Next Issue
Volume 2, December
Previous Issue
Volume 2, June
 
 

Geosciences, Volume 2, Issue 3 (September 2012) – 2 articles , Pages 147-177

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
8419 KiB  
Article
Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds
by Jingmai K. O’Connor, Luis M. Chiappe, Cheng-ming Chuong, David J. Bottjer and Hailu You
Geosciences 2012, 2(3), 157-177; https://doi.org/10.3390/geosciences2030157 - 14 Sep 2012
Cited by 50 | Viewed by 16153
Abstract
At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern) equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous [...] Read more.
At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern) equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds. Full article
(This article belongs to the Special Issue Paleontology and Geo/Biological Evolution)
Show Figures

Graphical abstract

1017 KiB  
Article
Bythocythere solisdeus n. sp. and Cytheropteron eleonorae n. sp. (Crustacea, Ostracoda) from the Early Pleistocene Bathyal Sediments of Cape Milazzo (NE, Sicily)
by Francesco Sciuto
Geosciences 2012, 2(3), 147-156; https://doi.org/10.3390/geosciences2030147 - 09 Jul 2012
Cited by 5 | Viewed by 9531
Abstract
Two new fossil species of Ostracoda belonging to the genus Bythocythere Sars, 1866, Bythocythere solisdeus n. sp. and to the genus Cytheropteron Sars, 1866, Cytheropteron eleonorae n. sp. are described. The specimens come from the upper silty sand layers of the Globorotalia truncatulinoides [...] Read more.
Two new fossil species of Ostracoda belonging to the genus Bythocythere Sars, 1866, Bythocythere solisdeus n. sp. and to the genus Cytheropteron Sars, 1866, Cytheropteron eleonorae n. sp. are described. The specimens come from the upper silty sand layers of the Globorotalia truncatulinoides excelsa Zone (“Sicilian” stage), cropping out in “Cala S. Antonino” along the western side of the Cape Milazzo Peninsula (NE Sicily). Both species belong to a typical Bathyal ostracod association characterized by very low temperatures. Full article
(This article belongs to the Special Issue Paleontology and Geo/Biological Evolution)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop