Characterization of Landfill Leachates and Sediments in Major Cities of Indochina Peninsular Countries—Heavy Metal Partitioning in Municipal Solid Waste Leachate
Abstract
:1. Introduction
2. Study Sites and Methodologies
2.1. Site History and Characteristics
2.1.1. Nonthaburi Landfill
2.1.2. Dangkor Landfill
2.1.3. KM-32 Landfill
2.1.4. The Similarity and Differences of the Sites
2.2. Solid Waste Characteristics
2.3. Sampling Period and Location
2.4. Measurements and Analysis
2.4.1. in-Situ Measurement
2.4.2. Laboratory Measurement
Preparation and Measurement of the Liquid Samples
Preparation and Measurement of Unfiltered Leachate and Sediment Samples
3. Results and Discussions
3.1. Leachate Characterization
3.1.1. Basic and Biological Parameters
3.1.2. Suspended Solids Composition of Leachate
3.1.3. Dissolved Heavy Metals in Liquid Part of Leachate
3.1.4. Total Heavy Metal Concentration of Leachate
3.1.5. Heavy Metal Contents of Suspended Solids
3.1.6. Comparison of Leachate Quality with Other Sites
3.2. Sediment Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Note
- Pariatamby, A.; Tanaka, M. MSW Management in Asia and the Pacific Islands-Challenge and Strategic Solution; Environmental Science and Engineering, Springer: Singapore, 2014. [Google Scholar]
- Ziadat, A.H.; Mott, H. Assessing solid waste recycling opportunities for closed campuses. Manag. Environ. Qual. 2005. [Google Scholar] [CrossRef]
- El-Fadel, M.; Findikakis, A.N.; Leckie, J.O. Environmental impacts of solid waste landfilling. J. Environ. Manag. 1997, 50, 1–25. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Ole, H.; Lizzi, A.; Jette, B.H. Leachate emission from landfill. In Final Report Swedish Environmental Protection Agency; Naturvårdsverket: Stockholm, Sweden, 2000; ISSN 1102-6944. Available online: https://www.naturvardsverket.se/Documents/publikationer/afr-r-265-se.pdf?pid=4394 (accessed on 10 October 2016).
- Kanmani, S.; Gandhimathi, R. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 2013, 3, 193–205. [Google Scholar] [CrossRef]
- Slack, R.J.; Gronow, J.R.; Voulvoulis, N. Household hazardous waste in municipal landfills: Contaminants in leachate. Sci. Total Environ. 2005, 337, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Variability.002. of Parameters Involved in Leachate Pollution Index and Determination of LPI from Four Landfills in Malaysia. Int. J. Chem. Eng. 2010, 2010, 6. [Google Scholar] [CrossRef]
- Yarlagadda, P.S.; Matsumoto, M.R.; VanBenschoten, J.E.; Kathuria, A. Characteristics of heavy metals in contaminated soils. J. Environ. Eng. 1995, 121, 276–286. [Google Scholar] [CrossRef]
- Waheed, S.; Siddique, N.; Hamid, Q.; Chaudhry, M.M. Assessing soil pollution from a municipal waste dump in Islamabad, Pakistan: A study by INAA and AAS. J. Radioanal. Nucl. Chem. 2010, 285, 723–732. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Nwajei, G.E.; Ogala, J.E.; Overah, C.L. Determination of trace metal concentrations in soil profiles of municipal waste dumps in Nigeria. Environ. Geochem. Health 2010, 32, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Bretzel, F.C.; Calderisi, M. Contribution of a municipal solid waste incinerator to the trace metals in the surrounding soil. Environ. Monit. Assess. 2011, 182, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Rizo, O.D.; Merlo, M.H.; Castillo, F.E.; Lopez, J.A.O. Assessment of metal pollution in soils from a former Havana (Cuba) solid waste open dump. Bull. Environ. Contam. Toxicol. 2012, 88, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Looser, M.O.; Parriaux, A.; Bensimon, M. Landfill underground pollution detection and characterization using inorganic traces. Water Res. 1999, 33, 3609–3616. [Google Scholar] [CrossRef]
- Abu-Rukah, Y.; Al-Kofahi, O. The assessment of the effect of landfill leachate on groundwater quality—A case study: El-Akader Landfill Site–North Jordan. Arid Environ. 2001, 49, 615–630. [Google Scholar] [CrossRef]
- Saarela, J. Pilot investigations of surface parts of three closed landfills and factors affecting them. Environ. Monit. Assess. 2003, 84, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Aderemi, A.O.; Oriaku, A.V.; Adewumi, G.A.; Otitoloju, A.A. Assessment of groundwater contamination by leachate near a municipal solid waste landfill. Afr. J. Environ. Sci. Technol. 2011, 5, 933–940. [Google Scholar] [CrossRef]
- Magda, M.A.; Gaber, I.A. Impact of landfill leachate on the groundwater quality: A case study in Egypt. J. Adv. Res. 2015, 6, 579–586. [Google Scholar] [CrossRef]
- World Weather and Climate Information. Available online: https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine, Bangkok, Thailand (accessed on 15 December 2016).
- Japan International Cooperation Agency (JICA). The Study on Solid Waste management in the Municipality of Phnom Penh, Kingdom of Cambodia; JICA: Tokyo, Japan, 2005.
- Miyano, N. Study on Environmental assessment of groundwater and surface water in landfill, Nonthaburi Province, Thailand. Master’s Thesis, Department of Civil Engineering, Tokyo Institute of Technology, March 2016. [Google Scholar]
- United Nations Environment Programme. Newsletter and Technical Publication for Landfill, Classification (6.3). Available online: http://www.unep.or.jp/Ietc/ESTdir/Pub/MSW/SP/SP6/SP6_3.asp (accessed on 15 December 2017).
- Irfa’i; Yanuwiadi, B.; Suyadi. Landfills Leachates Quality and Quantity in Tidal Area in Banjarmasin Landfills, Indonesia. Resour. Environ. 2016, 6, 23–27. [Google Scholar] [CrossRef]
- Kathirvale, S.; Yunus, M.N.M.; Sopian, K.; Samsuddin, A.H. Energy potential from municipal solid waste in Malaysia. Renew. Energy 2003, 29, 559–567. [Google Scholar] [CrossRef]
- Nguyen, N.U.; Schnitzer, H. Sustainable solutions for solid waste management in Southeast Asian countries. Waste Manag. 2009, 29, 1982–1995. [Google Scholar] [CrossRef]
- Verma, R.L.; Borongana, G.; Memonb, M. Municipal Solid Waste Management in Ho Chi Minh City, Viet Nam, Current Practices and Future Recommendation. Procedia Environ. Sci. 2016, 35, 127–139. [Google Scholar] [CrossRef]
- Feniel, P.; Culot, M. Household solid waste generation and characteristics in Cape Haitian city, Republic of Haiti. Resour. Conserv. Recycl. 2009, 54, 73–78. [Google Scholar] [CrossRef]
- Sujauddin, M.; Huda, S.M.S.; Rafiqul-Hoque, A.T.M. Household solid waste characteristics and management in Chittagong, Bangladesh Waste. Management 2008, 28, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Sha’Ato, R.; Aboho, S.Y.; Oketunde, F.O.; Eneji, I.S.; Unazi, G.; Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria. Waste Manag. 2007, 27, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Waste Composition survey. Site Engineer Presentation Report of Nonthaburi Landfill during our site visit and interview.
- Siengheng, H. Phnom Penh Solid Waste Survey Project Report; Dangkor landfill: Battambang, Cambodia, 2015. [Google Scholar]
- JCM/BOCM Feasibility Study Report; KM-32 landfill: Vientiane, Laos, 2012.
- ASTM D 2974-87 Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soil. Available online: http://gsrpdf.lib.msu.edu/ticpdf.py?file=/1990s/1993/930331.pdf (accessed on 27 April 2018).
- Ziyang, L.; Youcai, Z.; Tao, Y.; Yu, S.; Huili, C.; Nanwen, Z.; Renhua, H. Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages. Sci. Total. Environ. 2009, 407, 3385–3391. [Google Scholar] [CrossRef] [PubMed]
- Salem, Z.; Hamouri, K.; Djemaa, R.; Allia, K. Evaluation of landfill leachate pollution and treatment. Desalination 2008, 220, 108–114. [Google Scholar] [CrossRef]
- Aziz, S.Q.; Aziz, H.A.; Bashir, M.J.K.; Mojiri, A. Assessment of various tropical municipal landfill leachate characteristics and treatment opportunities. Glob. NEST J. 2015, 17, 439–450. [Google Scholar]
- Aziz, S.Q.; Aziz, H.A.; Bashir, M.J.K.; Yusoff, M.S.; Umar, M. Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. J. Environ. Manag. 2010, 91, 2608–2614. [Google Scholar] [CrossRef] [PubMed]
- Ghafari, S.; Aziz, H.A.; Bashir, M.J.K. The use of poly-aluminum chloride and alum for the treatment of partially stabilized leachate: A comparative study. Desalination 2010, 257, 110–116. [Google Scholar] [CrossRef]
- Aghamohammadi, N.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A.; Nasrollahzadeh, S.H.; Ghafari, S. Performance of a powdered activated carbon (PAC) augmented activated sludge process treating semi-aerobic leachate. Int. J. Environ. Res. 2007, 1, 96–103. [Google Scholar]
- Agatha, A.N. Water quality and micro-organisms of leachate-contaminated pond. Am. J. Sci. Ind. Res. 2011, 2, 205–208. [Google Scholar] [CrossRef]
- Bashir, M.J.K.; Aziz, H.A.; Yusoff, M.S.; Adlan, M.N. Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 2010, 254, 154–161. [Google Scholar] [CrossRef]
- Mor, S.; Ravindra, K.; Dahiya, R.P.; Chandra, A. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ. Monit. Assess. 2006, 118, 435–456. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, B.; Saini, M.S.; Jha, M.K. Effect of age and seasonal variations on leachate characteristics of municipal solid waste landfill. Int. J. Res. Eng. Technol. 2013. [Google Scholar] [CrossRef]
- Industrial Estate Authority of Thailand (IEAT). Industrial Effluent Standard for Industrial Plants and Industrial Estates; IEAT: Bangkok, Thailand, 2016.
- Ministry of Environment, Kingdom of Cambodia, MOEC. Sub-Decree on Water Pollution Control, Kingdom of Cambodia; MOEC: Phnom Penh, Cambodia, 1999. [Google Scholar]
- Ministry of Natural Resources and Environment, Laos, MONREL. National Environmental Standard of Laos; MONREL: Vientiane, Laos, 2009.
- Ministry of the Environment, Government of Japan. Uniform National Effluent Standards; Ministry of the Environment: Tokyo, Japan, 2015; latest update version.
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Zhong, Q.; Li, D.; Tao, Y.; Wang, X.; He, X.; Zhang, J.; Zhang, J.; Guo, W.; Wang, L. Nitrogen removal from landfill leachate via ex-situ nitrification and sequential in situ denitrification. Waste Manag. 2009, 29, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Canziani, R.; Emondi, V.; Garavaglia, M.; Malpei, F.; Pasinetti, E.; Buttiglieri, G. Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. J. Memb. Sci. 2006, 286, 202–212. [Google Scholar] [CrossRef]
- Weiner, R.F.; Matthews, R. Environmental Engineering, 4th ed.; Butterworth Heinemann: Oxford, UK, 2003. [Google Scholar]
- Aziz, H.A.; Alias, S.; Adlan, M.N.; Asaari, F.A.H.; Zahari, M.S.M. Colour removal from landfill leachate by coagulation and flocculation processes. Bioresour. Technol. 2007, 98, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Tanchuling, M.N.; Cayabyab, I.D.; Takemura, J. Investigation leachate contamination near Quezon City controlled dumping facility (QCCDF) using chloride ion as indicator. ASEAN Eng. J. 2015, 4, 112–125. [Google Scholar]
- Bashir, M.J.K.; Isa, M.H.; Kutty, S.R.M.; Awang, Z.B.; Aziz, H.A.; Mohajeri, S.; Farooqi, I.H. Landfill leachate treatment by electrochemical oxidation. Waste Manag. 2009, 29, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Parth, V.; Murthy, N.N.; Saxena, P.R. Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city, India: Natural and anthropogenic implications. J. Environ. Res. Manag. 2011, 2, 27–34. [Google Scholar]
- Moturi, M.C.Z.; Rawat, M.; Subramanian, V. Distribution and fractionation of heavy metals in solid waste from selected sites in the industrial belt of Delhi. Environ. Monit. Assess. 2004, 95, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Elliott, H.A.; Liberati, M.R.; Huang, C.P. Competitive adsorption of heavy metals by soils. J. Environ. Qual. 1986, 15, 214–219. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusmartini1, E.S.; Setiabudidaya, D.; Ridwan; Marsi; Faizal. Characteristics of Leachate at Sukawinatan Landfill, Palembang, Indonesia. J. Phys. Conf. Ser. 2013, 423, 012048. [Google Scholar] [CrossRef] [Green Version]
- Kusakabe, O.; Aramrak, T.; Sigua, G.R.; Takemura, J.; Diola, B.N.; Yodsudjai, W. Sustainable Civil Engineering. Harmonizing Infrastructure Development with the Environment; University of the Philippines: Diliman, Philippines, 2009. [Google Scholar]
- Fan, H.J.; Shu, H.Y.; Yang, H.S.; Wen-Ching Chen, W.C. Characteristics of landfill leachates in central Taiwan. Sci. Total Environ. 2006, 361, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Parizanganeh, A. Grain size effect on trace metals in contaminated sediments along the Iranian Coast of Caspian Sea. In Proceedings of the Taal 2007: The 12th Wor Lake Conference, Jaipur, India, 28 October–2 November 2007; pp. 329–336. [Google Scholar]
- Soil Contamination Countermeasures Act–Soil Environment Management Division, Ministry of the Environment, Government of Japan. 2007. Available online: http://www.env.go.jp/en/water/soil/contami_cm.pdf (accessed on 15 December 2017).
- Olubunmi, F.E.; Olorunsola, O.E. Evaluation of the status of heavy metal pollution of sediment of Agbabu Bitumen deposit area, Nigeria. Eur. J. Sci. Res. 2010, 41, 373–382. [Google Scholar]
- Bradl, H.B. Heavy Metals in Environment: Origin, Interaction and Remediation; Elsevier: New York, NY, USA, 2005; pp. 1047–1609. [Google Scholar]
- SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure (accessed on 15 December 2017).
Items | Nonthaburi landfill, Thailand | Dangkor Landfill Cambodia | KM-32 Landfill Laos |
---|---|---|---|
Coordination | 14°0′58″ N and 100°18′53″ E | 11°28′59″ N and 104°53′11″ E | 18°4′48″ N and 102°50′49″ E |
Year of operation | 1982 | 2009 | 2008 |
Waste received (tons/d) | 1300 | 1800 | 500 |
Total landfill size (ha) | 77 | 31.4 | 100 |
Elevation (MSL—mean sea level) | 5 | 11 | 190 |
Area of closed dumping pit (ha) | 34 | 11 | 24 |
Leachate pond area (ha) | 28 | 1 | 12 |
Active area (ha) | 20 | 5.5 | 8 |
Excavated/future area (ha) | 0 | 3.8 | 12 |
Depth of pit (m) | Old pit = 5; New = 15 | Area A, B = 10; C, D = 30 | Pit No. 1–7 = 3 |
H. of garbage from surface (m) | Old = 4–5; New = 10 | Area A, B = 10; C, D = 0 | Pit No. 1–7 = 3 |
Volume of waste (m3) | 8,488,000 | 3,527,697 | 1,840,000 |
Volume of leachate (m3) | 1,156,800 | 356,800 | 180,000 |
Leachate treatment system | None | None | None |
Daily soil cover | Occasional | None | None |
Final soil cover | 80% | Area A-B (100%), others (0%) | None |
Avg_Precipitation (mm/yr) | 1430 [19] | 1550 * | 2019 ** |
Avg_sunlight (hr/d) | 7.2 [19] | 6.7 * | 6.9 ** |
Avg_temp (Celsius) | 24–32 [19] | 24–35 * | 23–30 ** |
Soil type (bottom soil) (m/s) | Clayey, −K = 10−(9–10) | Sandy Clay, K = 10−(7–8) | Clay (CH), K = 10−(9–10) |
Parameter | Sea-Son | Nonthaburi Landfill | Dangkor Landfill | KM-32 Landfill | Effluent Standard | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DL | LDP | DL.B | DL.C | DL | WL $ | |||||||||||||||
Max | Min | Ave | Max | Min | Ave | Max | Min | Ave | Max | Min | Ave | Max | Min | Ave | Max | Min | Ave | |||
Temp (°C) | Dry | 37 | 33 | 35 | 35 | 31 | 34 | 38 | 29 | 33 | 38 | 35 | 36 | 33 | 28 | 30 | - | - | - | 40 [43]; 45 [44] |
Wet | 35 | 32 | 33 | 35 | 31 | 33 | 36 | 25 | 31 | - | - | 33 # | 33 | 30 | 31 | 33 | 31 | 31 | ||
pH | Dry | 8.0 | 7.5 | 7.8 | 8.2 | 7.4 | 7.8 | 8.2 | 8.1 | 8.1 | 7.6 | 7.3 | 7.5 | 7.9 | 7.07 | 7.6 | - | - | 5.5–9 [43]; 5–9 [44]; 6–9.5 [45] | |
Wet | 7.6 | 7.3 | 7.5 | 8.1 | 7.0 | 7.8 | 8.3 | 7.9 | 8.1 | - | - | 7.90 # | 7.9 | 7.0 | 7.5 | 8.2 | 8 | 8.03 | ||
ORP (mV) | Dry | −300 | −380 | −340 | 190 | −23 | 100 | −70 | −350 | −210 | −120 | −280 | −200 | −10 | −160 | −100 | - | - | - | NA |
Wet | −260 | −400 | −310 | 200 | −1 | 100 | −40 | −30 | −35 | - | - | 80 # | 70 | −250 | −90 | 80 | 60 | 70 | ||
EC (mS/cm) | Dry | 38.8 | 31.8 | 35.2 | 29.8 | 16.8 | 20.9 | 40.6 | 20 | 38 | 22 | 3 | 13 | 14.5 | 3.2 | 8.6 | - | - | - | 7.5 [43] |
Wet | 28.9 | 20.3 | 24.1 | 18.6 | 10.2 | 15.0 | 27 | 15 | 26 | - | - | 2.0 # | 3.8 | 3.6 | 3.7 | 3.7 | 3.3 | 3.5 | ||
Turb (NTU) | Dry | 1000 | 950 | 970 | 450 | 180 | 320 | 1000 | 470 | 730 | 870 | 170 | 520 | 1000 | 195 | 590 | - | - | - | 20 [43] |
Wet | 1000 | 700 | 800 | 440 | 100 | 270 | 600 | 550 | 570 | - | - | 220 # | 1000 | 60 | 380 | 360 | 70 | 120 | ||
DO (mg/L) | Dry | 6.0 | 5.8 | 5.9 | 8.2 | 7.0 | 7.8 | 6.2 | 3.3 | 4.7 | 8.6 | 7.3 | 7.9 | 11.9 | 6.0 | 9.2 | - | - | - | >1 [44] |
Wet | 8.0 | 5.8 | 7.7 | 9.8 | 6.6 | 8.2 | 8.3 | 7.8 | 8.1 | - | - | 7.6 # | 10.5 | 8.7 | 9.6 | 10.5 | 10.1 | 10.3 | ||
TDS (mg/L) | Dry | 23,500 | 19,700 | 21,700 | 18,500 | 10,400 | 13,000 | 24,800 | 11,500 | 20,700 | 13,500 | 2200 | 6000 | 7000 | 2000 | 4900 | - | - | - | 3000 [43] 2000 [44] 3500 [45] |
Wet | 17,900 | 6800 | 13,500 | 11,500 | 6300 | 9300 | 22,900 | 8150 | 15,000 | - | - | 1200 # | 2500 | 2300 | 2400 | 2300 | 1100 | 1800 | ||
COD (mg/L) | Dry | 7750 | 2050 | 3380 | 2320 | 470 | 1500 | 7900 | 2540 | 2900 | NM | NM | NM | 1080 | 570 | 770 | - | - | - | 120 [43]; 100 [44]; 160 [44] |
Wet | 3120 | 2300 | 2730 | 1800 | 610 | 1170 | - | - | 2100 # | - | - | 610 # | 390 | 350 | 370 | 670 | 510 | 590 | ||
BOD5 (mg/L) | Dry | 1060 | 410 | 760 | 780 | 350 | 230 | NM | NM | NM | NM | NM | NM | 200 | 120 | 170 | - | - | - | 20 [43]; 80 [44]; 40 [45] |
Wet | 1230 | 530 | 750 | 560 | 130 | 320 | NM | NM | NM | NM | NM | NM | 180 | 120 | 150 | 280 | 50 | 170 | ||
NO2 (mg/L) | Dry | - | - | 19 # | NM | NM | NM | - | - | 0.9 # | NM | NM | NM | NM | NM | NM | - | - | - | NA |
Wet | - | - | 2 # | 210 | 13 | 112 | - | - | <0.5 | - | - | 21 # | - | - | 48 # | - | - | 22 # | ||
NO3 (mg/L) | Dry | - | - | 2 # | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | - | - | - | 20 [44] |
Wet | 1.9 | 0.4 | 1.2 | 29 | 3.3 | 13.9 | - | - | 2 # | - | - | 3.4 # | - | - | 11 # | - | - | 3.2 # | ||
NH3 (mg/L) | Dry | 2350 | 270 | 1060 | 210 | 110 | 150 | - | - | 920 # | NM | NM | NM | NM | NM | NM | - | - | - | 7 [44] |
Wet | 1970 | 560 | 1150 | 200 | 110 | 150 | - | - | 780 # | - | - | 26 # | - | - | 100 # | - | - | 50 # | ||
TKN (mg/L) | Dry | 1570 | 360 | 1190 | 360 | 240 | 290 | NM | NM | NM | NM | NM | NM | NM | NM | NM | - | - | - | 100 [43] |
Wet | 7910 | 1150 | 3030 | 260 | 210 | 250 | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM | ||
Cl (mg/L) | Dry | 4970 | 3370 | 4410 | 5750 | 4380 | 5050 | 4260 | 2250 | 3250 | - | - | 2050 # | 1,200 | 290 | 650 | - | - | - | 700 [44]; 500 [45] |
Wet | 4510 | 3130 | 3630 | 5300 | 3770 | 4450 | - | - | 2730 # | - | - | 290 # | 390 | 330 | 360 | 370 | 340 | 350 |
Parameter | Nonthaburi DL | Dangkor DL.B | KM-32 DL | Indonesia [59] | Philippines [60] | Taiwan [61] | India [41] |
---|---|---|---|---|---|---|---|
Age * | Mid | Mid | Young-Mid | Old | Old | Mid | Old |
Waste thickness (m) | 25 | 20 | 6 | - | 40 | - | 20 |
Landfill type | Semi-sanitary | Controlled dump | Open dump | Open dump | Controlled dump | Semi-sanitary | Open dump |
Dumping method | Trench method | Trench method | Trench method | - | Semi-canyon | Trench method | Trench method |
pH | 7.3~8.0 | 7.9~8.3 | 7.0~7.9 | 6.8~7.5 | 7.9 | 7.3~8.4 | 6.9 |
EC (mS/cm) | 20.3~38.8 | 15~40.6 | 3.2~14.5 | - | - | 7~40.6 | 24.5 |
TDS | 6800~23,500 | 8100~24,800 | 2000~7000 | - | - | 27,950 | |
COD | 2050~7750 | 2100~7900 | 350~1080 | 290~350 | 6904 | 2480 | 27,200 |
BOD5 | 410~1230 | - | 120~200 | 145~218 | - | 26~492 | 19,000 |
As (Liq) | 0.096~0.33 | 0.075~0.20 | 0.048~0.079 | - | 0.022 | - | - |
As (Total) | 0.62~0.94 | 0.30~0.70 | 0.23~0.33 | ||||
Pb (Liq) | 0.03~0.10 | 0.012~0.074 | 0.016~0.057 | - | 0.04 | 0.0005~0.09 | 1.54 $ |
Pb (Total) | 0.38~0.66 | 0.29~0.63 | 0.16~0.19 | ||||
Cd (Liq) | 0.0029~0.0048 | 0.0030~0.0050 | 0.0015~0.0042 | - | <0.003 | < 0.01 | 0.06 $ |
Cd (Total) | 0.13~0.30 | 0.09~0.21 | 0.05~0.08 | ||||
Cr (Liq) | 0.32~0.44 | 0.034~0.49 | 0.02~0.15 | 0.04~0.05 | 0.11 | 0.12~0.52 | 0.29 $ |
Cr (Total) | 0.71~1.02 | 0.62~1.10 | 0.19~0.38 | ||||
Zn (Liq) | 0.39~0.80 | 0.53~0.68 | 0.13~0.19 | 0.05~0.06 | - | 0.003~0.56 | 2.21 $ |
Zn (Total) | 1.35~1.60 | 0.88~1.44 | 0.31~0.51 |
Heavy Metal | Nonthaburi Landfill | Dangkor Landfill | KM-32 Landfill | Normal Soil [65] | ||||||
---|---|---|---|---|---|---|---|---|---|---|
DL_SS | DL_SED | LDP_SS | LDP_SED | DL.B_SS | DL.B_SED | DL_SS | WL_SED | Ave | Range | |
As | 26–45 | 37–52 | 32–37 | 39.5 | 25–31 | 30–35 | 22–26 | 21–25 | 7.2 | 0.1–55 |
Cr | 25–43 | 48–80 | 36–37 | 72.4 | 35–37 | 38–71 | 18–28 | 42–68 | 40 | 10–150 |
Pb | 24–44 | 45–76 | 17–18 | 66.2 | 33–36 | 50–55 | 9–18 | 59–64 | - | 2–300 |
Cd | 10–16 | 6–36 | 8–13 | 18.7 | 11–13 | 10–18 | 5–8 | 9–14 | 0.35 | 0.001–2 |
Zn | 44–51 | 53–110 | 37–50 | 116.2 | 46–49 | 64–83 | 19–37 | 46–107 | 90 | 1–900 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xaypanya, P.; Takemura, J.; Chiemchaisri, C.; Seingheng, H.; Tanchuling, M.A.N. Characterization of Landfill Leachates and Sediments in Major Cities of Indochina Peninsular Countries—Heavy Metal Partitioning in Municipal Solid Waste Leachate. Environments 2018, 5, 65. https://doi.org/10.3390/environments5060065
Xaypanya P, Takemura J, Chiemchaisri C, Seingheng H, Tanchuling MAN. Characterization of Landfill Leachates and Sediments in Major Cities of Indochina Peninsular Countries—Heavy Metal Partitioning in Municipal Solid Waste Leachate. Environments. 2018; 5(6):65. https://doi.org/10.3390/environments5060065
Chicago/Turabian StyleXaypanya, Phetyasone, Jiro Takemura, Chart Chiemchaisri, Hul Seingheng, and Maria Antonia N. Tanchuling. 2018. "Characterization of Landfill Leachates and Sediments in Major Cities of Indochina Peninsular Countries—Heavy Metal Partitioning in Municipal Solid Waste Leachate" Environments 5, no. 6: 65. https://doi.org/10.3390/environments5060065
APA StyleXaypanya, P., Takemura, J., Chiemchaisri, C., Seingheng, H., & Tanchuling, M. A. N. (2018). Characterization of Landfill Leachates and Sediments in Major Cities of Indochina Peninsular Countries—Heavy Metal Partitioning in Municipal Solid Waste Leachate. Environments, 5(6), 65. https://doi.org/10.3390/environments5060065