Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Stem Cells and Classification
3. Properties and Main Sources of MSCs
4. Therapeutic Applications of MSCs
4.1. Neuromuscular Diseases
4.2. Wound and Skin Diseases
4.3. Eye Diseases
5. Future Approaches to MSC-Based Therapy in Veterinary Medicine
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Charitos, I.A.; Ballini, A.; Cantore, S.; Boccellino, M.; Di Domenico, M.; Borsani, E.; Nocini, R.; Di Cosola, M.; Santacroce, L.; Bottalico, L. Stem cells: A historical review about biological, religious, and ethical issues. Stem Cells Int. 2021, 2021, 9978837. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.C.; Shyu, W.C.; Lin, S.Z. Mesenchymal stem cells. Cell Transplant. 2011, 20, 5–14. [Google Scholar] [CrossRef]
- Krinner, A.; Hoffmann, M.; Loeffler, M.; Drasdo, D.; Galle, J. Individual fates of mesenchymal stem cells in vitro. BMC Syst. Biol. 2010, 4, 73. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Zarubova, J.; Travnickova, M.; Musilkova, J.; Pajorova, J.; Slepicka, P.; Kasalkova, N.S.; Svorcik, V.; Kolska, Z.; Motarjemi, H.; et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018, 36, 1111–1126. [Google Scholar] [CrossRef]
- Lee, A.S.; Tang, C.; Rao, M.S.; Weissman, I.L.; Wu, J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 2013, 19, 998–1004. [Google Scholar] [CrossRef]
- Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022, 13, 366. [Google Scholar] [CrossRef]
- Gopalarethinam, J.; Nair, A.P.; Iyer, M.; Vellingiri, B.; Subramaniam, M.D. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem. 2023, 125, 152041. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Patil, S.; Fageeh, H.N.; Fageeh, H.I.; Ibraheem, W.; Alshehri, A.S.; Al-Brakati, A.; Almoammar, S.; Almagbol, M.; Dewan, H.; Khan, S.S.; et al. Hypoxia, a dynamic tool to amplify the gingival mesenchymal stem cells potential for neurotrophic factor secretion. Saudi J. Biol. Sci. 2022, 29, 3568–3576. [Google Scholar] [CrossRef]
- Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007, 25, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Hong, X.; Potter, C.; Qu, A.; Xu, Q. Mesenchymal stem cells and vascular regeneration. Microcirculation 2017, 24, e12324. [Google Scholar] [CrossRef]
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci. 2020, 41, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Ha, D.H.; Kim, H.K.; Lee, J.; Kwon, H.H.; Park, G.H.; Yang, S.H.; Jung, J.Y.; Choi, H.; Lee, J.H.; Sung, S.; et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells 2020, 9, 1157. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, M.; Nagoshi, N.; Nakamura, M.; Okano, H. Mechanisms of stem cell therapy in spinal cord injuries. Cells 2021, 10, 2676. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Yang, R.L.; Wu, X.C.; Zhao, D.Z.; Fu, S.P.; Lin, F.Q.; Li, L.Y.; Yu, L.M.; Zhang, Q.; Zhang, T. Mesenchymal stem cell transplantation: Neuroprotection and nerve regeneration after spinal cord injury. J. Inflamm. Res. 2023, 16, 4763–4776. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhu, J.; Yang, R.; Wang, H.; Li, Y.; Fu, C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front. Immunol. 2023, 14, 1141601. [Google Scholar] [CrossRef] [PubMed]
- Gransee, H.M.; Zhan, W.Z.; Sieck, G.C.; Mantilla, C.B. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J. Neurotrauma 2015, 32, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Peng, Y.; Xu, W.; He, P.; Li, T.; Lu, X.; Chen, G. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. 2020, 2020, 2853650. [Google Scholar] [CrossRef]
- Chang, C.; Yan, J.; Yao, Z.; Zhang, C.; Li, X.; Mao, H.Q. Effects of mesenchymal stem cell-derived paracrine signals and their delivery strategies. Adv. Healthc. Mater. 2021, 10, e2001689. [Google Scholar] [CrossRef]
- Jo, H.; Brito, S.; Kwak, B.M.; Park, S.; Lee, M.G.; Bin, B.H. Applications of mesenchymal stem cells in skin regeneration and rejuvenation. Int. J. Mol. Sci. 2021, 22, 2410. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.N.; Wu, C.H.; Lin, C.T.; Liu, I.H. Topical applications of allogeneic adipose-derived mesenchymal stem cells ameliorate the canine keratoconjunctivitis sicca. BMC Vet. Res. 2022, 18, 217. [Google Scholar] [CrossRef] [PubMed]
- Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and clinical applications of mesenchymal stem cells: State of the art review. Sultan Qaboos Univ. Med. J. 2018, 18, e264–e277. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kitada, M.; Wakao, S.; Dezawa, M. Bone marrow mesenchymal cells: How do they contribute to tissue repair and are they really stem cells? Arch. Immunol. Ther. Exp. 2011, 59, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.H.; Kang, B.J.; Park, S.S.; Kim, Y.; Sung, G.J.; Woo, H.M.; Kim, W.H.; Kweon, O.K. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J. Vet. Med. Sci. 2012, 74, 1617–1630. [Google Scholar] [CrossRef] [PubMed]
- Humenik, F.; Cizkova, D.; Cikos, S.; Luptakova, L.; Madari, A.; Mudronova, D.; Kuricova, M.; Farbakova, J.; Spirkova, A.; Petrovova, E.; et al. Canine bone marrow-derived mesenchymal stem cells: Genomics, proteomics and functional analyses of paracrine factors. Mol. Cell. Proteom. 2019, 18, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Benavides, F.P.; Pinto, G.B.A.; Heckler, M.C.T.; Hurtado, D.M.R.; Teixeira, L.R.; Monobe, M.M.S.; Machado, G.F.; de Melo, G.D.; Rodríguez-Sánchez, D.N.; Alvarenga, F.D.C.L.E.; et al. Intrathecal transplantation of autologous and allogeneic bone marrow-derived mesenchymal stem cells in dogs. Cell Transplant. 2021, 30, 9636897211034464. [Google Scholar] [CrossRef] [PubMed]
- Voga, M.; Kovač, V.; Majdic, G. Comparison of canine and feline adipose-derived mesenchymal stem cells/medicinal signaling cells with regard to cell surface marker expression, viability, proliferation, and differentiation potential. Front. Vet. Sci. 2021, 7, 610240. [Google Scholar] [CrossRef]
- Prišlin, M.; Vlahović, D.; Kostešić, P.; Ljolje, I.; Brnić, D.; Turk, N.; Lojkić, I.; Kunić, V.; Karadjole, T.; Krešić, N. An outstanding role of adipose tissue in canine stem cell therapy. Animals 2022, 12, 1088. [Google Scholar] [CrossRef]
- Naito, E.; Kudo, D.; Sekine, S.; Watanabe, K.; Kobatake, Y.; Tamaoki, N.; Inden, M.; Iida, K.; Ito, Y.; Hozumi, I.; et al. Characterization of canine dental pulp cells and their neuroregenerative potential. In Vitro Cell Dev. Biol. Anim. 2015, 51, 1012–1022. [Google Scholar] [CrossRef]
- Utumi, P.H.; Fracaro, L.; Senegaglia, A.C.; Fragoso, F.Y.I.; Miyasaki, D.M.; Rebelatto, C.L.K.; Brofman, P.R.S.; Villanova Junior, J.A. Canine dental pulp and umbilical cord-derived mesenchymal stem cells as alternative sources for cell therapy in dogs. Res. Vet. Sci. 2021, 140, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, R.V.; Eleotério, R.B.; Valente, F.L.; Araújo, F.R.; Sabino, A.P.; Evangelista, F.C.G.; Reis, E.C.C.; Borges, A.P.B. Canine umbilical cord perivascular tissue: A source of stem cells for therapy and research. Res. Vet. Sci. 2020, 129, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.S.; Park, S.B.; Kang, K.S. Isolation and characterization of canine Wharton’s jelly-derived mesenchymal stem cells. Cell Transplant. 2012, 21, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Lankford, L.; Kumar, P.; Grahn, R.; Borjesson, D.L.; Farmer, D.; Wang, A. Isolation and characterization of canine placenta-derived mesenchymal stromal cells for the treatment of neurological disorders in dogs. Cytom. Part A 2018, 93, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Kil, T.Y.; Kim, M.K. Case report: Amniotic fluid-derived mesenchymal stem cell treatment in a dog with a spinal cord injury. Vet. Anim. Sci. 2023, 22, 100318. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Mizuno, M.; Ozeki, N.; Katano, H.; Otabe, K.; Tsuji, K.; Koga, H.; Mochizuki, M.; Sekiya, I. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS ONE 2018, 13, e0202922. [Google Scholar] [CrossRef] [PubMed]
- Phyo, H.; Aburza, A.; Mellanby, K.; Esteves, C.L. Characterization of canine adipose- and endometrium-derived mesenchymal stem/stromal cells and response to lipopolysaccharide. Front. Vet. Sci. 2023, 10, 1180760. [Google Scholar] [CrossRef] [PubMed]
- Liotta, A.; Bolen, G.; Ceusters, J.; Serteyn, D.; Girod, M.; Peeters, D.; Sandersen, C. Clinical safety of computed tomography-guided injection of autologous muscle-derived mesenchymal stem cells in the intervertebral disc in dogs. J. Stem Cells Regen. Med. 2021, 17, 43–48. [Google Scholar]
- Li, C.; Zhao, H.; Cheng, L.; Wang, B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci. 2021, 11, 187. [Google Scholar] [CrossRef]
- Lin, C.S.; Lin, G.; Lue, T.F. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev. 2012, 21, 2770–2778. [Google Scholar] [CrossRef]
- Chen, C.C.; Yang, S.F.; Wang, I.K.; Hsieh, S.Y.; Yu, J.X.; Wu, T.L.; Huong, W.J.; Su, M.H.; Yang, H.L.; Chang, P.C.; et al. The long-term efficacy study of multiple allogeneic canine adipose tissue-derived mesenchymal stem cells transplantations combined with surgery in four dogs with lumbosacral spinal cord injury. Cell Transplant. 2022, 31, 9636897221081487. [Google Scholar] [CrossRef] [PubMed]
- Delfi, I.R.T.A.; Wood, C.R.; Johnson, L.D.V.; Snow, M.D.; Innes, J.F.; Myint, P.; Johnson, W.E.B. An in vitro comparison of the neurotrophic and angiogenic activity of human and canine adipose-derived mesenchymal stem cells (MSCs): Translating MSC-based therapies for spinal cord injury. Biomolecules 2020, 10, 1301. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, S.H.; Kim, W.H.; Kweon, O.K. Transplantation of adipose derived mesenchymal stem cells for acute thoracolumbar disc disease with no deep pain perception in dogs. J. Vet. Sci. 2016, 17, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Bach, F.S.; Rebelatto, C.L.K.; Fracaro, L.; Senegaglia, A.C.; Fragoso, F.Y.I.; Daga, D.R.; Brofman, P.R.S.; Pimpão, C.T.; Engracia Filho, J.R.; Montiani-Ferreira, F.; et al. Comparison of the efficacy of surgical decompression alone and combined with canine adipose tissue-derived stem cell transplantation in dogs with acute thoracolumbar disk disease and spinal cord injury. Front. Vet. Sci. 2019, 6, 383. [Google Scholar] [CrossRef] [PubMed]
- Escalhão, C.C.M.; Ramos, I.P.; Hochman-Mendez, C.; Brunswick, T.H.K.; Souza, S.A.L.; Gutfilen, B.; Dos Santos Goldenberg, R.C.; Coelho-Sampaio, T. Safety of allogeneic canine adipose tissue-derived mesenchymal stem cell intraspinal transplantation in dogs with chronic spinal cord injury. Stem Cells Int. 2017, 2017, 3053759. [Google Scholar] [CrossRef] [PubMed]
- Penha, E.M.; Meira, C.S.; Guimarães, E.T.; Mendonça, M.V.; Gravely, F.A.; Pinheiro, C.M.; Pinheiro, T.M.; Barrouin-Melo, S.M.; Ribeiro-Dos-Santos, R.; Soares, M.B. Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. Stem Cells Int. 2014, 2014, 437521. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, C.A.; Rodrigues, M.N.; Bocabello, R.Z.; Mess, A.M.; Miglino, M.A. Pilot study: Bone marrow stem cells as a treatment for dogs with chronic spinal cord injury. Regen. Med. Res. 2014, 2, 9. [Google Scholar] [CrossRef]
- Feitosa, M.L.T.; Sarmento, C.A.P.; Bocabello, R.Z.; Beltrão-Braga, P.C.B.; Pignatari, G.C.; Giglio, R.F.; Miglino, M.A.; Orlandin, J.R.; Ambrósio, C.E. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta Cir. Bras. 2017, 32, 540–549. [Google Scholar] [CrossRef]
- Steffen, F.; Smolders, L.A.; Roentgen, A.M.; Bertolo, A.; Stoyanov, J. Bone marrow-derived mesenchymal stem cells as autologous therapy in dogs with naturally occurring intervertebral disc disease: Feasibility, safety, and preliminary results. Tissue Eng. Part C Methods 2017, 23, 643–651. [Google Scholar] [CrossRef]
- Steffen, F.; Bertolo, A.; Affentranger, R.; Ferguson, S.J.; Stoyanov, J. Treatment of naturally degenerated canine lumbosacral intervertebral discs with autologous mesenchymal stromal cells and collagen microcarriers: A prospective clinical study. Cell Transplant. 2019, 28, 201–211. [Google Scholar] [CrossRef]
- Penha, E.M.; Aguiar, P.H.; Barrouin-Melo, S.M.; de Lima, R.S.; da Silveira, A.C.; Otelo, A.R.; Pinheiro, C.M.; Ribeiro-Dos-Santos, R.; Soares, M.B. Clinical neurofunctional rehabilitation of a cat with spinal cord injury after hemilaminectomy and autologous stem cell transplantation. Int. J. Stem Cells 2012, 5, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Krueger, E.; Magri, L.M.S.; Botelho, A.S.; Bach, F.S.; Rebellato, C.L.K.; Fracaro, L.; Fragoso, F.Y.I.; Villanova, J.A., Jr.; Brofman, P.R.S.; Popović-Maneski, L. Effects of low-intensity electrical stimulation and adipose derived stem cells transplantation on the time-domain analysis-based electromyographic signals in dogs with SCI. Neurosci. Lett. 2019, 696, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.; Fratini, P.; de Sá Schiavo Matias, G.; Bocabello, R.Z.; Monteiro, J.; Dos Santos, C.J., Jr.; Joaquim, J.G.F.; Giglio, R.F.; Possebon, F.S.; Sakata, S.H.; et al. Combination of stem cells from deciduous teeth and electroacupuncture for therapy in dogs with chronic spinal cord injury: A pilot study. Res. Vet. Sci. 2019, 123, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Besalti, O.; Aktas, Z.; Can, P.; Akpinar, E.; Elcin, A.E.; Elcin, Y.M. The use of autologous neurogenically-induced bone marrow-derived mesenchymal stem cells for the treatment of paraplegic dogs without nociception due to spinal trauma. J. Vet. Med. Sci. 2016, 78, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Branco, É.; Alves, J.G.R.; Pinheiro, L.L.; Coutinho, L.N.; Gomes, C.R.M.; Galvão, G.R.; de Oliveira Dos Santos, G.R.; Moreira, L.F.M.; David, M.B.M.; Martins, D.M.; et al. Can paraplegia by disruption of the spinal cord tissue be reversed? The signs of a new perspective. Anat. Rec. 2020, 303, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Orlandin, J.R.; Gomes, I.D.S.; Sallum Leandro, S.F.; Fuertes Cagnim, A.; Casals, J.B.; Carregaro, A.B.; Freitas, S.H.; Machado, L.C.; Reis Castiglioni, M.C.; Garcia Alves, A.L.; et al. Treatment of chronic spinal cord injury in dogs using amniotic membrane-derived stem cells: Preliminary results. Stem Cells Cloning 2021, 14, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Sharun, K.; Rawat, T.; Kumar, R.; Chandra, V.; Saxena, A.C.; Pawde, A.M.; Kinjavdekar, P.; Amarpal; Sharma, G.T. Clinical evaluation following the percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) in dogs affected by vertebral compression fracture. Vet. Anim. Sci. 2020, 10, 100152. [Google Scholar] [CrossRef] [PubMed]
- Sharun, K.; Kumar, R.; Chandra, V.; Saxena, A.C.; Pawde, A.M.; Kinjavdekar, P.; Dhama, K.; Amarpal; Sharma, G.T. Percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells for the management of paraplegia secondary to Hansen type I intervertebral disc herniation in a Beagle dog. Iran. J. Vet. Res. 2021, 22, 161–166. [Google Scholar] [PubMed]
- Vikartovska, Z.; Kuricova, M.; Farbakova, J.; Liptak, T.; Mudronova, D.; Humenik, F.; Madari, A.; Maloveska, M.; Sykova, E.; Cizkova, D. Stem cell conditioned medium treatment for canine spinal cord injury: Pilot feasibility study. Int. J. Mol. Sci. 2020, 21, 5129. [Google Scholar] [CrossRef]
- Bhat, I.A.; Sivanarayanan, T.B.; Somal, A.; Pandey, S.; Bharti, M.K.; Panda, B.S.K.; Indu, B.; Verma, M.J.A.; Sonwane, A.; Kumar, G.S.; et al. An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J. Cell. Physiol. 2019, 234, 2705–2718. [Google Scholar] [CrossRef]
- Yu, W.; Wang, J.; Yin, J. Platelet-rich plasma: A promising product for treatment of peripheral nerve regeneration after nerve injury. Int. J. Neurosci. 2011, 121, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.N.; Shamaa, A.A.; El-Tookhy, O.S.; Bahr, M.M. Effect of combined intrathecal/intravenous injection of bone marrow derived stromal cells in platelet-rich plasma on spinal cord injury in companion animals. Open Vet. J. 2021, 11, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Byeon, Y.E.; Ryu, H.H.; Jeong, Y.H.; Lee, Y.W.; Kim, W.H.; Kang, K.S.; Kweon, O.K. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J. Vet. Sci. 2007, 8, 275–282. [Google Scholar] [CrossRef]
- Khan, I.U.; Yoon, Y.; Kim, A.; Jo, K.R.; Choi, K.U.; Jung, T.; Kim, N.; Son, Y.; Kim, W.H.; Kweon, O.K. Improved healing after the co-transplantation of HO-1 and BDNF overexpressed mesenchymal stem cells in the subacute spinal cord injury of dogs. Cell Transplant. 2018, 27, 1140–1153. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Kim, W.H.; Kweon, O.K.; Kang, B.J. Heat-shock proteins can potentiate the therapeutic ability of cryopreserved mesenchymal stem cells for the treatment of acute spinal cord injury in dogs. Stem Cell Rev. Rep. 2022, 18, 1461–1477. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.H.; Shi, H.J.; Che, M.T.; Huang, M.Y.; Wei, Q.S.; Feng, B.; Ma, Y.H.; Wang, L.J.; Jiang, B.; Wang, Y.Q.; et al. Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials 2018, 181, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Kang, Y.M.; Phi, J.H.; Kim, Y.H.; Hwang, D.H.; Choi, J.Y.; Ryu, S.; Elastal, A.E.; Paek, S.H.; Wang, K.C.; et al. Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model. Cytotherapy 2010, 12, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Lee, Y.J.; Lee, S.H.; Lee, D.; Choi, K.; Kim, W.H.; Kweon, O.K.; Han, H.J. Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal stem cells. Cytotherapy 2012, 14, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.S.; Yang, K.; Liang, B.; Liu, Y.F.; Chen, X.Y.; Zhang, S. Collagen/heparin sulfate scaffold combined with mesenchymal stem cells treatment for canines with spinal cord injury: A pilot feasibility study. J. Orthop. Surg. 2021, 29, 23094990211012293. [Google Scholar] [CrossRef]
- Han, S.; Xiao, Z.; Li, X.; Zhao, H.; Wang, B.; Qiu, Z.; Li, Z.; Mei, X.; Xu, B.; Fan, C.; et al. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci. China Life Sci. 2018, 61, 2–13. [Google Scholar] [CrossRef]
- Enciso, N.; Avedillo, L.; Fermín, M.L.; Fragío, C.; Tejero, C. Cutaneous wound healing: Canine allogeneic ASC therapy. Stem Cell Res. Ther. 2020, 11, 261. [Google Scholar] [CrossRef] [PubMed]
- Enciso, N.; Avedillo, L.; Fermín, M.L.; Fragío, C.; Tejero, C. Regenerative potential of allogeneic adipose tissue-derived mesenchymal cells in canine cutaneous wounds. Acta Vet. Scand. 2020, 62, 13. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Pereira, T.; Amorim, I.; Caseiro, A.R.; Lopes, M.A.; Lima, J.; Gartner, A.; Santos, J.D.; Bártolo, P.J.; Rodrigues, J.M.; et al. Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. Int. J. Med. Sci. 2014, 11, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Humenik, F.; Maloveská, M.; Hudáková, N.; Petroušková, P.; Šufliarska, Z.; Horňáková, Ľ.; Valenčáková, A.; Kožár, M.; Šišková, B.; Mudroňová, D.; et al. Impact of canine amniotic mesenchymal stem cell conditioned media on the wound healing process: In vitro and in vivo study. Int. J. Mol. Sci. 2023, 24, 8214. [Google Scholar] [CrossRef] [PubMed]
- Dall’Olio, A.J.; Matias, G.S.S.; Carreira, A.C.O.; de Carvalho, H.J.C.; van den Broek Campanelli, T.; da Silva, T.S.; da Silva, M.D.; Abreu-Silva, A.L.; Miglino, M.A. Biological graft as an innovative biomaterial for complex skin wound treatment in dogs: A preliminary report. Materials 2022, 15, 6027. [Google Scholar] [CrossRef] [PubMed]
- Zakirova, E.Y.; Shalimov, D.V.; Garanina, E.E.; Zhuravleva, M.N.; Rutland, C.S.; Rizvanov, A.A. Use of biologically active 3D matrix for extensive skin defect treatment in veterinary practice: Case report. Front. Vet. Sci. 2019, 6, 76. [Google Scholar] [CrossRef]
- Villatoro, A.J.; Hermida-Prieto, M.; Fernández, V.; Fariñas, F.; Alcoholado, C.; Rodríguez-García, M.I.; Mariñas-Pardo, L.; Becerra, J. Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: Clinical efficacy and safety. Vet. Rec. 2018, 183, 654. [Google Scholar] [CrossRef]
- Olivry, T.; Saridomichelakis, M.; Nuttall, T.; Bensignor, E.; Griffin, C.E.; Hill, P.B.; International Committe on Allergic Diseases of Animals (ICADA). Validation of the Canine Atopic Dermatitis Extent and Severity Index (CADESI)-4, a simplified severity scale for assessing skin lesions of atopic dermatitis in dogs. Vet. Dermatol. 2014, 25, 77–85.e25. [Google Scholar] [PubMed]
- Kaur, G.; Ramirez, A.; Xie, C.; Clark, D.; Dong, C.; Maki, C.; Ramos, T.; Izadyar, F.; Najera, S.O.L.; Harb, J.; et al. A double-blinded placebo-controlled evaluation of adipose-derived mesenchymal stem cells in treatment of canine atopic dermatitis. Vet. Res. Commun. 2022, 46, 251–260. [Google Scholar] [CrossRef]
- de Oliveira Ramos, F.; Malard, P.F.; Brunel, H.D.S.S.; Paludo, G.R.; de Castro, M.B.; da Silva, P.H.S.; da Cunha Barreto-Vianna, A.R. Canine atopic dermatitis attenuated by mesenchymal stem cells. J. Adv. Vet. Anim. Res. 2020, 7, 554–565. [Google Scholar] [CrossRef]
- Enciso, N.; Amiel, J.; Pando, J.; Enciso, J. Multidose intramuscular allogeneic adipose stem cells decrease the severity of canine atopic dermatitis: A pilot study. Vet. World 2019, 12, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.N.; Rosenkrantz, W.S.; Hong, J.H.; Griffin, C.E.; Mendelsohn, C.M. Evaluation of the potential use of adipose-derived mesenchymal stromal cells in the treatment of canine atopic dermatitis: A pilot study. Vet. Ther. 2010, 11, E1–E14. [Google Scholar] [PubMed]
- Han, S.M.; Kim, H.T.; Kim, K.W.; Jeon, K.O.; Seo, K.W.; Choi, E.W.; Youn, H.Y. CTLA4 overexpressing adipose tissue-derived mesenchymal stem cell therapy in a dog with steroid-refractory pemphigus foliaceus. BMC Vet. Res. 2015, 11, 49. [Google Scholar] [CrossRef]
- Bittencourt, M.K.; Barros, M.A.; Martins, J.F.; Vasconcellos, J.P.; Morais, B.P.; Pompeia, C.; Bittencourt, M.D.; Evangelho, K.D.; Kerkis, I.; Wenceslau, C.V. Allogeneic mesenchymal stem cell transplantation in dogs with keratoconjunctivitis sicca. Cell Med. 2016, 8, 63–77. [Google Scholar] [CrossRef]
- Sgrignoli, M.R.; Silva, D.A.; Nascimento, F.F.; Sgrignoli, D.A.M.; Nai, G.A.; da Silva, M.G.; de Barros, M.A.; Bittencourt, M.K.W.; de Morais, B.P.; Dinallo, H.R.; et al. Reduction in the inflammatory markers CD4, IL-1, IL-6 and TNFα in dogs with keratoconjunctivitis sicca treated topically with mesenchymal stem cells. Stem Cell Res. 2019, 39, 101525. [Google Scholar] [CrossRef] [PubMed]
- Villatoro, A.J.; Fernández, V.; Claros, S.; Rico-Llanos, G.A.; Becerra, J.; Andrades, J.A. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. BioMed Res. Int. 2015, 2015, 527926. [Google Scholar] [CrossRef]
- Gimenez, E.; Bayon, A.; Gil-Chinchilla, J.; Garcia-Bernal, D.; Atucha, N.; Talavera, J. Therapeutic potential of adipose-tissue derived mesenchymal stem cells in the treatment of canine keratoconjunctivitis sicca: Preliminary clinical observations. Proceeding of the Annual Scientific Meeting of the European College of Veterinary Ophthalmologists, Estoril, Portugal, May 18-21, 2017. Vet. Ophthalmol. 2017, 20, E8. [Google Scholar]
- Ozgermen, B.B.; Can, P.; Sancak, I.; Akpinar, E.; Pinarli, F.; Ceylan, A.; Ozen, D.; Ozen, A. Transplantation of limbal derived MSCs grown on contact lenses in dogs with dry eye syndrome—Can stem cells help? Veterinarski Archiv. 2021, 91, 349–358. [Google Scholar] [CrossRef]
- Hermida-Prieto, M.; García-Castro, J.; Mariñas-Pardo, L. Systemic treatment of immune-mediated keratoconjunctivitis sicca with allogeneic stem cells improves the schirmer tear test score in a canine spontaneous model of disease. J. Clin. Med. 2021, 10, 5981. [Google Scholar] [CrossRef]
- Arantes-Tsuzuki, P.D.M.; Mazzonetto, P.C.; Lo Turco, E.G. Treatment for canine corneal ulcer using adipose tissue-derived mesenchymal stem cell therapy—Case report. Preprints 2019, 2019120185. [Google Scholar] [CrossRef]
- Falcão, M.S.A.; Brunel, H.D.S.S.; Peixer, M.A.S.; Dallago, B.S.L.; Costa, F.F.; Queiroz, L.M.; Campbell, P.; Malard, P.F. Effect of allogeneic mesenchymal stem cells (MSCs) on corneal wound healing in dogs. J. Tradit. Complement. Med. 2019, 10, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Palafox-Herrera, P.; Ortiz-Avilez, Y.N.; Ruelas-Aviles, R.; Ruelas-Vogel, D.; Mosco-Fierro, D.; Mesa-Diaz, D.; Torres, S.; Ramirez-Amezcua, M.; Esquivel, D. Use of mesenchymal stem cells in corneal ulcers in dogs: A case report. Mathew J. Vet. Sci. 2023, 7, 1–5. [Google Scholar]
- Novaes, R.V.; Hill, J.E.B.T.; Hill, A.B.T. Efficacious cellular therapy of descemetocele in a dog. Can. Vet. J. 2023, 64, 31–33. [Google Scholar]
- Dodi, P.L. Immune-mediated keratoconjunctivitis sicca in dogs: Current perspectives on management. Vet. Med. 2015, 6, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.; Bittencourt, M.K.W.; Barros, M.A.; Malago, R.; Panattoni, J.F.M.; de Morais, B.P.; Montiani-Ferreira, F.; Vasconcellos, J.P.C. Subconjunctival use of allogeneic mesenchymal stem cells to treat chronic superficial keratitis in German shepherd dogs: Pilot study. Open Vet. J. 2022, 12, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Shupyk, O.V.; Bokotko, R.R.; Savchuk, T.L.; Danilov, V.B.; Kladnytska, L.V.; Kharkevych, Y.O.; Pasnichenko, O.S.; Blahyi, R.S.; Hraborenko, N.I.; Krystyniak, Y.M. Effectiveness of mesenchymal stem cells in uveitis in dogs, depending on the method of their administration. Sci. Tech. Bull. State Sci. Res. Control Inst. Vet. Med. Prod. Fodd. Addit. Inst. Anim. Biol. 2020, 21, 219–229. [Google Scholar] [CrossRef]
- Villatoro, A.J.; Claros, S.; Fernández, V.; Alcoholado, C.; Fariñas, F.; Moreno, A.; Becerra, J.; Andrades, J.A. Safety and efficacy of the mesenchymal stem cell in feline eosinophilic keratitis treatment. BMC Vet. Res. 2018, 14, 116. [Google Scholar] [CrossRef] [PubMed]
- Komáromy, A.M.; Koehl, K.L.; Park, S.A. Looking into the future: Gene and cell therapies for glaucoma. Vet. Ophthalmol. 2021, 24 (Suppl. S1), 16–33. [Google Scholar] [CrossRef] [PubMed]
- Cislo-Pakuluk, A.; Smieszek, A.; Kucharczyk, N.; Bedford, P.G.C.; Marycz, K. Intra-vitreal administration of microvesicles derived from human adipose-derived multipotent stromal cells improves retinal functionality in dogs with retinal degeneration. J. Clin. Med. 2019, 8, 510. [Google Scholar] [CrossRef]
- Guest, D.J.; Dudhia, J.; Smith, R.K.W.; Roberts, S.J.; Conzemius, M.; Innes, J.F.; Fortier, L.A.; Meeson, R.L. Position statement: Minimal criteria for reporting veterinary and animal medicine research for mesenchymal stromal/stem cells in orthopedic applications. Front. Vet. Sci. 2022, 9, 817041. [Google Scholar] [CrossRef]
- Kisiel, A.H.; McDuffee, L.A.; Masaoud, E.; Bailey, T.R.; Esparza Gonzalez, B.P.; Nino-Fong, R. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am. J. Vet. Res. 2012, 73, 1305–1317. [Google Scholar] [CrossRef] [PubMed]
- Humenik, F.; Maloveska, M.; Hudakova, N.; Petrouskova, P.; Hornakova, L.; Domaniza, M.; Mudronova, D.; Bodnarova, S.; Cizkova, D. A comparative study of canine mesenchymal stem cells isolated from different sources. Animals 2022, 12, 1502. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.; Yousaf, A.; Yaqoob, M.; Saba, E.; Moaeen-Ud-Din, M.; Waseem, S.; Becker, S.K.; Sponder, G.; Aschenbach, J.R.; Sandhu, M.A. Characterization and differentiation potential of mesenchymal stem cells isolated from multiple canine adipose tissue sources. BMC Vet. Res. 2021, 17, 388. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, T.; Borjesson, D.L.; Osmond, C.; Griffon, D.J. Influence of donor’s age on immunomodulatory properties of canine adipose tissue-derived mesenchymal stem cells. Stem Cells Dev. 2019, 28, 1562–1571. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, T.; Lopez, M.J. Canine adult adipose tissue-derived multipotent stromal cell isolation, characterization, and differentiation. Methods Mol. Biol. 2024, 2783, 115–136. [Google Scholar] [PubMed]
- Giri, J.; Galipeau, J. Mesenchymal stromal cell therapeutic potency is dependent upon viability, route of delivery, and immune match. Blood Adv. 2020, 4, 1987–1997. [Google Scholar] [CrossRef]
- Műzes, G.; Sipos, F. Mesenchymal stem cell-derived secretome: A potential therapeutic option for autoimmune and immune-mediated inflammatory diseases. Cells 2022, 11, 2300. [Google Scholar] [CrossRef]
- Jeon, B.S.; Yi, H.; Ku, H.O. International regulatory considerations pertaining to the development of stem cell-based veterinary medicinal products. J. Vet. Sci. 2021, 22, e6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picazo, R.A.; Rojo, C.; Rodriguez-Quiros, J.; González-Gil, A. Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals. Animals 2024, 14, 1363. https://doi.org/10.3390/ani14091363
Picazo RA, Rojo C, Rodriguez-Quiros J, González-Gil A. Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals. Animals. 2024; 14(9):1363. https://doi.org/10.3390/ani14091363
Chicago/Turabian StylePicazo, Rosa Ana, Concepción Rojo, Jesus Rodriguez-Quiros, and Alfredo González-Gil. 2024. "Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals" Animals 14, no. 9: 1363. https://doi.org/10.3390/ani14091363