Immunogenetic Background of Chronic Lymphoproliferative Disorders in Romanian Patients—Case Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Sample Collection and DNA Extraction
2.3. HLA Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaillant, A.A.J.; Stang, C.M. Lymphoproliferative Disorders. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Marks, L. Medscape. Lymphoproliferative Disorders. 2023. Available online: https://emedicine.medscape.com/article/987765-overview (accessed on 13 November 2023).
- Moticka, E.J. Lymphoproliferative Diseases. In A Historical Perspective on Evidence-Based Immunology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 309–316. [Google Scholar]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Litz, C.E.; Brunning, R.D. Chronic lymphoproliferative disorders: Classification and diagnosis. Baillière’s Clin. Haematol. 1993, 6, 767–783. [Google Scholar] [CrossRef]
- Faber, J.; Kantarjian, H.; Roberts, W.M.; Keating, M.; Freireich, E.; Albitar, M. Terminal deoxynucleotidyl transferase-negative acute lymphoblastic leukemia. Arch. Pathol. Lab. Med. 2000, 124, 92–97. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef]
- Mosaad, Y.M. Clinical Role of Human Leukocyte Antigen in Health and Disease. Scand. J. Immunol. 2015, 82, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Dyer, P.; McGilvray, R.; Robertson, V.; Turner, D. Status report from ‘double agent HLA’: Health and disease. Mol. Immunol. 2013, 55, 2–7. [Google Scholar] [CrossRef]
- Klein, J.; Sato, A. The HLA system. Second of two parts. N. Engl. J. Med. 2000, 343, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Crux, N.B.; Elahi, S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front. Immunol. 2017, 8, 832. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front. Immunol. 2017, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Allard, M.; Oger, R.; Benlalam, H.; Florenceau, L.; Echasserieau, K.; Bernardeau, K.; Labarrière, N.; Lang, F.; Gervois, N. Soluble HLA-I/peptide monomers mediate antigen-specific CD8 T cell activation through passive peptide exchange with cell-bound HLA-I molecules. J. Immunol. 2014, 192, 5090–5097. [Google Scholar] [CrossRef] [PubMed]
- Leddon, S.A.; Sant, A.J. Generation of MHC class II-peptide ligands for CD4 T-cell allorecognition of MHC class II molecules. Curr. Opin. Organ Transplant. 2010, 15, 505–511. [Google Scholar] [CrossRef]
- Little, A.M.; Parham, P. Polymorphism and evolution of HLA class I and II genes and molecules. Rev. Immunogenet. 1999, 1, 105–123. [Google Scholar]
- Robinson, J.; Halliwell, J.A.; Hayhurst, J.D.; Flicek, P.; Parham, P.; Marsh, S.G. The IPD and IMGT/HLA database: Allele variant databases. Nucleic Acids Res. 2015, 43, D423–D431. [Google Scholar] [CrossRef]
- Buhler, S.; Sanchez-Mazas, A. HLA DNA sequence variation among human populations: Molecular signatures of demographic and selective events. PLoS ONE 2011, 6, e14643. [Google Scholar] [CrossRef]
- Cruz-Tapias, P.; Castiblanco, J.; Anaya, J.-M. HLA Association with Autoimmune Diseases. In Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogota, Colombia, 2013. [Google Scholar]
- Liu, B.; Shao, Y.; Fu, R. Current research status of HLA in immune-related diseases. Immun. Inflamm. Dis. 2021, 9, 340–350. [Google Scholar] [CrossRef]
- Wang, S.S.; Abdou, A.M.; Morton, L.M.; Thomas, R.; Cerhan, J.R.; Gao, X.; Cozen, W.; Rothman, N.; Davis, S.; Severson, R.K. Human leukocyte antigen class I and II alleles in non-Hodgkin lymphoma etiology. Blood 2010, 115, 4820–4823. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Miyoshi, H.; Asano, N.; Yoshida, N.; Yamada, K.; Yanagida, E.; Moritsubo, M.; Nakata, M.; Umeno, T.; Suzuki, T.; et al. Human leukocyte antigen class II expression is a good prognostic factor in adult T-cell leukemia/lymphoma. Hematologica 2019, 104, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, D.; Liu, W.; Jin, J.; Bi, X.; Zhang, P.; Gu, J.; Zheng, M.; Xiao, M.; Liu, X.; et al. Clinical and genetic characterization of Epstein-Barr virus–associated T/NK-cell lymphoproliferative diseases. J. Allergy Clin. Immunol. 2023, 151, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.M.; Gao, X.; Cozen, W.; Cerhan, J.R.; Rothman, N.; Martin, M.P.; Davis, S.; Schenk, M.; Chanock, S.J.; Hartge, P.; et al. Human leukocyte antigen (HLA) A1-B8-DR3 (8.1) haplotype, tumor necrosis factor (TNF) G-308A, and risk of non-Hodgkin lymphoma. Leukemia 2010, 24, 1055–1058. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-B.; Roh, S.-Y.; Choi, E.-J.; Yoon, H.-Y.; Kim, S.-Y.; Hong, Y.-S.; Kim, D.-W.; Kim, T.-G. Association of HLA alleles with non-Hodgkin’s lymphoma in Korean population. Int. J. Hematol. 2008, 87, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Abdou, A.M.; Cerhan, J.R.; Morton, L.M.; Severson, R.K.; Davis, S.; Cozen, W.; Rothman, N.; Bernstein, L.; Chanock, S.; et al. Human Leukocyte Antigen Class I and II Alleles and Overall Survival in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma. Sci. World J. 2011, 11, 2062–2070. [Google Scholar] [CrossRef]
- Benencio, P.; Fraile Gonzalez, S.A.; Ducasa, N.; Page, K.; Berini, C.A.; Biglione, M.M. HLA-B*35 as a new marker for susceptibility to human T-cell lymphotropic virus type 1 (HTLV-1) Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) in patients living in Argentina. Retrovirology 2020, 17, 29. [Google Scholar] [CrossRef]
- Jackow, C.M.; Mc Ham, J.B.; Friss, A.; Alvear, J.; Reveille, J.R.; Duvic, M. HLA-DR5 and DQB1*03 class II alleles are associated with cutaneous T-cell lymphoma. J. Investig. Dermatol. 1996, 107, 373–376. [Google Scholar] [CrossRef]
- Zhong, C.; Cozen, W.; Bolanos, R.; Song, J.; Wang, S.S. The role of HLA variation in lymphoma aetiology and survival. J. Intern. Med. 2019, 286, 154–180. [Google Scholar] [CrossRef]
- Hodak, E.; Lapidoth, M.; Kohn, K.; David, D.; Brautbar, B.; Kfir, K.; Narinski, N.; Safirman, S.; Maron, M.; Klein, K. Mycosis fungoides: HLA class II associations among Ashkenazi and non-Ashkenazi Jewish patients. Br. J. Dermatol. 2001, 145, 974–980. [Google Scholar] [CrossRef]
- Fetica, B.; Achimas-Cadariu, P.; Pop, B.; Dima, D.; Petrov, L.; Perry, A.M.; Nathwani, B.N.; Müller-Hermelink, H.K.; Diebold, J.; MacLennan, K.A.; et al. Non-Hodgkin lymphoma in Romania: A single-centre experience. Hematol. Oncol. 2017, 35, 198–205. [Google Scholar] [CrossRef] [PubMed]
- ESMO Clinical Practice Guidelines: Haematological Malignancies. European Society for Medical Oncology. Available online: https://www.esmo.org/guidelines/guidelines-by-topic/haematological-malignancies?page=1 (accessed on 13 November 2023).
- Keith, G. Chronic Lymphoproliferative Disorders. Ministry of Defence. 2008. Available online: https://assets.publishing.service.gov.uk/media/5a7de30240f0b65d8b4e419d/chronic_lymphoproliferative_disorders.pdf (accessed on 13 November 2023).
- Parameswaran, P.; Lucke, M. HLA-B27 Syndromes. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551523/ (accessed on 13 November 2023).
- De Carvalho, J.F. Successful treatment of ankylosing spondylitis with alternative and complementary medicine withdrawal of adalimumab treatment. Complement. Ther. Clin. Pract. 2021, 46, 101494. [Google Scholar] [CrossRef] [PubMed]
- Aboulaghras, S.; Piancatelli, D.; Taghzouti, K.; Balahbib, A.; Alshahrani, M.M.; Al Awadh, A.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A.; Oumhani, K. Meta-Analysis and Systematic Review of HLA DQ2/DQ8 in Adults with Celiac Disease. Int. J. Mol. Sci. 2023, 24, 1188. [Google Scholar] [CrossRef] [PubMed]
- Gragert, L.; Fingerson, S.; Albrecht, M.; Maiers, M.; Kalaycio, M.; Hill, B.T. Fine-mapping of HLA associations with chronic lymphocytic leukemia in US populations. Blood 2014, 124, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Gragert, L.; Maiers, M.; Hill, B.T.; Garcia-Gomez, J.; Gendzekhadze, K.; Senitzer, D.; Song, J.; Weisenburger, D.; Goldstein, L.; et al. The association between HLA and non-Hodgkin lymphoma subtypes, among a transplant-indicated population. Leuk. Lymphoma 2019, 60, 2899–2908. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, K.J.M.; Siddiqui, A.A.; Bunce, M.; Lloyd, A.L.; Vine, A.M.; Witkover, A.D.; Izumo, S.; Usuku, K.; Welsh, K.I.; Osame, M.; et al. The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. J. Immunol. Off. J. Am. Assoc. Immunol. 2000, 165, 7278–7284. [Google Scholar] [CrossRef] [PubMed]
- Brazzelli, V.; Rivetti, N.; Badulli, C.; Carugno, A.; Grasso, V.; De Silvestri, A.; Martinetti, M.; Borroni, G. Immunogenetic factors in mycosis fungoides: Can the HLA system influence the susceptibility and prognosis of the disease? Long-term follow-up study of 46 patients. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-Y.; Fordham, S.E.; Sunter, N.; Elstob, C.; Rahman, T.; Willmore, E.; Shepherd, C.; Strathdee, G.; Mainou-Fowler, T.; Piddock, R.; et al. Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia. Nat. Commun. 2021, 12, 665. [Google Scholar] [CrossRef]
- Machulla, H.K.G.; Müller, L.P.; Schaaf, A.; Schönermarck, U.; Langner, J. Association of chronic lymphocytic leukemia with specific alleles of the HLA-DR4:DR53:DQ8 haplotype in German patients. Int. J. Cancer 2001, 92, 203–207. [Google Scholar] [CrossRef]
- Roy, P.S.; Mallik, S.; Sarma, A.; Hazarika, M.; Reddy, R. Clinico-Epidemiological Presentation and Treatment Outcome of Peripheral T-Cell Lymphoma– Not Otherwise Specified (PTCL-NOS): A Single Institutional Experience. Asian Pac. J. Cancer Care 2023, 8, 509–515. [Google Scholar] [CrossRef]
- Weiss, J.; Reneau, J.; Wilcox, R.A. PTCL, NOS: An update on classification, risk-stratification, and treatment. Front. Oncol. 2023, 9, 1101441. [Google Scholar] [CrossRef] [PubMed]
- Mbulaiteye, S.M.; Devesa, S.S. Burkitt Lymphoma Incidence in Five Continents. Hemato 2022, 3, 434–453. [Google Scholar] [CrossRef]
- Graham, B.S.; Lynch, D.T. Burkitt Lymphoma; StatPearls Publishing: Treasure Island, FL, USA, 2023; NBK538148. [Google Scholar]
- Kalisz, K.; Alessandrino, F.; Beck, R.; Smith, D.; Kikano, E.; Ramaiya, N.H.; Tirumani, S.H. An update on Burkitt lymphoma: A review of pathogenesis and multimodality imaging assessment of disease presentation, treatment response, and recurrence. Insights Imaging 2019, 10, 56. [Google Scholar] [CrossRef]
- Vodicka, P.; Klener, P.; Trneny, M. Diffuse Large B-Cell Lymphoma (DLBCL): Early Patient Management and Emerging Treatment Options. OncoTargets Ther. 2022, 15, 1481–1501. [Google Scholar] [CrossRef]
- Sukswai, N.; Lyapichev, K.; Khoury, J.D.; Medeiros, L.J. Diffuse large B-cell lymphoma variants: An update. Lymphoma 2019, 52, 53–67. [Google Scholar] [CrossRef]
- Piccaluga, P.P.; Khattab, S.S. A Comparison of the Fifth World Health Organization and the International Consensus Classifications of Mature T-Cell Lymphomas. Int. J. Mol. Sci. 2023, 24, 14170. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.D.; Ribeiro, G.S.; Anjos, R.O.; Dias, M.A.; Farre, L.; Araújo, I.; Bittencourt, A.L. The importance of the clinical classification of adult T-cell leukemia/lymphoma (ATLL) in the prognosis. PLOS Neglected Trop. Dis. 2022, 16, e0010807. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, I.; Boscaiu, V.; Moise, A. HLA allele distribution in Romanian people: Clinical significance and utility related to population genetic background. Immunogenetics 2017, 2, 2. [Google Scholar]
- Constantinescu, I.; Boșcaiu, V.; Cianga, P.; Dinu, A.-A.; Gai, E.; Melinte, M.; Moise, A. The frequency of HLA alleles in the Romanian population. Immunogenetics 2016, 68, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Guja, C.; Guja, L.; Nutland, S.; Rance, H.; Sebastien, M.; Todd, J.A.; Ionescu-Tirgoviste, C. Type 1 diabetes genetic susceptibility encoded by HLA DQB1 genes in Romania. J. Cell. Mol. Med. 2004, 8, 249–256. [Google Scholar] [CrossRef]
- Mărunţelu, I.; Cristea, B.M.; Omer, S.; Preda, C.M.; Constantinescu, I. Relevance of HLA gene polymorphisms in Romanian patients with chronic renal insufficiency undergoing renal transplantation. J. Clin. Lab. Anal. 2021, 35, e24075. [Google Scholar] [CrossRef] [PubMed]
- Tălăngescu, A.; Calenic, B.; Mihăilescu, D.F.; Tizu, M.; Marunțelu, I.; Constantinescu, A.E.; Constantinescu, I. Molecular Analysis of HLA Genes in Romanian Patients with Chronic Hepatitis B Virus Infection. Curr. Issues Mol. Biol. 2024, 46, 1064–1077. [Google Scholar] [CrossRef]
- Maruntelu, I.; Preda, C.M.; Sandra, I.; Istratescu, D.; Chifulescu, A.E.; Manuc, M.; Diculescu, M.; Talangescu, A.; Tugui, L.; Manuc, T.; et al. HLA Genotyping in Romanian Adult Patients with Celiac Disease, their First-degree Relatives and Healthy Persons. J. Gastrointest. Liver Dis. 2022, 31, 191–197. [Google Scholar] [CrossRef]
- Mabuchi, T.; Ota, T.; Manabe, Y.; Ikoma, N.; Ozawa, A.; Terui, T.; Ikeda, S.; Inoko, H.; Oka, A. HLA-C*12:02 is a susceptibility factor in late-onset type of psoriasis in Japanese. J. Dermatol. 2014, 41, 697–704. [Google Scholar] [CrossRef]
- Onsun, N.; Pirmit, S.; Ozkaya, D.; Çelik, Ş.; Rezvani, A.; Cengiz, P.; Kekik, C. The HLA-Cw12 Allele Is an Important Susceptibility Allele for Psoriasis and Is Associated with Resistant Psoriasis in the Turkish Population. Sci. World J. 2019, 2019, 7848314. [Google Scholar] [CrossRef]
- Başaran, A.R.; Engin, B.; Oba, M.; Yilmaz, E.; Kutlubay, Z.; Serdaroğlu, S. HLA Type Determination in Patients Diagnosed with Mycosis Fungoides and Sézary Syndrome. Turk. Klin. J. Med. Sci. 2019, 39, 42–47. [Google Scholar]
- Hojjat-Farsangi, M.; Razavi, S.; Sharifian, R.; Shokri, F. Frequency analysis of HLA class I alleles in Iranian patients with progressive and non-progressive chronic lymphocytic leukemia. Hum. Immunol. 2014, 72, 170–175. [Google Scholar] [CrossRef]
- Wang, X.; An, G.; Wang, J.; Zhang, Y.; Li, Q.; Wei, H.; Qiu, L.; Ru, K. The association of HLA-C alleles with multiple myeloma in Chinese patients. Exp. Hematol. Oncol. 2018, 7, 19. [Google Scholar] [CrossRef]
- Svejgaard, A.; Platz, P.; Ryder, L.P.; Nielsen, L.S.; Thomsen, M. HLA and disease associations. Immunol. Rev. 1975, 22, 3–43. [Google Scholar] [CrossRef]
- Gavioli, R.; De Campos-Lima, P.O.; Kurilla, M.G.; Kieff, E.; Klein, G.; Masucci, M.G. Recognition of the Epstein-Barr virus-encoded nuclear antigens EBNA-4 and EBNA-6 by HLA-A11-restricted cytotoxic T lymphocytes: Implications for down-regulation of HLA-A11 in Burkitt lymphoma. Proc. Natl. Acad. Sci. USA 1992, 89, 5862–5866. [Google Scholar] [CrossRef]
- Galleze, A.; Raache, R.; Amroun, H.; Cherif, N.; Fadli, M.; Meçabih, F.; Mecheti, B.; Belhani, M.; Bensenouci, A.; Abbadi, M.C. HLA Polymorphism in Algerian Children with Lymphomas. J. Pediatr. Hematol./Oncol. 2015, 37, e458–e461. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, M.; Pastinen, T.; Sjöroos, M.; Kuokkanen, S.; Ruutiainen, J.; Sumelahti, M.-L.; Reijonen, H.; Salonen, R.; Wikström, J.; Panelius, M.; et al. HLA class II associated risk and protection against multiple sclerosis—A Finnish family study. J. Neuroimmunol. 2001, 122, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Van der Woude, D.; Lie, B.A.; Lundström, E.; Balsa, A.; Feitsma, A.L.; Houwing-Duistermaat, J.J.; Verduijn, W.; Nordang, G.B.; Alfredsson, L.; Klareskog, L. Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: A meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein. Arthritis Rheum. 2010, 62, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Wysocki, T.; Olesińska, M.; Paradowska-Gorycka, A. Current Understanding of an Emerging Role of HLA-DRB1 Gene in Rheumatoid Arthritis–From Research to Clinical Practice. Cells 2020, 9, 1127. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, A.; Roshan, M.R.H.; Kalantar, E.; Eslamifar, A.; Banifazl, M.; Taeb, J.; Aghakhani, A.; Gachkar, L.; Velayati, A.A. Association of human leukocyte antigen polymorphism with outcomes of hepatitis B virus infection. J. Gastroenterol. Hepatol. 2008, 23, 1716–1721. [Google Scholar] [CrossRef] [PubMed]
Total | Gender | Median Age | ||
---|---|---|---|---|
Male (%) | Female (%) | |||
All patients | 38 | 25 | 13 | 38 |
PTCL-NOS | 16 | 11 | 5 | 50 |
Burkitt lymphoma | 5 | 3 | 2 | 36 |
DLBCL | 6 | 4 | 2 | 44 |
ATLL | 4 | 3 | 1 | 48 |
Primary cutaneous γδ T-cell lymphoma | 2 | 0 | 2 | 55 |
Mantle cell lymphoma | 3 | 3 | 0 | 53 |
Mycosis fungoides | 1 | 1 | 0 | 29 |
Sézary syndrome | 1 | 0 | 1 | 50 |
Controls | 50 | 28 | 22 | 34 |
Alleles | Cases n1 = 76 | Controls n2 = 100 | p-Value | OR | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Number | Number | Low | Upper | |||
HLA-A*11:01 | 9 | 2 | 0.010 | 0.169 | 0.038 | 0.759 |
HLA-B*35:02 | 0 | 6 | 0.037 | 0.940 | 0.895 | 0.988 |
HLA-B*81:01 | 0 | 6 | 0.037 | 0.940 | 0.895 | 0.988 |
HLA-C*02:02 | 7 | 0 | 0.002 | 1.101 | 1.025 | 1.183 |
HLA-C*07:02 | 11 | 5 | 0.036 | 0.345 | 0.125 | 0.952 |
HLA-C*12:02 | 7 | 0 | 0.002 | 1.101 | 1.025 | 1.183 |
HLA-DRB1*11:01 | 8 | 2 | 0.021 | 0.190 | 0.042 | 0.869 |
HLA-DRB1*13:02 | 0 | 6 | 0.037 | 0.940 | 0.895 | 0.988 |
Disease | Allele | Cases n1 = 76 | Controls n2 = 100 | p-Value | OR | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Number | Number | Low | Upper | ||||
PTLC-NOS | HLA-A*11:01 | 5 | 2 | 0.009 | 0.128 | 0.026 | 0.628 |
PTLC-NOS | HLA-C*12:02 | 6 | 0 | 0.0001 | 1.231 | 1.042 | 1.454 |
DLBCL | HLA-B*39:01 | 2 | 1 | 0.03 | 0.060 | 0.006 | 0.613 |
Burkitt lymphoma | HLA-C*06:02 | 3 | 7 | 0.047 | 0.233 | 0.071 | 0.764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tizu, M.; Calenic, B.; Maruntelu, I.; Caragea, A.M.; Talangescu, A.; Ursu, L.; Rotarescu, C.; Surugiu, M.; Constantinescu, A.E.; Constantinescu, I. Immunogenetic Background of Chronic Lymphoproliferative Disorders in Romanian Patients—Case Control Study. Med. Sci. 2024, 12, 14. https://doi.org/10.3390/medsci12010014
Tizu M, Calenic B, Maruntelu I, Caragea AM, Talangescu A, Ursu L, Rotarescu C, Surugiu M, Constantinescu AE, Constantinescu I. Immunogenetic Background of Chronic Lymphoproliferative Disorders in Romanian Patients—Case Control Study. Medical Sciences. 2024; 12(1):14. https://doi.org/10.3390/medsci12010014
Chicago/Turabian StyleTizu, Maria, Bogdan Calenic, Ion Maruntelu, Andreea Mirela Caragea, Adriana Talangescu, Larisa Ursu, Corina Rotarescu, Mariana Surugiu, Alexandra Elena Constantinescu, and Ileana Constantinescu. 2024. "Immunogenetic Background of Chronic Lymphoproliferative Disorders in Romanian Patients—Case Control Study" Medical Sciences 12, no. 1: 14. https://doi.org/10.3390/medsci12010014