Comparative Evaluation of Nutrient Digestibility in Beagle Dogs of Different Life Stages
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Design
2.2. Experimental Diets
2.3. Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Physiological and Hematological Parameters
3.2. ATTD of Nutrients by Age Group
4. Discussion
4.1. Physiological and Hematological Parameters
4.2. Apparent Total Tract Digestibility of Macronutrients by Age Group
4.3. Apparent Total Tract Digestibility of Ca and P by Age Group
4.4. Apparent Total Tract Digestibility of Amino Acids by Age Group
4.5. Effects of Aging on Nutrient Digestibility in Senior Dogs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forbes, S.L.; Trafford, S.; Surie, M. Pet humanisation: What is it and does it influence purchasing behaviour? J. Dairy Vet. Sci. 2018, 5, 1–5. [Google Scholar] [CrossRef]
- Viana, L.M.; Mothé, C.G.; Mothé, M.G. Natural food for domestic animals: A national and international technological review. Res. Vet. Sci. 2020, 130, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Fascetti, A.J. Nutritional management and disease prevention in healthy dogs and cats. Rev. Bras. Zootec. 2010, 39, 42–51. [Google Scholar] [CrossRef]
- Bowland, Z. Nutrition (part 1): Life stage diets. Comp. Anim. 2014, 19, 578–584. [Google Scholar] [CrossRef]
- Cline, M.G.; Burns, K.M.; Coe, J.B.; Downing, R.; Durzi, T.; Murphy, M.; Parker, V. 2021 AAHA nutrition and weight management guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2021, 57, 153–178. [Google Scholar] [CrossRef] [PubMed]
- Tazerji, S.S.; Elahinia, A.; Akhtardanesh, B.; Kabir, F.; Vazir, B.; Duarte, P.M.; Hajipour, P.; Rehman, A.; Ilyas, M.F.; Hassanzadeh, S.; et al. Nutritional risks and consequences of meat-only diets for dogs and cats. Ger. J. Vet. Res. 2024, 4, 62–76. [Google Scholar] [CrossRef]
- Hannah, S. Role of dietary protein in weight management. Compend. Contin. Educ. Pract. Vet. 1999, 21, 32–33. [Google Scholar]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Ahlstrøm, Ø.; Krogdahl, A.; Vhile, S.G.; Skrede, A. Fatty acid composition in commercial dog foods. J. Nutr. 2004, 134, 2145S–2147S. [Google Scholar] [CrossRef]
- Jackson, M.I. Replacement of dietary carbohydrate with protein versus fat differentially alters postprandial circulating hormones and macronutrient metabolism in dogs. Metabolites 2024, 14, 373. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, S.; Carciofi, A.C.; Musco, N.; Tudisco, R.; Gomes, M.O.; Cutrignelli, M.I. Fermentation characteristics of several carbohydrate sources for dog diets using the in vitro gas production technique. Ital. J. Anim. Sci. 2013, 12, e4. [Google Scholar] [CrossRef]
- Root, A.W. Genetic disorders of calcium, phosphorus, and bone homeostasis. Transl. Sci. Rare Dis. 2018, 3, 1–36. [Google Scholar] [CrossRef]
- Hariprasanna, K.; Chetankumar, B.; Venkateswarlu, R.; Niharika, G. Approaches for enhancing the nutrients bioavailability. In Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World; Springer: Singapore, 2021; pp. 809–835. [Google Scholar] [CrossRef]
- Hendriks, W.H.; Bakker, E.J.; Bosch, G. Protein and amino acid bioavailability estimates for canine foods. J. Anim. Sci. 2015, 93, 4788–4795. [Google Scholar] [CrossRef]
- Weber, M.P.; Stambouli, F.; Martin, L.J.; Dumon, H.J.; Biourge, V.C.; Nguyen, P.G. Influence of age and body size on gastrointestinal transit time of radiopaque markers in healthy dogs. Am. J. Vet. Res. 2002, 63, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Fahey, G.C., Jr.; Barry, K.A.; Swanson, K.S. Age-related changes in nutrient utilization by companion animals. Annu. Rev. Nutr. 2008, 28, 425–445. [Google Scholar] [CrossRef]
- Sabchuk, T.T.; Risolia, L.W.; Souza, C.M.; Félix, A.P.; Maiorka, A.; Oliveira, S.G. Endogenous fat losses and true and apparent fat di-gestibility in adult and growing dogs fed diets containing poultry offal fat. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1927–1937. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Association of American Feed Control Officials (AAFCO). Dog and Cat Food Nutrient Profiles. In Official Publication; AAFCO: Champaign, IL, USA, 2021. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dogs; National Academies Press: Washington, DC, USA, 1985. [Google Scholar]
- Carapeto, S.; Cunha, E.; Serrano, I.; Pascoal, P.; Pereira, M.; Abreu, R.; Neto, S.; Antunes, B.; Dias, R.; Tavares, L.; et al. Effect of the administration of a lyophilised faecal capsules on the intestinal microbiome of dogs: A pilot study. Genes 2023, 14, 1676. [Google Scholar] [CrossRef]
- Lewis, S.J.; Heaton, K.W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 1997, 32, 920–924. [Google Scholar] [CrossRef]
- Patil, A.R.; Bisby, T.M. Comparison of Maintenance Energy Requirement of Client-Owned Dogs and Kennel Dogs; Purina Nutrition Forum: St. Louis, MO, USA, 2001; p. 132. [Google Scholar]
- Finke, M.D. Evaluation of the energy requirements of adult kennel dogs. J. Nutr. 1991, 121, S22–S28. [Google Scholar] [CrossRef]
- Rainbird, A.L.; Kienzle, E. Untersuchungen zum Energiebedarf des Hundes in Abhängigkeit von Rassezugehörigkeit und Alter. Kleintierpraxis 1990, 35, 149–158. [Google Scholar]
- Gilham, M.S.; Booles, D.; Johnson, J.V.; Legrand-Defretin, V. Digestibility in labrador retrievers during growth. Proc. Nutr. Soc. 1993, 52, 294, (Abstract). [Google Scholar]
- Swanson, K.S.; Kuzmuk, K.N.; Schook, L.B.; Fahey, G.C. Diet affects nutrient digestibility, hematology, and serum chemistry of senior and weanling dogs. J. Anim. Sci. 2004, 82, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Malo, C.; Buddington, R.K. Development and adaptation of hydrolytic and absorptive functions of the canine small intestine. In Recent Advances in Canine and Feline Nutrition, Vol. II: 1998 Iams Nutrition Symposium Proceedings; Reinhart, G.A., Carey, D.P., Eds.; Orange Frazer Press: Wilmington, NC, USA, 2000; pp. 195–211. [Google Scholar]
- Wilson, R.H.; Leibholz, J. Digestion in the pigs between 7 and 35 d of age. 4. The digestion of amino acids in pigs given milk and soya-bean proteins. Br. J. Nutr. 1981, 45, 347–357. [Google Scholar] [CrossRef]
- Hedemann, M.; Van Der Heide, M.; Nielsen, T.; Engelsmann, M.; Nørgaard, J.; Jensen, L. Age-dependent development in protein digestibility and intestinal morphology in weaned pigs fed different protein sources. Animal 2022, 16, 100439. [Google Scholar] [CrossRef]
- Domingues, L.; Murakami, F.; Zattoni, D.; Kaelle, G.; de Oliveira, S.; Félix, A. Effect of potato on kibble characteristics and diet digestibility and palatability to adult dogs and puppies. Ital. J. Anim. Sci. 2019, 18, 1512385. [Google Scholar] [CrossRef]
- Félix, A.P.; Zanatta, C.P.; Brito, C.B.M.; Oliveira, S.G.; Maiorka, A. Digestibility and metabolizable energy of raw soybeans manufactured with different processing treatments and fed to adult dogs and puppies. J. Anim. Sci. 2013, 91, 2794–2801. [Google Scholar] [CrossRef]
- Zanatta, C.P.; Félix, A.P.; Brito, C.B.M.; Murakami, F.; Sabchuk, T.T.; Oliveira, S.G.; Maiorka, A. Digestibility of dry extruded food in adult dogs and puppies. Arq. Bras. Med. Vet. Zootec. 2011, 63, 784–787. [Google Scholar] [CrossRef]
- Yano, S.; Sugimoto, T. Clinical aspect of recent progress in phosphate metabolism. Distribution of phosphorus and its physiological roles in the body: The form, distribution, and physiological function. Clin. Calcium. 2009, 19, 771–776. [Google Scholar] [PubMed]
- Kiela, P.R.; Radhakrishnan, V.M.; Ghishan, F.K. Phosphorus: Basic nutritional aspects. In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals, 1st ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 413–427. [Google Scholar] [CrossRef]
- Smith, A.H.; Kleiber, M.; Black, A.L.; Luick, J.R. Transfer of phosphate in the digestive tract I. Swine. J. Nutr. 1955, 57, 497–506. [Google Scholar] [CrossRef]
- Vorland, C.J.; Lachcik, P.J.; Aromeh, L.O.; Moe, S.M.; Chen, N.X.; Hill Gallant, K.M. Effect of dietary phosphorus intake and age on intestinal phosphorus absorption efficiency and phosphorus balance in male rats. PLoS ONE 2018, 13, e0207601. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, H.D.; Carlson, D.; Nørgaard, J.V.; Blaabjerg, K. Phosphorus digestibility is highly influenced by phytase but slightly by calcium in growing pigs. Livest. Sci. 2010, 134, 100–102. [Google Scholar] [CrossRef]
- González-Vega, J.C.; Stein, H.H. Calcium digestibility and metabolism in pigs. Asian-Australas. J. Anim. Sci. 2014, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Humer, E.; Schwarz, C.; Schedle, K. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 605–625. [Google Scholar] [CrossRef]
- Golzar Adabi, S.; Raei, H.; Ceylan, N.; Karimi Torshizi, M.A.; Yavaş, İ. Long story from past to present: Calcium, phosphorus, and phytase. Ann. Anim. Sci. 2024, 25, 929–943. [Google Scholar] [CrossRef]
- Miao, Y.Y.; Xu, C.M.; Xia, M.; Zhu, H.Q.; Chen, Y.Q. Relationship between gut microbiota and phosphorus metabolism in hemodialysis patients: A preliminary exploration. Chin. Med. J. 2018, 131, 2792–2799. [Google Scholar]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, essential amino acids. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557845/ (accessed on 30 April 2024).
- Sanz, J.M.M.; Navarro, A.N.; García, E.S.; López, I.S. An overview on essential amino acids and branched chain amino acids. In Nutrition and Enhanced Sports Performance, 2nd ed.; Bagchi, D., Nair, S., Sen, C.K., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 509–519. [Google Scholar] [CrossRef]
- Moro, J.; Tomé, D.; Schmidely, P.; Demersay, T.-C.; Azzout-Marniche, D. Histidine: A systematic review on metabolism and physiological effects in human and different animal species. Nutrients 2020, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.O.; Urschel, K.L.; Pencharz, P.B. Nutritional consequences of interspecies differences in arginine and lysine metabolism. J. Nutr. 2007, 137 (Suppl. S2), 1626S–1641S. [Google Scholar] [CrossRef] [PubMed]
- Milner, J.A. Lysine requirements of the immature dog. J. Nutr. 1981, 111, 40–45. [Google Scholar] [CrossRef]
- Lippi, I.; Perondi, F.; Pierini, A.; Bartoli, F.; Gori, E.; Mariti, C.; Marchetti, V. Essential and non-essential amino acids in dogs at different stages of chronic kidney disease. Vet. Sci. 2022, 9, 331. [Google Scholar] [CrossRef]
- Armstrong, P.J.; Lund, E.M. Changes in body composition and energy balance with aging. Vet. Clin. Nutr. 1996, 3, 83–87. [Google Scholar]
- Harper, E.J. Changing perspectives on aging and energy requirements: Aging and digestive function in humans, dogs and cats. J. Nutr. 1998, 128, 2632S–2635S. [Google Scholar] [CrossRef] [PubMed]
- Schauf, S.; Stockman, J.; Haydock, R.; Eyre, R.; Fortener, L.; Park, J.S.; Bakke, A.M.; Watson, P. Healthy ageing is associated with preserved or enhanced nutrient and mineral apparent digestibility in dogs and cats fed commercially relevant extruded diets. Animals 2021, 11, 2127. [Google Scholar] [CrossRef]
- Handler, J.A.; Genell, C.A.; Goldstein, R.S. Hepatobiliary function in senescent male Prague-Dawley rats. Hepatology 1994, 19, 1496–1503. [Google Scholar] [CrossRef]
- Burkholder, W.J. Age-related changes to nutritional requirements and digestive function in adult dogs and cats. J. Am. Vet. Med. Assoc. 1999, 215, 625–629. [Google Scholar] [CrossRef]
- Sheffy, B.E.; Williams, A.J.; Zimmer, J.F.; Ryan, G.D. Nutrition and metabolism of the geriatric dog. Cornell Vet. 1985, 75, 324–347. [Google Scholar] [CrossRef] [PubMed]
- Fédération Européenne de l’Industrie des Aliments pour Animaux Familiers (FEDIAF). Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; European Pet Food Industry Federation: Brussels, Belgium, 2024. [Google Scholar]
| Item (%) | Chemical Composition (% [DM Basis], Analysis) |
|---|---|
| CP | 31.84 |
| EE | 15.89 |
| CF | 1.41 |
| CA | 7.87 |
| NFE | 42.98 |
| Ca | 1.69 |
| P | 1.23 |
| Ca/P | 1.22 |
| ME (kcal/kg) | 3969.35 |
| Amino Acid | |
| Lys | 2.03 |
| Met | 0.78 |
| Thr | 1.41 |
| Val | 1.65 |
| Leu | 2.53 |
| Ile | 1.40 |
| Phe | 1.41 |
| His | 0.81 |
| Arg | 1.93 |
| Trp | 0.22 |
| Puppy | Adult Dog | Senior Dog | SEM | p Value | |
|---|---|---|---|---|---|
| MEI (kcal/day) | 957.44 a | 857.36 b | 1157.82 c | 29.88 | <0.001 |
| Body weight (kg) | |||||
| Initial | 7.03 a | 11.59 b | 17.76 c | 0.99 | <0.001 |
| Final | 8.35 a | 12.36 b | 18.47 c | 0.41 | <0.001 |
| ADI (g, [DM basis]) | 241.21 a | 216.00 b | 291.70 c | 6.13 | <0.01 |
| BWG (g) | 1320.00 | 1271.25 | 1500.00 | 0.16 | 0.886 |
| Item | UNIT | Ref. Range | Puppy | Adult Dog | Senior Dog | SEM | p Value |
|---|---|---|---|---|---|---|---|
| WBC | 103/µL | 6.00–17.00 | 9.29 a | 7.25 b | 8.07 ab | 0.243 | <0.001 |
| NEU | 103/µL | 3.62–12.30 | 5.82 a | 4.60 b | 5.26 a | 0.210 | <0.01 |
| LYM | 103/µL | 0.83–4.91 | 2.91 a | 2.06 b | 2.01 b | 0.066 | <0.001 |
| MON | 103/µL | 0.14–1.97 | 0.42 a | 0.29 b | 0.48 a | 0.018 | <0.001 |
| EOS | 103/µL | 0.04–1.62 | 0.10 a | 0.29 b | 0.31 b | 0.018 | <0.001 |
| BAS | 103/µL | 0.00–0.12 | 0.04 a | 0.01 b | 0.01 b | 0.002 | <0.001 |
| NEU% | % | 52.00–81.00 | 61.20 | 62.02 | 64.43 | 0.703 | 0.186 |
| LYM% | % | 12.00–33.00 | 32.82 a | 29.66 ab | 25.68 b | 0.710 | <0.001 |
| MON% | % | 2.00–13.00 | 4.34 a | 4.13 a | 6.06 b | 0.164 | <0.001 |
| EOS% | % | 0.50–10.00 | 1.17 a | 4.05 b | 3.70 b | 0.226 | <0.001 |
| BAS% | % | 0.00–1.30 | 0.47 a | 0.14 b | 0.13 b | 0.022 | <0.001 |
| RBC | 106/µL | 5.10–8.50 | 6.92 a | 7.71 b | 6.46 c | 0.065 | <0.001 |
| HGB | g/dL | 11.00–19.00 | 16.58 a | 17.65 b | 14.96 c | 0.137 | <0.001 |
| HCT | % | 33.00–56.00 | 44.95 a | 48.51 b | 42.23 c | 0.358 | <0.001 |
| MCV | fL | 60.00–76.00 | 64.98 a | 62.94 b | 65.54 a | 0.208 | <0.001 |
| MCH | Pg | 20.00–27.00 | 24.04 a | 22.91 b | 23.20 b | 0.128 | <0.001 |
| MCHC | g/dL | 30.00–38.00 | 37.00 a | 36.40 a | 35.42 b | 0.183 | <0.001 |
| RDW-CD | % | 12.50–17.20 | 13.48 a | 13.29 a | 12.91 b | 0.059 | <0.01 |
| RDW-SD | fL | 33.20–46.30 | 35.12 a | 33.36 b | 33.95 b | 0.183 | <0.001 |
| PLT | 103/µL | 117.00–490.00 | 287.54 a | 342.92 b | 419.75 c | 8.701 | <0.001 |
| MPV | fL | 8.00–14.10 | 9.88 a | 10.01 a | 10.87 b | 0.089 | <0.01 |
| PDW | 12.00–17.50 | 15.28 a | 15.22 a | 15.73 b | 0.029 | <0.001 | |
| PCT | mL/L | 0.90–5.80 | 2.84 a | 3.40 b | 4.48 c | 0.087 | <0.001 |
| Puppy | Adult Dog | Senior Dog | SEM | p Value | |
|---|---|---|---|---|---|
| DM | 88.17 | 88.89 | 87.46 | 0.21 | 0.286 |
| NFE | 95.00 a | 93.96 b | 94.35 ab | 0.18 | <0.01 |
| CP | 89.64 a | 91.74 b | 90.95 ab | 0.26 | <0.001 |
| EE | 97.39 a | 97.84 b | 97.47 a | 0.09 | <0.05 |
| Ca | 14.58 | 17.29 | 12.05 | 1.71 | 0.672 |
| P | 36.12 a | 32.94 ab | 30.71b | 0.83 | <0.05 |
| Puppy | Adult Dog | Senior Dog | SEM | p Value | |
|---|---|---|---|---|---|
| Essential amino acid | |||||
| Lys | 92.22 a | 93.49 b | 93.01 ab | 0.18 | <0.01 |
| Met | 92.93 | 93.40 | 93.15 | 0.24 | 0.154 |
| Thr | 91.99 | 92.54 | 92.28 | 0.16 | 0.287 |
| Val | 92.45 | 90.81 | 90.56 | 0.36 | 0.986 |
| Leu | 94.02 | 94.51 | 94.22 | 0.14 | 0.374 |
| Ile | 93.35 a | 94.24 b | 93.95 ab | 0.16 | <0.05 |
| Phe | 93.50 | 93.88 | 93.56 | 0.14 | 0.504 |
| His | 92.13 a | 93.21 b | 93.01 ab | 0.16 | <0.05 |
| Arg | 95.01 a | 95.96 b | 95.83 b | 0.10 | <0.001 |
| Non-essential Amino acid | |||||
| Asp | 91.69 | 92.45 | 91.79 | 0.16 | 0.147 |
| Glu | 93.32 | 93.91 | 93.37 | 0.15 | 0.167 |
| Ser | 85.42 | 86.33 | 85.82 | 0.18 | 0.143 |
| Tyr | 93.34 | 92.89 | 92.64 | 0.15 | 0.049 |
| Cys | 84.43 | 84.89 | 83.40 | 0.37 | 0.094 |
| Pro | 92.75 | 93.14 | 92.89 | 0.14 | 0.636 |
| Gly | 89.64 | 90.66 | 90.17 | 0.27 | 0.224 |
| Ala | 92.08 a | 93.03 b | 92.44 ab | 0.18 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.Y.; So, K.-M.; Lee, S.-Y.; Lee, W.-D.; Cho, H.-W.; Bang, H.T.; Chang, S.; Jung, W.Y.; Seo, K.; Chun, J.L.; et al. Comparative Evaluation of Nutrient Digestibility in Beagle Dogs of Different Life Stages. Animals 2025, 15, 2963. https://doi.org/10.3390/ani15202963
Lee MY, So K-M, Lee S-Y, Lee W-D, Cho H-W, Bang HT, Chang S, Jung WY, Seo K, Chun JL, et al. Comparative Evaluation of Nutrient Digestibility in Beagle Dogs of Different Life Stages. Animals. 2025; 15(20):2963. https://doi.org/10.3390/ani15202963
Chicago/Turabian StyleLee, Min Young, Kyoung-Min So, Sang-Yeob Lee, Woo-Do Lee, Hyun-Woo Cho, Han Tae Bang, Seyeon Chang, Won Yong Jung, Kangmin Seo, Ju Lan Chun, and et al. 2025. "Comparative Evaluation of Nutrient Digestibility in Beagle Dogs of Different Life Stages" Animals 15, no. 20: 2963. https://doi.org/10.3390/ani15202963
APA StyleLee, M. Y., So, K.-M., Lee, S.-Y., Lee, W.-D., Cho, H.-W., Bang, H. T., Chang, S., Jung, W. Y., Seo, K., Chun, J. L., & Kim, K. H. (2025). Comparative Evaluation of Nutrient Digestibility in Beagle Dogs of Different Life Stages. Animals, 15(20), 2963. https://doi.org/10.3390/ani15202963

