Risk-Based Early Warning System for Pluvial Flash Floods: Approaches and Foundations
Abstract
:1. Introduction
- Precipitation-based warnings by using measurement tools (rain gauge and/or weather radar) and short-time forecasting methods (nowcasting).
- Wireless sensor networks measuring atmospheric variables.
- Water-level monitoring of small streams and drainage channels.
- Conceptual hydrological models for estimating the current flood hazard.
2. Model Concept and Data Basis
2.1. Risk-Based Early Warning System
2.1.1. Objective and Components
- A nowcasting system for provisioning short-termed and radar-based rainfall forecasts.
- A hydro-numerical model for the simulation of flow processes resulting from a heavy rainfall event.
- A GIS-Model for the identification and classification of particularly vulnerable areas, and the estimation of damage values.
2.1.2. Real-time Simulation Method
2.1.3. Scenario-Interpolation Method
- Hydrodynamic simulation of several heavy rainfall scenarios.
- Automated superimposition of flash-flood hazard with pre-calculated damage potential.
- Automated determination of risks and definition of threshold values for risks and hydraulic parameters and structured storage of data
- Systematic comparison process between specific rainfall patterns and consequences (water flows, flooded areas) with the aim to determine specific threshold values for spatio-temporal rainfall heights. In this process step, methods of machine learning techniques are checked for their applicability. Synthetic scenarios (varying rainfall parameters) and corresponding flood inundation maps are used as training input.
- Monitoring of nowcasted rainfall data and comparison with scenario parameters
- Matching or interpolation process for the determination of flooded urban areas and critical objects.
- Output of warning message when reaching a defined threshold value with object-precise information about hydraulic flood parameters and affected physical objects.
2.2. Multifunctional Pluvial Flood Information System
- Georeferenced documentation of past pluvial floods for statistics and model validation purposes.
- Systematic risk-analysis based on an effective step-by-step concept for the generation of standardized and high-resolution hazard and risk maps.
- Hydrodynamic and risk-based EWS for real-time flood-simulation and identification of affected urban infrastructure as a consequence of forecasted heavy rainfall events.
- Hydro-numerical model for the simulation of runoff and flow processes due to pluvial events [hazard analysis].
- GIS-model for the analysis and classification of the urban infrastructure [damage potential analysis] and the superimposition of hazard and damage values [risk assessment].
- Geodata for model basis (DTM, land use, etc.).
- KOSTRA-DWD (coordinated regionalized heavy rainfall statistics of the DWD) [36] for extreme value statistical precipitation data in Germany.
- Nowcasting system for providing short-termed and radar-based rainfall forecasts (e.g., DWD-RADVOR or HydroMaster).
2.3. Data Basis
2.3.1. Geodata NRW
2.3.2. Hydrologic and Hydraulic Parameters
2.3.3. Precipitation (Statistical Data & Forecasts)
- Scenario 1 (rare event): TN = 30 a, I = 38.6 mm/h (HRI = 5);
- Scenario 2 (rare event): TN = 50 a, I = 42.0 mm/h (HRI = 6);
- Scenario 3 (very rare event): TN = 100 a, I = 47.0 mm/h (HRI = 7);
- Scenario 4 (extreme event): TN extreme, I = 131.6 mm/h (HRI = 12).
- Uncalibrated precipitation forecasts in 5-min increments [mm/5min] with an update rate of five minutes.
- Calibrated precipitation analysis and forecasts in 60 min increments [mm/h] with an update rate of 15 min.
2.4. Boundary Conditions
3. Case Study and Results
3.1. Step-Based Risk Analysis—City of Aachen Case Study
3.2. Documentation and Validation Process
- Rainfall parameters: duration, amount, intensity and affected area.
- Flooding information: image and video recordings with space and time information, estimated water depth, affected area and objects.
3.3. Validation based on the Event of 29 May 2018
- The model simulated the flooding process of the Adalbertstraße and the north area of the shopping Center Aquis Plaza correctly. The calculated water depth is about 30 cm to 50 cm and thus matches with the in situ recording (the persons are standing about knee-deep in the water). Several shops in the shopping center were flooded. Neither the model, nor the photograph allow the assumption of high flow velocities.
- The extensive flooding at the Kaiserplatz was also calculated correctly with respect to extent and water depth. The simulated depth showed a value of 50 cm to 70 cm; the records showed cars with their hub caps were under water. Affected buildings were identified concurrently (Figure 6B).
- In addition, the recorded flow and flooding processes at the Stiftsstraße demonstrated good consistency with the hydrodynamic simulations regarding the spatial extent of the flooding as well as the water depth.
3.4. Numerical Monitoring and Warning Criteria
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičová, L.; Blöschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Verjee, F.; Barrett, C. Flash Flood Early Warning System Reference Guide; University Corporation for Atmospheric: Boulder, CO, USA, 2010. [Google Scholar]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; de La Hoz-Franco, E. Real-Time Early Warning System Design for Pluvial Flash Floods-A Review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef] [PubMed]
- Borga, M.; Stoffel, M.; Marchi, L.; Marra, F.; Jakob, M. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. J. Hydrol. 2014, 518, 194–205. [Google Scholar] [CrossRef]
- Creutin, J.D.; Borga, M.; Gruntfest, E.; Lutoff, C.; Zoccatelli, D.; Ruin, I. A space and time framework for analyzing human anticipation of flash floods. J. Hydrol. 2013, 482, 14–24. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Manual on Flood Forecasting and Warning; WMO-No. 1072; World Meteorological Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Carpenter, T.M.; Sperfslage, J.A.; Sweeney, T.; Fread, D.L. National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. J. Hydrol. 1999, 224, 21–44. [Google Scholar] [CrossRef]
- European Commission and Water Group Floods (WGF). Pluvial Flooding: An EU Overview; Water Group Floods, European Commission: Brussels, Belgium, 2016.
- Davies, R. Updated: Horn of Africa—Major Flooding after Cyclone Sagar Leaves 16 Dead. Available online: http://floodlist.com/africa/cyclone-sagar-somalia-yemen-djibouti-may-2018 (accessed on 11 November 2018).
- Quadir, S.; Hussain, Z. Floods Kill Dozens, Displace More Than a Million in India, Bangladesh. Available online: https://www.reuters.com/article/us-south-asia-floods/floods-kill-dozens-displace-more-than-a-million-in-india-bangladesh-idUSKBN1JF1F5 (accessed on 13 November 2018).
- The Watchers. 4 Months’ Worth of Rain in 6 Hours Floods Southern France, Death Toll in Europe Rises to 31. Available online: https://watchers.news/2018/10/14/flood-europe-october-2018/ (accessed on 12 November 2018).
- The Watchers. Extreme Rainfall Events Wreak Havoc across the Middle East. Available online: https://watchers.news/2018/11/13/middle-east-floods-october-november-2018/ (accessed on 12 November 2018).
- Humanitarian Aid Commission—OCHA. Over 200,000 People across the Country Affected by Heavy Rains and Flash Floods. 8 October–4 November 2018. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/OCHA_Sudan_Humanitarian_Bulletin_Issue_18_%288_October_-_4_November_2018%29.pdf (accessed on 14 November 2018).
- Floodlist. USA—Deadly Flash Floods in Kentucky and Missouri. Available online: http://floodlist.com/america/usa/floods-storm-gordon-kentucky-missouri-september-2018 (accessed on 14 November 2018).
- GDV (Gesamtverband der Deutschen Versicherungswirtschaft e.V.). Naturgefahrenreport 2017—Die Schaden-Chronik der Deutschen Versicherer in Zahlen, Stimmen und Ereignissen; GDV: Berlin, Germany, 2017. [Google Scholar]
- IPCC. Working Group I, Contribution to the IPCC Fifth Assessment Report (AR5), Climate Change 2013. The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bloeschl, G.; Montanari, A. Climate change impacts—Throwing the dice? Hydrol. Process. 2009, 111, 374–376. [Google Scholar] [CrossRef]
- Singh, P.; Sinha, V.S.P.; Vijhani, A.; Pahuja, N. Vulnerability assessment of urban road network from urban flood. Int. J. Disaster Risk Reduct. 2018, 28, 237–250. [Google Scholar] [CrossRef]
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding; The World Bank: Wahington, DC, USA, 2012; ISBN 978-0-8213-8866-2. [Google Scholar]
- Fischer, B. Die wassersensible Stadt als eine Antwort auf die Folgen des Klimawandels. Korresp. Wasserwirtsch. 2018, 11, 473–479. [Google Scholar] [CrossRef]
- Špitalar, M.; Gourley, J.J.; Lutoff, C.; Kirstetter, P.-E.; Brilly, M.; Carr, N. Analysis of flash flood parameters and human impacts in the US from 2006 to 2012. J. Hydrol. 2014, 519, 863–870. [Google Scholar] [CrossRef]
- Witt, M. Vorhersage und Warnungen vor Starkregen durch den Deutschen Wetterdienst—Beitrag zum wasserwirtschaftlichen Informationstag; Deutscher Wetterdienst: Offenbach am Main, Germany, 2015.
- DWD. Der Deutsche Wetterdienst—Warnkriterien. Available online: https://www.dwd.de/DE/wetter/warnungen_aktuell/kriterien/warnkriterien.html (accessed on 30 January 2018).
- DWD (Der Deutsche Wetterdienst). FeWIS—das Katastrophenschutzportal; Deutscher Wetterdienst: Offenbach am Main, Germany, 2017.
- Castro, D.; Frerichs, S.; Hatzfeld, F.; Mittelstädt, R.; Seltmann, J.; Einfalt, T.; Friedeheim, K.; Kubik, A.; Müller, M.; Wagner, A. Vorhersage und Management von Sturzfluten in urbanen Gebieten (URBAS). Förderprogramm des BMBF. Risikomanagement Extremer Hochwasser (RIMAX); Bundesministerium für Bildung und Forschung: Aachen, Germany, 2008.
- Cama-Pinto, A.; Piñeres-Espitia, G.; Zamora-Musa, R.; Acosta-Coll, M.; Caicedo-Ortiz, J.; Sepúlveda-Ojeda, J. Design of a wireless sensor network for monitoring of flash floods in the city of Barranquilla, Colombia. Rev. Chil. Ingeniare 2016, 24, 581–599. [Google Scholar] [CrossRef]
- Chang, N.; Guo, D.-H. (Eds.) Urban Flash Flood Monitoring, Mapping and Forecasting via a Tailored Sensor Network System. In Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, FL, USA, 23–25 April 2006; pp. 757–761, ISBN 1-4244-0065-1. [Google Scholar]
- Stadt Bonn. Stadt Bonn—Hochwasserschutz. Available online: http://www.bonn.de/umwelt_gesundheit_planen_bauen_wohnen/hochwasser/hochwasserschutz/index.html?lang=de (accessed on 25 February 2018).
- Javelle, P.; Organde, D.; Demargne, J.; Saint-Martin, C.; de Saint-Aubin, C.; Garandeau, L.; Janet, B.; Lang, M.; Klijn, F.; Samuels, P. Setting up a French national flash flood warning system for ungauged catchments based on the AIGA method. E3s Web Conf. 2016, 7, 18010. [Google Scholar] [CrossRef] [Green Version]
- Braud, I.; Vincendon, B.; Anquetin, S.; Ducrocq, V.; Creutin, J.-D. The Challenges of Flash Flood Forecasting. In Mobilities Facing Hydrometeorological Extreme Events 1; Elsevier: Amsterdam, The Netherlands, 2018; pp. 63–88. ISBN 9781785482892. [Google Scholar]
- Elgendy, N.; Elragal, A. Big Data Analytics: A Literature Review Paper. In Advances in Data Mining. Applications and Theoretical Aspects; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Kobsa, A., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 214–227. ISBN 978-3-319-08975-1. [Google Scholar]
- Yang, C.; Xu, Y.; Nebert, D. Redefining the possibility of digital Earth and geosciences with spatial cloud computing. Int. J. Digit. Earth 2012, 6, 297–312. [Google Scholar] [CrossRef]
- Urban Drainage and Flood Control District (UDFCD). Urban Storm Drainage Criteria Manual. Volume 1 Management, Hydrology, and Hydraulics; Urban Drainage and Flood Control District (UDFCD): Denver, CO, USA, 1969. [Google Scholar]
- Hofmann, J. Hochwasserrisiken durch Starkniederschlagsereignisse in Aachen: April 2018. Master’s Thesis, RWTH Aachen University, Aachen, Germany, 2018. [Google Scholar]
- KOSTRA-DWD; DWD—Der deutsche Wetterdiesnt, Abteilung Hyrometeorologie. Bericht zur Revision von KOSTRA-DWD-2010; Deutscher Wetterdienst: Offenbach am Main, Germany, 2017.
- Innovyze. xpswmm—Complete Stormwater, Sewer and Floodplain Model. Available online: http://www.innovyze.com/products/xpswmm/ (accessed on 22 September 2018).
- XP Solutions. xp2D Reference Manual; XP Solutions: Wallingford, UK, 2016. [Google Scholar]
- Syme, B. TUFLOW—An Introduction; BMT WBM: Brisbane, Australia, 2010. [Google Scholar]
- BMT. TUFLOW Wiki. Available online: https://wiki.tuflow.com/index.php?title=Hardware_Benchmarking (accessed on 24 February 2019).
- Boyte, C. The Application of Direct Rainfall Models as Hydrologic Models Incorporating Hydraulic Resistance at Shallow Depths; BMT WBM: Brisbane, Australia, 2014. [Google Scholar]
- Bez.-Reg Köln; Geobasis Bezirksregierung Köln. Open Data—Digitale Geobasisdaten NRW. 2018. Available online: https://www.opengeodata.nrw.de/produkte/ (accessed on 15 January 2018).
- EPA. Storm Water Management Model; EPA Agency—United States Environmental Protection: Washington, DC, USA, 2016.
- Stocker, M.; Schwaller, G. Tutorial zur HYDRO_AS-2D/SMS—Grundschulung; Bayerisches Landesamt für Wasserwirtschaft: München, Germany, 2003.
- LWI. Untersuchung Starkregengefährdeter Gebiete; LWI—Leichtweiß-Institut, Technische Universität Braunschweig: Braunschweig, Germany, 2009. [Google Scholar]
- DWA. Risikomangement in der Kommunalen Überflutungsvorsorge für Entwässerungssysteme bei Starkregen; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Hennef, Germany, 2016. [Google Scholar]
- Schmitt, T.G.; Krüger, M.; Pfister, A.; Becker, B.; Mudersbach, C.; Fuchs, L.; Hoppe, H.; Lakes, I. Einheitliches Konzept zur Bewertung von Starkregenereignissen Mittels Starkregenindex; GFA: Gullane, UK, 2018. [Google Scholar]
- Winterrath, T. RADVOR—Radarbasierte Niederschlagsvorhersage in Kürzestfristzeitraum; Deutscher Wetterdienst: Offenbach am Main, Germany, 2014.
- KISTERS AG. Water under Your Control. Available online: https://www.hydromaster.com/wp-content/uploads/180525_HydroMaster_A4_en_DHI_mail.pdf (accessed on 26 June 2018).
- LUBW. Leitfaden Kommunales Starkregenrisikomanagement in Baden-Württemberg; Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Karlsruhe, Germany, 2016. [Google Scholar]
- URBAS. Vorhersage und Management von Sturzfluten in Urbanen Gebieten—Fallstudien und Untersuchungsschwerpunkte; Förderprogramm des BMBF; Risikomanagement extremer Hochwasserereignisse (RIMAX): Aachen, Germany, 2008. [Google Scholar]
- Schmetz, O.; Esser, R. Die Innenstadt versinkt in Wassermassen: Schweres Unwetter trifft Aachen mit voller Wucht: Ungezählte Keller vollgelaufen, Straßen überflutet. Feuerwehr fährt 400 Einsätze. Aachener Zeitung, 30 May 2018. [Google Scholar]
- KISTERS AG. Available online: https://www.hydromaster.com/de/ (accessed on 30 May 2018).
- Martínez-Gomariz, E.; Gómez, M.; Russo, B. Experimental study of the stability of pedestrians exposed to urban pluvial flooding. Nat. Hazards 2016, 82, 1259–1278. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martínez-Peiró, M. Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin. Nat. Hazards 2018, 92, 1237–1265. [Google Scholar] [CrossRef]
- Maijala, T.; Huokuna, M.; Honkakunnas, T. Development of Rescue Actions Based on Dam-Break Flood Analysis; Final Report; Grant Agreement No Subv 99/52623; Finnish Environment Institute: Helsinki, Finland, 2001.
- BWK (Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau). Mobile Hochwasserschutzwände—Grundlagen für Planung und Einsatz; BWK: Aachen, Germany, 2005. [Google Scholar]
- Fuchs, L.; Schmidt, N. Vergleich von 2-dimensionalen Berechnungsansätzen für die Gefährdungsanalyse in urbanen Gebieten. Österr. Wasser Abfallwirtsch. 2015, 67. [Google Scholar] [CrossRef]
- CEIWR-HEC. EAD—Expected Annual Flood Damage Computation. Available online: http://www.hec.usace.army.mil/publications/ComputerProgramDocumentation/CPD-30.pdf (accessed on 14 February 2018).
- Maidment, D.R. Conceptual Framework for the National Flood Interoperability Experiment. J. Am. Water Resour. Assoc. 2017, 53, 245–257. [Google Scholar] [CrossRef]
- DLR. Global 3D Elevation Model from the TanDEM-X Mission Now Freely Available. Available online: https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10263/374_read-30139/#/gallery/32238 (accessed on 8 October 2018).
- Herman Assumpção, T.; Popescu, I.; Jonoski, A.; Solomatine, D.P. Citizen observations contributing to flood modelling: Opportunities and challenges. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–26. [Google Scholar] [CrossRef]
- Buytaert, W.; Zulkafli, Z.; Grainger, S.; Acosta, L.; Alemie, T.C.; Bastiaensen, J.; de Bièvre, B.; Bhusal, J.; Clark, J.; Dewulf, A.; et al. Citizen science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2014, 2, 629. [Google Scholar] [CrossRef]
- Sene, K. Flash Floods—Forecasting and Warning; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- World Meteorological Organization (WMO). Flash Flood Forecasting: WMO—No. 577. Available online: https://library.wmo.int/pmb_ged/wmo_577.pdf (accessed on 14 September 2018).
Dataset | Format | Resolution | Usage |
---|---|---|---|
DTM | XYZ | 1 × 1 m | Topography |
DOP | JPG2000 | 0.1 m | Visualization |
DGK5 | GeoTIFF | Visualization | |
DLM-ATKIS | Vector | - | Roughness, Interception |
Buildings | Vector | - | Flow barrier |
Soil Map (GK50) | Vector | - | Infiltration |
DWD-2010R | ASCII | 8.2 × 8.2 km | Precipitation |
Land use | Sealed Surface [%] | Interception Storage [mm] | Roughness (Manning) |
---|---|---|---|
Agriculture | 40 | 2.4 | 0.07 |
Forest | 3 | 3.7 | 0.10 |
Parks/Grassland | 5 | 2.8 | 0.05 |
Cemetery | 10 | 2.8 | 0.06 |
Streets/Pavements | 95 | 0.2 | 0.02 |
Residential Area | 68 | 1.4 | 0.08 |
Special Functional Area | 70 | 1.6 | 0.06 |
Industrial and Commercial Area | 75 | 1.0 | 0.06 |
Sports and Leisure Facilities | 60 | 1.2 | 0.04 |
Mixed Use | 50 | 2.8 | 0.07 |
Object/Land use | Damage Potential/Class |
---|---|
Parks, Garden plots, Green areas, etc. | Low/1 |
Residentials without basements, Small businesses, etc. | Moderate/2 |
Residentials with basements, Industries, etc. | High/3 |
Hospitals, Power supply, Subway access, etc. | Very High/4 |
Hazard Potential | Impulse V × D [m2/s] |
---|---|
Low: Danger for children and senior citizens | >0.1–0.25 |
Moderate: Danger to life while crossing the stream | >0.25–2.0 |
High: Danger to life due to collapsing of structural elements and lager pieces of flotsam | >2.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, J.; Schüttrumpf, H. Risk-Based Early Warning System for Pluvial Flash Floods: Approaches and Foundations. Geosciences 2019, 9, 127. https://doi.org/10.3390/geosciences9030127
Hofmann J, Schüttrumpf H. Risk-Based Early Warning System for Pluvial Flash Floods: Approaches and Foundations. Geosciences. 2019; 9(3):127. https://doi.org/10.3390/geosciences9030127
Chicago/Turabian StyleHofmann, Julian, and Holger Schüttrumpf. 2019. "Risk-Based Early Warning System for Pluvial Flash Floods: Approaches and Foundations" Geosciences 9, no. 3: 127. https://doi.org/10.3390/geosciences9030127
APA StyleHofmann, J., & Schüttrumpf, H. (2019). Risk-Based Early Warning System for Pluvial Flash Floods: Approaches and Foundations. Geosciences, 9(3), 127. https://doi.org/10.3390/geosciences9030127