Monitoring Thermal Activity of the Beppu Geothermal Area in Japan Using Multisource Satellite Thermal Infrared Data
Abstract
:1. Introduction
2. Geological Settings of the Study Area
3. Materials and Methods
3.1. Satellite Data and Meteorological Data
3.2. Emissivity Retrieval from ASTER Data
3.3. LST Retrieval from ASTER Data
3.4. Emissivity Retrieval from Landsat 8 OLI Data
3.5. LST Retrieval from Landsat 8 TIRS Data
3.6. RHF and Heat Loss Retrieval
4. Results and Discussion
4.1. Mt. Garan Fumaroles
4.2. Beppu Geothermal Area
4.3. Validation of the Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Furukawa, Y. Temperature- and fluid-controlled seismicity in the Beppu graben, Kyushu, Japan. J. Volcanol. Geotherm. Res. 2009, 181, 61–66. [Google Scholar] [CrossRef]
- Komatsu, G.; Takemura, K.; Goto, K.; Shibuya, H.; Yamagishi, A.; Sekine, Y.; Ishimaru, R. Beppu Hotspring, Japan, As a terrestrial analog for ancient hydrothermal systems on Mars. In Proceedings of the 43rd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012; p. 1096. [Google Scholar]
- Yusa, Y.; Ohsawa, S.; Kitaoka, K. Long-term changes associated with exploitation of the Beppu hydrothermal system, Japan. Geothermics 2000, 29, 609–625. [Google Scholar] [CrossRef]
- Gianelli, G.; Yusa, Y.; Battaglia, S.; Takemura, K. Water-Rock Interaction in a Zone of Lateral Flow: A Natural Example from the Active Geothermal Field and Gold-Mineralized Zone of Beppu (Kyushu Island, Japan). Mineral. Petrol. 1992, 45, 247–259. [Google Scholar] [CrossRef]
- Allis, R.G.; Yusa, Y. Fluid flow processes in the Beppu geothermal system, Japan. Geothermics 1989, 18, 743–759. [Google Scholar] [CrossRef]
- Nishijima, J.; Naritomi, K. Interpretation of gravity data to delineate undergroundstructure in the Beppu geothermal field, central Kyushu, Japan. J. Hydrol. Reg. Stud. 2017, 11, 84–95. [Google Scholar] [CrossRef]
- Yusa, Y.; Ohsawa, S. Age of the Beppu hydrothermal system, Japan. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 305–308. [Google Scholar]
- Sturchio, N.C.; Ohsawa, S.; Sano, Y.; Arehart, G.; Kitaoka, K.; Yusa, Y. Geochemical characteristics of the Yufuin outflow plume, Beppu hydrothermal system, Japan. Geothermics 1996, 25, 2015–2230. [Google Scholar] [CrossRef]
- Oue, K.; Ohsawa, S.; Yusa, Y. Change in color of the hot spring deposits at the Chinoike-Jigoku hot pool, Beppu geothermal field. Geothermics 2002, 31, 361–380. [Google Scholar] [CrossRef]
- Sekioka, M. A Micrometeorological Estimation of the Water and the Heat Discharged in a Hot Pool. Arch. Met. Geophys. Bioklimatol. Ser. B 1977, 25, 283–290. [Google Scholar] [CrossRef]
- Kitaoka, K. Water circulation rates in a geothermal field: A study of tritium in the Beppu hydrothermal system, Japan. Geothermics 1990, 19, 515–539. [Google Scholar] [CrossRef]
- Yuhara, K.; Ehara, S.; Hara, M.; Fujimitsu, Y. Infra-red imageries of volcanic and geothermal areas in Kyushu by helicopter. J. Geotherm. Res. Soc. Jpn. 1987, 9, 307–355. (In Japanese) [Google Scholar]
- Mia, M.B.; Fujimitsu, Y.; Nishijima, J. Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan. Geosciences 2017, 7, 118. [Google Scholar] [CrossRef]
- Mia, M.B.; Nishijima, J.; Fujimitsu, Y. Exploration and monitoring geothermal activity using Landsat ETM + images-A case study at Aso volcanic area in Japan. J. Volcanol. Geotherm. Res. 2014, 275, 14–21. [Google Scholar] [CrossRef]
- Eskandari, A.; Rosa, R.D.; Amini, S. Remote sensing of Damavand volcano (Iran) using Landsat imagery: Implications for the volcano dynamics. J. Volcanol. Geotherm. Res. 2015, 306, 41–57. [Google Scholar] [CrossRef]
- Mia, M.B.; Bromley, C.J.; Fujimitsu, Y. Monitoring heat losses using Landsat ETM + thermal infrared data: A case study in Unzen geothermal field, Kyushu, Japan. Pure Appl. Geophys. 2013, 170, 2263–2271. [Google Scholar] [CrossRef]
- Mia, M.B.; Fujimitsu, Y. Mapping hydrothermal altered deposits using Landsat 7 ETM + image in and around Kuju volcano, Kyushu, Japan. J. Earth Syst. Sci. 2012, 121, 1049–1057. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- Abrams, M.; Tsu, H.; Glynn Hulley, G.; Iwao, K.; Pieri, D.; Cudahy, T.; Kargel, J. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 292–301. [Google Scholar] [CrossRef]
- Kato, S.; Kouyama, T.; Nakamura, R.; Matsunaga, T.; Fukuhara, T. Simultaneous retrieval of temperature and area according to sub-pixel hotspots from nighttime Landsat 8 OLI data. Remote Sens. Environ. 2018, 204, 276–286. [Google Scholar] [CrossRef]
- Blackett, M. Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity. Remote Sens. 2014, 6, 2282–2295. [Google Scholar] [CrossRef] [Green Version]
- Pieri, D.; Abrams, M. ASTER watches the world’s volcanoes: A new paradigm for volcanological observations from orbit. J. Volcanol. Geotherm. Res. 2004, 135, 13–28. [Google Scholar] [CrossRef]
- Itoh, Y.; Kusumoto, S.; Takemura, K. Evolutionary process of Beppu Bay in central Kyushu, Japan: A quantitative study of the basin-forming process controlled by plate convergence modes. Earth Planets Space 2014, 66, 1–14. [Google Scholar] [CrossRef]
- Kamata, H. Volcanic and structural history of the Hohi volcanic zone, central Kyushu, Japan. Bull. Volcanol. 1989, 51, 315–332. [Google Scholar] [CrossRef]
- Hoshizumi, H.; Ono, K.; Mimura, K.; Noda, T. Geology of the Beppu district with geological sheet map of 1:50,000. Geol. Surv. Jpn. 1988, 131. (In Japanese with English abstract). [Google Scholar]
- Talay, T.A. Introduction to the Aerodynamics of Flight, NASA SP -367; National Aeronautics and Space Adminstration: Washington, DC, USA, 1975; pp. 6–9.
- Airbus. Getting to Grips with Aircraft Performance; Airbus Indusrie, Customer Services: Blagnac, France, 2000; pp. 11–16. [Google Scholar]
- Qin, Z.; Li, W.; Gao, M.; Zhang, H. An algorithm to retrieve land surface temperature from ASTER thermal band data for agricultural drought monitoring. In Proceeding of the SPIE Remote Sensing Conference, Stockholm, Sweden, 11–14 September 2006; pp. 63591F1–63591F8. [Google Scholar]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature fromLandsat TM data and its application to the Israel–Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Bromley, C.J.; Manen, S.M.; Mannington, W. Heat Flux from Steaming Ground: Reducing Uncertainties. In Proceedings of the 36th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 31 January–2 February 2011. SGP-TR-191. [Google Scholar]
- Mia, M.B.; Bromley, C.J.; Fujimitsu, Y. Monitoring heat flux using Landsat TM/ETM + thermal infrared data-A case study at Karapiti (‘Crater of the Moon’) thermal area, New Zealand. J. Volcanol. Geotherm. Res. 2012, 235–236, 1–10. [Google Scholar] [CrossRef]
- Ren, H.; Ye, X.; Liu, R.; Dong, J.; Qin, Q. Improving Land Surface Temperature and Emissivity Retrieval from the Chinese Gaofen-5 Satellite Using a Hybrid Algorithm. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1080–1090. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Van de Griend, A.A.; Owe, M. On the Relationship between Thermal Emissivity and the Normalized Difference Vegetation Index for Natural Surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martincz, P. Land Surface Emissivity Retrieval from Different VNIR and TIR Sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar] [CrossRef]
- Wessa, P. Pearson Correlation (v1.0.13) in Free Statistics Software (v1.2.1). Office for Research Development and Education, 2017. Available online: https://www.wessa.net/rwasp_correlation.wasp/ (accessed on 28 July 2018).
Sensor | Date | Day/Night | Time (h:min:s) | Sun Elevation (Degree) | Path/Row | ASTER | Landsat 8 OLI/TIRS | ||
---|---|---|---|---|---|---|---|---|---|
ASTER | 12 May 2009 | Day | 11:05:55 | 69.08 | 112/37 | Used Band | Wavelength (μm) | Used Band | Wavelength (μm) |
10 May 2009 | Night | 22:19:33 | −32.02 | 211/207 | |||||
18 May 2011 | Day | 11:04:50 | 69.997 | 112/37 | Band 2-Red | 0.630–0.690 | Band 4-Red | 0.636–0.673 | |
13 March 2011 | Night | 22:18:21 | −47.56 | 211/207 | |||||
7 May 2013 | Day | 11:05:11 | 68.004 | 112/37 | Band 3-Near Infrared | 0.760–0.860 | Band 5-Near Infrared | 0.851–0.879 | |
5 May 2013 | Night | 22:18:50 | −33.12 | 211/207 | |||||
Landsat 8 OLI-TIRS | 5 May 2015 | Day | 10:46:25 | 64.52 | 112/37 | Band 13-Thermal Infrared | 10.250–10.950 | Band 10-Thermal Infrared | 10.60–11.19 |
26 May 2015 | Night | 22:06:17 | −27.80 | 211/207 | |||||
19 February 2017 | Day | 10:47:27 | 39.58 | 112/37 | Band 14-Thermal Infrared | 10.950–11.650 | Band 11-Thermal Infrared | 11.50–12.51 | |
29 April 2017 | Night | 22:06:31 | −33.38 | 211/207 |
T (°C) | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | −5 | −10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
E (g·kg−1) | 66.33 | 49.81 | 37.25 | 27.69 | 20.44 | 14.95 | 10.83 | 7.76 | 5.5 | 3.84 | 2.52 | 1.63 |
A (kg·m−3) | 1.11 | 1.13 | 1.15 | 1.17 | 1.18 | 1.21 | 1.23 | 1.25 | 1.27 | 1.29 | 1.32 | 1.34 |
Mt. Garan Fumaroles | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensor | Date | Day/Night | * Relative Humidity (%) | * Altitude Adjusted Ambient Temperature (°C) | Transmissivity | Emissivity | LST (°C) without Ambient | RHF (W/m2) | RHL (MW) | HDR (MW) | ||||
B13/B10 ** | B14/B11 ** | Min | Max | Min | Max | Min | Max | |||||||
ASTER | 12 May 2009 | Day | 0.945 | 0.979 | ||||||||||
10 May 2009 | Night | 51 | 13.14 | 0.923 | 0.879 | −1.09 | 9.85 | −5.59 | 52.27 | 11.19 | 72.62 | |||
18 May 2011 | Day | 0.947 | 0.979 | |||||||||||
13 March 2011 | Night | 77 | 3.34 | 0.934 | 0.898 | 0.00 | 10.66 | 0.00 | 51.43 | 16.44 | 106.70 | |||
7 May 2013 | Day | 0.949 | 0.972 | |||||||||||
5 May 2013 | Night | 62 | 8.54 | 0.928 | 0.888 | 0.00 | 9.37 | 0.00 | 47.79 | 11.85 | 76.91 | |||
Landsat 8 OLI-TIRS | 5 May 2015 | Day | 0.938 | 0.988 | ||||||||||
26 May 2015 | Night | 58 | 15.04 | 0.903 | 0.857 | −0.64 | 9.80 | −3.42 | 52.60 | 17.33 | 112.47 | |||
19 February 2017 | Day | 0.956 | 0.988 | |||||||||||
29 April 2017 | Night | 43 | 10.04 | 0.940 | 0.909 | 0.00 | 7.23 | 0.00 | 37.64 | 11.55 | 74.96 |
Beppu Thermal Area | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensor | Date | Day/Night | * Relative Humidity (%) | Ambient Temp. (°C) | Transmissivity | Emissivity | LST (°C) without Ambient | RHF (W/m2) | RHL (MW) | HDR (MW) | ||||
B13/B10 * | B14/B11 * | Min | Max | Min | Max | Min | Max | |||||||
ASTER | 12 May 2009 | Day | 0.928 | 0.978 | ||||||||||
10 May 2009 | Night | 51 | 19.90 | 0.894 | 0.835 | −6.17 | 5.49 | −33.10 | 30.08 | 126.92 | 823.71 | |||
18 May 2011 | Day | 0.934 | 0.976 | |||||||||||
13 March 2011 | Night | 77 | 10.10 | 0.910 | 0.860 | −5.31 | 5.02 | −25.79 | 25.21 | 115.25 | 747.97 | |||
7 May 2013 | Day | 0.936 | 0.970 | |||||||||||
5 May 2013 | Night | 62 | 15.30 | 0.903 | 0.849 | −5.36 | 5.74 | −27.51 | 30.18 | 134.30 | 871.61 | |||
Landsat 8 OLI-TIRS | 5 May 2015 | Day | 0.945 | 0.988 | ||||||||||
26 May 2015 | Night | 58 | 21.80 | 0.850 | 0.791 | −5.39 | 7.63 | −30.14 | 44.92 | 197.03 | 1278.72 | |||
19 February 2017 | Day | 0.949 | 0.988 | |||||||||||
29 April 2017 | Night | 43 | 16.80 | 0.917 | 0.876 | −5.76 | 4.74 | −30.51 | 26.19 | 113.85 | 738.89 |
Area | Year | Observed RHL (MW) | AST_05 and AST_08 Based RHL (MW) | Pearson Correlation Coefficient |
---|---|---|---|---|
Mt. Garan | 2009 | 11.19 | 13.59 | 0.9822 |
2011 | 16.44 | 19.9 | ||
2013 | 11.85 | 13.03 | ||
Beppu Geothermal Area | 2009 | 126.92 | 179.77 | 0.9881 |
2011 | 115.25 | 153.64 | ||
2013 | 134.3 | 208.31 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mia, M.B.; Fujimitsu, Y.; Nishijima, J. Monitoring Thermal Activity of the Beppu Geothermal Area in Japan Using Multisource Satellite Thermal Infrared Data. Geosciences 2018, 8, 306. https://doi.org/10.3390/geosciences8080306
Mia MB, Fujimitsu Y, Nishijima J. Monitoring Thermal Activity of the Beppu Geothermal Area in Japan Using Multisource Satellite Thermal Infrared Data. Geosciences. 2018; 8(8):306. https://doi.org/10.3390/geosciences8080306
Chicago/Turabian StyleMia, Md. Bodruddoza, Yasuhiro Fujimitsu, and Jun Nishijima. 2018. "Monitoring Thermal Activity of the Beppu Geothermal Area in Japan Using Multisource Satellite Thermal Infrared Data" Geosciences 8, no. 8: 306. https://doi.org/10.3390/geosciences8080306
APA StyleMia, M. B., Fujimitsu, Y., & Nishijima, J. (2018). Monitoring Thermal Activity of the Beppu Geothermal Area in Japan Using Multisource Satellite Thermal Infrared Data. Geosciences, 8(8), 306. https://doi.org/10.3390/geosciences8080306