Serum Creatine Kinase-MB Isoenzyme Activity among Subjects with Uncomplicated Essential Hypertension: Any Sex Differences
Abstract
:1. Introduction
2. Patients and Methods
2.1. Ethical Consideration
2.2. Inclusion and Exclusion Criteria
2.3. Specimen Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Authors Contributions
Conflicts of Interest
References
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Opie, L.H.; Seedat, Y.K. Hypertension in sub-Saharan African populations. Circulation 2005, 112, 3562–3568. [Google Scholar] [CrossRef] [PubMed]
- Seedat, Y.K. Hypertension in developing nations in sub-Saharan Africa. J. Hum. Hypertens. 2000, 14, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Akinkugbe, O.O. Non-communicable diseases in Nigeria, the next epidemics: Nigeria preparedness. Third biennial Abayomi Bamidele memorial lecture. Niger. J. Clin. Pract. 2000, 3, 37–42. [Google Scholar]
- Danaei, G.; Finucane, M.M.; Lin, J.K.; Singh, G.M.; Paciorek, C.J.; Cowan, M.J.; Farzadfar, F.; Stevens, G.A.; Lim, S.S.; Riley, L.M.; et al. National, regional, and global trends in systolic blood pressure since 1980: Systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet 2011, 377, 568–577. [Google Scholar] [CrossRef]
- Mensah, G.A. Epidemiology of stroke and high blood pressure in Africa. Heart 2008, 94, 697–705. [Google Scholar] [CrossRef] [PubMed]
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2008 Revision Population Database; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2006. [Google Scholar]
- Oladapo, O.O.; Salako, L.; Sodiq, O.; Shoyinka, K.; Adedapo, K.; Falase, A.O. A prevalence of cardiometabolic risk factors among a rural Yoruba south-western Nigerian population: A population-based survey. Cardiovasc. J. Afr. 2010, 21, 26–31. [Google Scholar] [PubMed]
- Jones, E.S.; Owen, E.P.; Davidson, J.S.; van Der Merwe, L.; Rayner, B.L. The R563Q mutation of the epithelial sodium channel beta-subunit is associated with hypertension. Cardiovasc. J. Afr. 2010, 22, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Bochud, M.; Elston, R.C.; Maillard, M.; Bovet, P.; Schild, L.; Shamlaye, C.; Burnier, M. Heritability of renal function in hypertensive families of African descent in the Seychelles (Indian Ocean). Kidney Int. 2005, 67, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Peer, N.; Steyn, K.; Dennison, C.R.; Levett, N.S.; Nyo, M.T.; Nel, J.H.; Commerford, P.J.; Fourie, J.M.; Hill, M.N. Determinants of target organ damage in black hypertensive patients attending primary health care services in Cape Town: The Hi-Hi study. Am. J. Hypertens. 2008, 21, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Ogah, O.S.; Rayner, B.L. Recent advances in hypertension in sub-Sahara Africa in: Cardiology in Africa Review series. Heart Online 2013. [Google Scholar] [CrossRef] [PubMed]
- Batubenga, M.M.; Omole, O.B.; Bondo, M.C. Factors associated with blood pressure control among patients attending the outpatients clinic of a South Africa district hospital. Trop. Dr. 2015, 45, 1–5. [Google Scholar]
- Ekore, R.I.; Ajayi, I.O.; Arije, A. Case finding for hypertension in young adult patients attending a missionary hospital in Nigeria. Afr. Health Sci. 2009, 9, 193–199. [Google Scholar] [PubMed]
- Addo, J.; Smeeth, L.; Leon, D.A. Hypertensive target organ damage in Ghanaian civil servants with hypertension. PLoS ONE 2009, 4, e6672. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.; Libhaber, E.; Carrington, M.; Damasceno, A.; Abbasi, H.; Hansen, C.; Wilkinson, D.; Sliwa, K. The clinical consequences and challenges of hypertension in urban-dwelling black Africans: Insights from the Heart of Soweto Study. Int. J. Cardiol. 2009, 146, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Oladapo, O.O.; Salako, L.; Sodiq, L.; Shoyinka, K.; Adedapo, K.; Falase, A.O. Target-organ damage and cardiovascular complications in hypertensive Nigerian Yoruba adults: A cross-sectional study. Cardiovasc. J. Afr. 2012, 23, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Al-Hadi, H.A.; Fox, K.A. Cardiac markers in the early diagnosis and management of patients with acute coronary syndrome. SQU Med. J. 2009, 9, 231–246. [Google Scholar]
- Aeschbacher, S.; Schoen, T.; Bossard, M.; van der, Lely S.; Glattli, K.; Todd, J.; Estis, J.; Risch, M.; Mueller, C.; Risch, L.; et al. Relationship Between High-Sensitivity Cardiac Troponin I and Blood Pressure Among Young and Healthy Adults. Am. J. Hypertens. 2014, 28, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Bjurman, C.; Petzold, M.; Venge, P.; Farbemo, J.; Fu, M.L.; Hammarsten, O. High sensitive cardiac troponin, NT-pro BNp, hFABP and copeptin levels in relation to glomerular filtration rates and a medical record of cardiovascular disease. Clin. Biochem. 2015, 48, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Welsch, T.M.; Kukes, G.D.; Sandweiss, L.M. Differences of creatine kinase MB and cardiac troponin I concentrations in normal and diseased human myocardium. Ann. Clin. Lab. Sci. 2002, 32, 44–49. [Google Scholar]
- Emokpae, M.A.; Abdu, A. Serum Uric acid levels among Nigerians with Essential Hypertension. Niger. J. Physiol. Sci. 2013, 28, 41–44. [Google Scholar] [PubMed]
- Mels, C.M.C.; Zyl, C.V.; Huisman, H.W. Cardiovascular function is not associated with creatine kinase activity in a black African population: The SABPA study. BMC Cardiovasc. Disord. 2016, 16, 134. [Google Scholar] [CrossRef] [PubMed]
- Brewster, L.M.; Clark, J.F.; van Montfrans, G.A. Is greater tissue activity of creatine kinase the genetic factor increasing hypertension risk in black people of sub-Saharan African descent? J. Hypertens. 2000, 18, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Apple, F.S.; Quist, H.E.; Doyle, P.J.; Otto, A.P.; Murakami, M.M. Plasma 99th Percentile reference limits for cardiac troponin and creatine kinase MB mass for use with European Society of Cardiology/American College of Cardiology Consensus Recommendations. Clin. Chem. 2003, 49, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Delanghe, J.R.; De Mol, A.M.; De Buyzere, M.L.; DeScheerder, I.K.; Weime, R.J. Mass concentration andactivity concentration of creatine kinase isoenzyme MB compared in serum after acute myocardialinfarction. Clin. Chem. 1990, 36, 149–153. [Google Scholar] [PubMed]
- Alpert, J.S.; Thygesen, K. Myocardial Infarction Redefined—A consensus document of the joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of Myocardial Infarction. Eur. Heart J. 2000, 21, 1502–1513. [Google Scholar]
- Friedewald, W.T.; Levy, R.L.; Fredrickson, D.S. Estimation of concentration of low density lipoprotein cholesterol in plasma without use of preparative ultracentrifuge. Clin. Chem. 1972, 10, 499–502. [Google Scholar]
- National Institute of Health. Sex Differences and Implications for Translational Neuroscience Research: Workshop Summary. National Academy of Sciences, 2011. Available online: http://sexandgendercourse.od.nih.gov (accessed on 6 February 2017).
- Ahmad, M.; Arifi, A.A.; van Onselen, R.; Alkodami, A.A.; Zaibag, M.; Khaldi, A.A.; Najm, H.K. Gender differences in the surgical management and early clinical outcome of coronary artery disease: Single centre experience. J. Saudi Heart Assoc. 2010, 22, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Flather, M.D.; Devlin, G.; Brieger, D.; Gurfinkel, E.P.; Steg, P.G.; Fitzgerald, G.; Jackson, E.A.; Eagle, K.A.; Global Registry of Acute Coronary Events investigators. Sex-related differences in the presentation, treatment and outcomes among patients with acute coronary syndromes: The Global Registry of Acute Coronary Events. Heart 2009, 95, 20–26. [Google Scholar] [CrossRef] [PubMed]
- El-Menyar, A.A.; Al Suwaidi, J. Impact of gender in patients with acute coronary syndrome. Expert Rev. Cardiovasc. Ther. 2009, 7, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Vaccarino, V.; Rathore, S.S.; Wenger, N.K.; National Registry of Myocardial Infarction Investigators. Sex and racial differences in the management of acute myocardial infarction, 1994 through 2002. N. Engl. J. Med. 2005, 353, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.A.; Poole-Wilson, P.A.; Henderson, R.A.; Clayton, T.C.; Chamberlan, D.A.; Shaw, T.R.; Wheatley, D.J.; Pocock, S.J.; Randomized Intervention Trial of unstable Angina Investigators. Interventional versus conservative treatment for patients with unstable angina or non-ST-elevation myocardial infarction: The British Heart Foundation RITA 3 randomized trial. Randomized Intervention Trial of unstable Angina. Lancet 2002, 360, 743–751. [Google Scholar] [PubMed]
- Lagerqvist, B.; Safstrom, K.; Stahle, E.; Wallentin, L.; Swahn, E.; FRISC II Study Group Investigators. Is early invasive treatment of unstable coronary artery disease equally effective for both women and men? J. Am. Coll. Cardiol. 2001, 38, 41–48. [Google Scholar] [CrossRef]
- Assiri, A.S. Gender differences in Clinical presentation and management of patients with acute coronary syndrome in South West of Saudi Arabia. J. Saudi Heart Assoc. 2011, 23, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Pancholy, S.B.; Shantha, G.P.S.; Patel, T.; Cheskin, L. Sex differences in short-term and long-term all-cause mortality among patients with ST-Segment elevation myocardial infarction treated by primary percutaneous intervention. A meta analysis. JAMA Intern. Med. 2014, 174, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Strunz, C.M.C.; Araki, L.M.; Nogueira, A.A.R.; Mansur, A.P. Gender differences in serum creatine kinase-MB mass levels in healthy Brazilian subjects. Braz. J. Med. Biol. Res. 2011, 44, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, S.H.; Lilleng, H.; Bekkelund, S.I. Creatine Kinase as Predictor of Blood Pressure and Hypertension. Is It All About Body Mass Index? A Follow-up Study of 250 Patients. J. Clin. Hypertens. 2014, 16, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Amin, E.A.; Hassan, S.A.; Ali, S.T. ACE1 Relation with cardiac enzyme creatine-kinase-MB levels in hypertensive patients. Iraqi J. Comm. Med. 2009, 22, 260–263. [Google Scholar]
- Alexander, J.H.; Sparapani, R.A.; Mahaffey, K.W.; Deckers, J.W.; Newby, L.K.; Ohman, E.M.; Corbalán, R.; Chierchia, S.L.; Boland, J.B.; Simoons, M.L.; et al. Association between minor elevations of creatine kinase-MB level and mortality in patients with acute coronary syndromes without ST-Segment elevation. PURSUIT Steering Committee. Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy. JAMA 2000, 283, 347–353. [Google Scholar] [PubMed]
- Pettersson, T.; Ohlsson, O.; Tryding, N. Increased CK-MB (mass concentration) in patients without traditional evidence of acute myocardial infarction. A risk indicator of coronary death. Eur. Heart J. 1992, 13, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- White, R.D.; Grande, P.; Califf, L.; Palmeri, S.T.; Califf, R.M.; Wanger, G.S. Diagnostic and prognostic significance of minimally elevated creatine kinase-MB in suspected acute myocardial infarction. Am. J.Cardiol. 1985, 55, 1478–1484. [Google Scholar] [CrossRef]
- Brewster, L.M.; Mairuhu, G.; Strurk, A.; van Montfrans, G.A. Distribution of creatine kinase in the general population: Implications for Statin therapy. Am. Heart J. 2007, 154, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Pickering, T.G. Muscular hypertension: Is creatine kinase responsible for hypertension in blacks? J. Clin. Hypertens. 2008, 10, 73–76. [Google Scholar] [CrossRef]
- Gledhill, R.F.; Van de Merwe, C.A.; Greyling, M.; Van Niekerk, M.M. Race-gender differences in serum creatine kinase activity: A study among South Africans. J. Neurol. Neurosurg. Psychiatry 1988, 51, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, H.Y. Factors affecting serum creatine phosphokinase levels in the general population: The role of race, activity and age. Clin. Chim. Acta 1971, 33, 165–172. [Google Scholar] [CrossRef]
- Van Steirtegham, A.C.; Robertson, E.A.; Zweig, M.H. Distribution of serum concentrations of creatine kinase MM and BB isoenzymes measured by radioimmunoassay. Clin. Chim. Acta 1979, 93, 25–28. [Google Scholar]
- Wong, E.T.; Cobb, C.; Umehara, M.; Wolff, G.; Haywood, L.; Greenberg, T.; Shaw, S., Jr. Heterogeneity of serum creatine kinase activity among racial and gender groups of the population. Am. J. Clin. Pathol. 1983, 79, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.G.; Gruemer, H.D.; Chinchilli, V.M. Upper reference limit for creatine kinase. Clin. Chem. 1985, 31, 158. [Google Scholar]
- Black, H.R.; Quallich, H.; Gareleck, C.B. Racial differences in serum creatine kinase levels. Am. J. Med. 1986, 81, 479–487. [Google Scholar] [CrossRef]
- Griffiths, P.D. Serum levels of ATP: Creatine phosphotransferase (creatine kinase). The normal range and effect of muscular activity. Clin. Chim. Acta 1966, 13, 413–420. [Google Scholar] [CrossRef]
- Norton, J.P.; Clarkson, P.M.; Graves, J.E.; Lichfield, P.; Kirwan, J. Serum creatine kinase activity and body composition in males and females. Hum. Biol. 1985, 57, 591–598. [Google Scholar] [PubMed]
- Cook, J.C.; Wong, E.; Haywood, J. Creatine kinase: Race-gender differences in patients hospitalized for suspected myocardial infarction. J. Natl. Med. Assoc. 1990, 82, 249–254. [Google Scholar] [PubMed]
- Brewster, L.M.; Mairuhu, G.; Bindraban, N.R.; Koopmans, R.P.; Clark, J.F.; van Montfrans, G.A. Creatine kinase activity is associated with blood pressure. Circulation 2006, 114, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Mueller, H.S.; Forman, S.A.; Menegus, M.A.; Cohen, L.S.; Knatterud, G.L.; Braunwald, E. Prognostic significance of nonfatal reinfarction during 3-year follow-up (TIMI) phase II clinical trial. J. Am. Coll.Cardiol. 1995, 26, 900–907. [Google Scholar] [CrossRef]
- Hudson, M.P.; Granger, C.B.; Pleper, K.S. Reinfarction after thrombolytic therapy: Experience from the GUSTO-I and II trials. J. Am. Coll. Cardiol. 1999, 33, 325A. [Google Scholar]
- Boersma, E.; Pieper, K.S.; Steyerberg, E.W.; Wilcox, R.G.; Chang, W.C.; Lee, K.L.; Akkerhuis, K.M.; Harrington, R.A.; Deckers, J.W.; Armstrong, P.W.; et al. Predictors of outcome in patients with acute coronary syndromes without persistent ST-Segment elevation: Results from an International Trials of 9461 patients. The PURSUIT Investigators. Circulation 2000, 101, 2557–2567. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Williamson, J.R.; Roberts, R.; Clark, R.E.; Sobel, B.E. The association of increased plasma MB-CPK activity and irreversible ischemic myocardial injury in dog. Circulation 1976, 54, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Morgan, J.; Gustafson, G. Enzyme and isoenzyme analysis in the coronary care unit. In Principles and Practice of Acute Cardiac Care; Gupta, D.S., Ed.; Year Book: Chicago, IL, USA, 1984; pp. 383–403. [Google Scholar]
- Bittl, J.A.; Weisfeld, M.L.; Jacobus, W.E. Creatine kinase of heart mitochondria: The progressive loss of enzyme activity during in vivo ischemia and its correlation to depressed myocardial function. J. Biol. Chem. 1985, 260, 208–214. [Google Scholar] [PubMed]
- Marmor, A.; Alpan, G.; Keider, S.; Grendaier, E.; Palant, A. The MB isoenzyme of creatine kinase as an indicator of severity of myocardial ischemia. Lancet. 1978, 2, 812–814. [Google Scholar] [CrossRef]
- Hong, R.A.; Licht, J.D.; Wei, J.Y.; Heller, G.V.; Blaustein, A.S.; Pastemak, P.C. Elevated CK-MB with normal total creatine kinase in suspected myocardial infarction. Am. Heart J. 1986, 111, 1041–1047. [Google Scholar] [CrossRef]
- Yusuf, S.; Collins, R.; Lin, L.; Sterry, H.; Pearson, M.; Sleight, P. Significance of elevated MB isoenzyme with normal creatine kinase in acute myocardial infarction. Am. J. Cardiol. 1987, 59, 245–250. [Google Scholar] [CrossRef]
- Clyne, C.A.; Mederiros, J.L.; Marton, K.I. The prognostic significance of immunoradiometric CK-MB assay (IRMA) diagnosis of myocardial infarction in patients with low total creatine kinas and elevated MB-isoenzyme. Am. Heart J. 1989, 118, 901–906. [Google Scholar] [CrossRef]
- Savonitto, S.; Granger, C.B.; Ardissono, D. Even minor elevations of creatine kinase predict increased risk of cardiac events in acute coronary syndromes without ST-Segment elevation. J. Am. Coll. Cardiol. 1999, 33, 346A. [Google Scholar]
- Jevric-Causevic, A.; Malenica, M.; Dujic, T. Creatine kinase activity in patients with Diabetes Mellitus type 1 and type II. Bosn. Basic Med. Sci. 2006, 6, 5–9. [Google Scholar]
- Calliff, R.M.; Abdelmeguid, A.E.; Kuntz, R.E.; Popma, J.J.; Davidson, C.J.; Cohen, E.A.; Kleiman, N.S.; Mahaffey, K.W.; Topol, E.J.; Pepine, C.J.; et al. Myonecrosis after revascularization procedures. J. Am. Coll. Cardiol. 1988, 31, 241–251. [Google Scholar] [CrossRef]
- Adgey, A.A.J.; Mathew, T.P.; Harbinson, M.T. Periprocedural creatine kinase-MB elevations: Long-term impact and clinical implications. Clin. Cardiol. 1999, 22, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.A.; Lincoff, A.M.; Califf, R.M.; Holmes, D.R., Jr.; Berdan, L.G.; O’Hanesian, M.A.; Keeler, G.P.; Garratt, K.N.; Ohman, E.M.; Mark, D.B.; et al. Characteristics and consequences of myocardial infarction after percutaneous coronary intervention: insights from the Coronary Angioplasty Versus Excisional Atherectomy Trial (CAVEAT). J. Am. Coll. Cardiol. 1995, 25, 1693–1699. [Google Scholar] [CrossRef]
- Abdelmeguid, A.E.; Topol, E.J.; Whitlow, P.L.; Sapp, S.K.; Ellis, S.G. Significance of mild transient release of creatine kinase MB fraction after percutaneous coronary interventions. Circulation 1996, 94, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.Q.; Dandson, C.J.; Meyers, S.N.; Tauke, J.T.; Parker, M.A.; Bonow, R.O. Prognostic implication of creatine kinase elevation following elective coronary interventions. JAMA 1997, 277, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Tardiff, B.E.; Califf, R.M.; Tcheng, J.E.; Lincoff, A.M.; Sigmon, K.N.; Harrington, R.A.; Mahaffey, K.W.; Ohman, E.M.; Teirstein, P.S.; Blankenship, J.C.; et al. Clinical outcomes after detection of elevated cardiac enzymes in patients undergoing percutaneous intervention. IMPACT-II Investigators. Integrilin (eptifibatide) to Minimize Platelet Aggregation and Coronary Thrombosis-II. J. Am. Coll. Cardiol. 1999, 33, 88–96. [Google Scholar] [PubMed]
- Simoons, M.L.; van Den Brand, M.; Lincoff, M.; Harrington, R.; van der Wieken, R. Minimal myocardial damage during coronary interventions associated with impaired outcome. Eur. Heart J. 1999, 33, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Cutlip, D.E.; Baim, D.S.; Senerchia, C. Clinical consequences of myocardial infarction following balloon angioplasty or directional coronary atherectomy: Acute and one-year results of the Balloon vs Optimal atherectomy Trial(BOAT). J. Am. Coll. Cardiol. 1997, 29, 187A. [Google Scholar]
- Stone, G.W.; Mehran, R.; Lansky, A.J.; Dangas, G.; Kornowski, R.; Leon, M.B.; et al. Long-term influence of CPK-MB elevation on mortality after percutaneous intervention: Analysis of 7359 patients. J. Am. Coll. Cardiol. 1999, 33, 80A. [Google Scholar]
- Benneth, P.N.; Brown, M.J. Angiotensin Converting Enzyme (ACE) Inhibitors. Clinical Pharmacology Textbook, 9th ed.; Churchill Livingstone: Edinburgh, UK, 2005; pp. 467–469. [Google Scholar]
- Edelman, B.; Koch, T.R.; Raab, C. Evaluation of the new Beckman electrophoretic method for CK-MB: Comparison with ion exchange chromatography and investigation of a reference outpatient population. Clin. Biochem. 1981, 14, 39–44. [Google Scholar] [CrossRef]
- Brewster, L.M.; van Bree, S.; de Visser, M.; van Montfrans, G.A. Hypertension in patients with idiopathic hyperCKemia. J. Hypertens. 2004, 22, S253. [Google Scholar] [CrossRef]
- Horan, L.G.; Flowers, N.C.; Johnson, J.C. Significance of the diagnostic Q wave of myocardial infarction. Circulation 1971, 43, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Grande, P.; Christiansen, C.; Pedersen, A.; Christensen, M.S. Optimal diagnosis in myocardial infarction. A cost-effectiveness study. Circulation 1980, 61, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Ljungdahl, L.; Gerhardt, W.; Hofvendahl, S. Serum creatine kinase B subunit activity in diagnosis of acute myocardial infarction. Br. Heart J. 1980, 43, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Brewster, L.M.; Taherzadeh, Z.; Clark, J.F.; van Bavel, E.; Wolf, H.; van Montfrans, G.A. Contraction in human resistance arteries depends on creatine kinase. J. Hypertens. 2006, 24, S403. [Google Scholar]
- Neubauer, S. The failing heart: An engine out of fuel. N. Engl. J. Med. 2007, 356, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Delanghe, J.R.; De Mol, A.M.; De Buyzere, M.L.; DeScheerder, I.K.; Weime, R.J. Mass concentration and activity concentration of creatine kinase isoenzyme MB compared in serum after acute myocardial infarction. Clin. Chem. 1990, 36, 149–153. [Google Scholar] [PubMed]
Measured Parameters | Male hypertensive Subjects (n = 140) | Female Hypertensive Subjects (n = 100) | p-Value | Male Normotensive Subjects (n = 50) | Female Normotensive Subjects (n = 50) | p-Value |
---|---|---|---|---|---|---|
Age (Years) | 48.3 ± 1.15 (34–62) | 44.7 ± 1.7 (28–61) | 0.05 | 41.7 ± 1.70 (29–54) | 40.0 ± 1.40 (28–61) | 0.50 |
SBP (mmHg) | 148.02 ± 2.28 (121–174) | 152.16 ± 2.33 (129–175) | 0.6 | 121.17 ± 2.10 (106–136) | 118.25 ± 2.61 (102–136) | 0.5 |
DBP(mmHg) | 95.32 ± 1.70 (75–115) | 96.23 ± 1.12 (85–107) | 0.8 | 80.50 ± 2.10 (65–90) | 71.61 ± 2.16 (56–86) | 0.001 |
cTnI (ng/mL) | 0.074 ± 0.001 (0.062–0.086) | 0.081 ± 0.001 (0.071–0.90) | 0.001 | 0.001 ± 0.00 | 0.001 ± 0.00 | 1.0 |
CK-MB (U/L) | 48.6 ± 1.71 (28.6–68.2) | 56.2 ± 1.50 (41–71) | 0.001 | 15.5 ± 0.20 (14.0–16.9) | 14.0 ± 0.25 (12.2–15.8) | 0.001 |
Total Cholesterol (mmol/L) | 5.45 ± 0.13 (3.92–6.98) | 5.83 ± 0.12 (4.61–7.02) | 0.01 | 3.94 ± 0.12 (3.09–4.79) | 4.10 ± 0.10 (3.42–4.85) | 0.1 |
Triglycerides (mmol/L) | 1.63 ± 0.03 (1.28–1.98) | 1.30 ± 0.01 (1.20–1.40) | 0.02 | 0.89 ± 0.04 (0.60–1.17) | 0.87 ± 0.04 (0.60–1.15) | 0.6 |
HDL-c (mmol/L) | 1.16 ± 0.04 (0.70–1.63) | 1.30 ± 0.04 (0.92–1.70) | 0.001 | 1.21 ± 0.05 (0.85–1.56) | 1.36 ± 0.05 (1.00–1.71) | 0.005 |
LDL-c (mmol/L) | 3.38 ± 0.02 (3.14–3.62) | 3.78 ± 0.12 (2.58–4.98) | 0.002 | 2.30 ± 0.10 (1.59–3.00) | 2.40 ± 0.07 (1.90–2.89) | 0.2 |
Parameters | Hypertensive Subjects (n = 240) | Normotensive Subjects (n = 100) | p-Values |
---|---|---|---|
CK-MB (U/L) | 51.6 ± 3.0 (45–58) | 15.0 ± 0.75(13–16) | 0.001 |
cTnI(ng/mL) | 0.077 ± 0.001(0.055–0.099) | 0.001 ± 0.00(0–0.001) | 0.001 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emokpae, M.A.; Nwagbara, G.O.N.A. Serum Creatine Kinase-MB Isoenzyme Activity among Subjects with Uncomplicated Essential Hypertension: Any Sex Differences. Med. Sci. 2017, 5, 8. https://doi.org/10.3390/medsci5020008
Emokpae MA, Nwagbara GONA. Serum Creatine Kinase-MB Isoenzyme Activity among Subjects with Uncomplicated Essential Hypertension: Any Sex Differences. Medical Sciences. 2017; 5(2):8. https://doi.org/10.3390/medsci5020008
Chicago/Turabian StyleEmokpae, Mathias Abiodun, and Goodluck O. N. A. Nwagbara. 2017. "Serum Creatine Kinase-MB Isoenzyme Activity among Subjects with Uncomplicated Essential Hypertension: Any Sex Differences" Medical Sciences 5, no. 2: 8. https://doi.org/10.3390/medsci5020008
APA StyleEmokpae, M. A., & Nwagbara, G. O. N. A. (2017). Serum Creatine Kinase-MB Isoenzyme Activity among Subjects with Uncomplicated Essential Hypertension: Any Sex Differences. Medical Sciences, 5(2), 8. https://doi.org/10.3390/medsci5020008