3 | 0.5 | 0.04 |
Milk fat | ||||
% | 3.70 | 3.80 | 0.04 | 0.15 |
kg/day | 1.521 | 1.613 | 0.025 | 0.04 |
Milk true protein | ||||
% | 2.81 | 2.84 | 0.02 | 0.43 |
kg/day | 1.166 | 1.210 | 0.015 | 0.08 |
Milk net energy | ||||
Mcal/kg | 0.694 | 0.705 | 0.005 | 0.14 |
Mcal/day | 28.7 | 30.1 | 0.4 | 0.05 |
Somatic cell score 2 | 1.61 | 1.66 | 0.11 | 0.78 |
Body condition, scale from 1 to 5 | ||||
Change prepartum | −0.17 | −0.14 | 0.03 | 0.52 |
Change postpartum | −0.60 | −0.52 | 0.04 | 0.15 |
Mean postpartum | 3.15 | 3.24 | 0.03 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, F.S.d.; Sá Filho, M.F.; Greco, L.F.; Santos, J.E.P. Rumen-Protected Choline Improves Metabolism and Lactation Performance in Dairy Cows. Animals 2024, 14, 1016. https://doi.org/10.3390/ani14071016
Lima FSd, Sá Filho MF, Greco LF, Santos JEP. Rumen-Protected Choline Improves Metabolism and Lactation Performance in Dairy Cows. Animals. 2024; 14(7):1016. https://doi.org/10.3390/ani14071016
Chicago/Turabian StyleLima, Fábio Soares de, Manoel Francisco Sá Filho, Leandro Ferreira Greco, and José Eduardo Portela Santos. 2024. "Rumen-Protected Choline Improves Metabolism and Lactation Performance in Dairy Cows" Animals 14, no. 7: 1016. https://doi.org/10.3390/ani14071016