Next Issue
Volume 8, December
Previous Issue
Volume 8, October
 
 

Environments, Volume 8, Issue 11 (November 2021) – 20 articles

Cover Story (view full-size image): Plants remove pollutants through their diverse mechanisms of phytoremediation (including accumulation, immobilization, volatilization, and degradation). Phytoremediation is a cost-effective, eco-friendly, and non-invasive approach to improve air quality. This method has the potential to be used as a complementary or alternative tool for engineering-based remediation techniques. By optimizing this remedy process and investigation of the toxicity of biodegradation products, phytoremediation can be publicly applicable. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 2674 KiB  
Article
Morphospecies Abundance of Above-Ground Invertebrates in Agricultural Systems under Glyphosate and Microplastics in South-Eastern Mexico
by Edilberto Hernández-Gutiérrez, Jaime Rendón-von Osten, Griselda Escalona-Segura, Jorge Mendoza-Vega, Ricardo Dzul-Caamal, Sita Posthumus, Rianne Vastenhouw, Xiaomei Yang, Violette Geissen and Esperanza Huerta-Lwanga
Environments 2021, 8(11), 130; https://doi.org/10.3390/environments8110130 - 20 Nov 2021
Cited by 6 | Viewed by 3847
Abstract
Soil invertebrates are important for diverse soil ecosystem services, which are jeopardized by pesticides and microplastics. In the present study, we aimed to assess above-ground invertebrates’ morphospecies abundance in the presence of glyphosate (GLY), its main metabolite aminomethylphosphonic acid (AMPA), and microplastics (MPs). [...] Read more.
Soil invertebrates are important for diverse soil ecosystem services, which are jeopardized by pesticides and microplastics. In the present study, we aimed to assess above-ground invertebrates’ morphospecies abundance in the presence of glyphosate (GLY), its main metabolite aminomethylphosphonic acid (AMPA), and microplastics (MPs). Three land-use systems were analyzed: agricultural systems with and without plastic mulch and pesticides (AwPM, AwoPM) and natural unmanaged farming systems (UF). Soil GLY, AMPA, MP concentrations and above-ground invertebrates were quantified. GLY concentrations were also assessed inside invertebrate tissues. GLY, AMPA and the highest concentration of GLY in invertebrates’ tissue were found only in AwoPM at 0.14–0.45 mg kg−1, 0.12–0.94 mg kg−1 and 0.03–0.26 mg kg−1, respectively. MPs were present as follows: AwPM system (100%, 400–2000 particles kg−1) > AwoPM (70.8%, 200–1000 particles kg−1) > UF (37.5%, 200–400 particles kg−1). No significant correlations were found between soil MPs, GLY and AMPA. There was a significant correlation between MPs and morphospecies from the order Entomobrymorpha (Collembola, R = 0.61, p < 0.05). Limnophila, Mesogastropoda (Gastropoda) and Siphonaptera morphospecies were only present in the UF system. GLY in invertebrate tissue was inversely correlated with soil GLY (R = −0.73, p < 0.05) and AMPA (R = −0.59, p < 0.05). Further investigations are required to understand these phenomena. Full article
(This article belongs to the Special Issue Plastic Contamination: Challenges and Solutions)
Show Figures

Graphical abstract

19 pages, 1488 KiB  
Article
Empirical Modeling of Stream Nutrients for Countries without Robust Water Quality Monitoring Systems
by Ismael Díaz, Paula Levrini, Marcel Achkar, Carolina Crisci, Camila Fernández Nion, Guillermo Goyenola and Néstor Mazzeo
Environments 2021, 8(11), 129; https://doi.org/10.3390/environments8110129 - 19 Nov 2021
Cited by 4 | Viewed by 3206
Abstract
Water quality models are useful tools to understand and mitigate eutrophication processes. However, gaining access to high-resolution data and fitting models to local conditions can interfere with their implementation. This paper analyzes whether it is possible to create a spatial model of nutrient [...] Read more.
Water quality models are useful tools to understand and mitigate eutrophication processes. However, gaining access to high-resolution data and fitting models to local conditions can interfere with their implementation. This paper analyzes whether it is possible to create a spatial model of nutrient water level at a local scale that is applicable in different geophysical and land-use conditions. The total nitrogen and phosphorus concentrations were modeled by integrating Geographical Information Systems, Remote Sensing, and Generalized Additive and Land-Use Changes Modeling. The research was based on two case studies, which included 204 drainage basins, with nutrient and limnological data collected during two seasons. The models performed well under local conditions, with small errors calculated from the independent samples. The recorded and predicted concentrations of nutrients indicated a significant risk of water eutrophication in both areas, showing the impact of agricultural intensification and population growth on water quality. The models are a contribution to the sustainable land-use planning process, which can help to prevent or promote land-use transformation and new practices in agricultural production and urban design. The ability to implement models using secondary information, which is easily collected at a low cost, is the most remarkable feature of this approach. Full article
Show Figures

Figure 1

14 pages, 3064 KiB  
Article
The Influence of Microplastics from Ground Tyres on the Acute, Subchronical Toxicity and Microbial Respiration of Soil
by Markéta Šourková, Dana Adamcová and Magdalena Daria Vaverková
Environments 2021, 8(11), 128; https://doi.org/10.3390/environments8110128 - 18 Nov 2021
Cited by 18 | Viewed by 4345
Abstract
As a rubber annular coat of rim wheels, tyres are inevitable parts of all vehicles in modern times. As to their composition, however, they represent a risk for the environment. During the use of tyres, tyre tread patterns become abraded, which results in [...] Read more.
As a rubber annular coat of rim wheels, tyres are inevitable parts of all vehicles in modern times. As to their composition, however, they represent a risk for the environment. During the use of tyres, tyre tread patterns become abraded, which results in its gradual wear and necessary re- placement. These micro and nano particles are then gradually extracted into the environment, namely soils and waters. Our research study was focused on the assessment of subchronical phytotoxicity (pot trial with a mixture of substrate and predetermined ratio of abrasion products lasting 28 days) and biological tests (testing phytotoxicity of leaches with predetermined ratio of abrasion products on Petri dishes). The biological tests were comprised two plant species—seeds of white mustard (Sinapis alba L.) and garden cress (Lepidium sativum L.). In the mixtures of substrate with determined shares of abrasion products (5%, 25%, 50% and 75%), respiration of CO2 was also established by means of soil microbial respiration (Solvita CO2-Burst). Substrates with 5% and 25% abrasion proportions showed increased biological activity as well as increased CO2-C emissions. The increasing share of abrasion products resulted in decreasing biological activity and decreasing CO2-C emissions. The results of subchronical phytotoxicity ranged from 62% to 94% with values below 90% indicating substrate phytotoxicity. The results of biological tests focused on the phytotoxicity of tested samples exhibiting values from 35% to 70% with respect to the germination index with values below 66% indicating the phytotoxicity of tyre abrasion products. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

17 pages, 3692 KiB  
Article
Hierarchically 3-D Porous Structure of Silk Fibroin-Based Biocomposite Adsorbent for Water Pollutant Removal
by Lusi Ernawati, Ruri Agung Wahyuono, Abdul Halim, Roslan Noorain, Widiyastuti Widiyastuti, Rizna Triana Dewi and Toshiharu Enomae
Environments 2021, 8(11), 127; https://doi.org/10.3390/environments8110127 - 16 Nov 2021
Cited by 6 | Viewed by 3956
Abstract
This study explored the tunability of a 3-D porous network in a freeze-dried silk fibroin/soursop seed (SF:SS) polymer composite bioadsorbent. Morphological, physical, electronic, and thermal properties were assessed using scanning electron microscopy, the BET N2 adsorption-desorption test, Fourier transform infrared (FTIR) spectroscopy, [...] Read more.
This study explored the tunability of a 3-D porous network in a freeze-dried silk fibroin/soursop seed (SF:SS) polymer composite bioadsorbent. Morphological, physical, electronic, and thermal properties were assessed using scanning electron microscopy, the BET N2 adsorption-desorption test, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). A control mechanism of pore opening–closing by tuning the SS fraction in SF:SS composite was found. The porous formation is apparently due to the amount of phytic acid as a natural cross-linker in SS. The result reveals that a large pore radius is formed using only 20% wt of SS in the composite, i.e., SF:SS (4:1), and the fibrous network closes the pore when the SS fraction increases up to 50%, i.e., SF:SS (1:1). The SF:SS (4:1) with the best physical and thermal properties shows an average pore diameter of 39.19 nm, specific surface area of 19.47 m2·g−1, and thermal stability up to ~450 °C. The removal of the organic molecule and the heavy metal was assessed using crystal violet (CV) dye and the Cu2+ adsorption test, respectively. The adsorption isotherm of both CV and Cu2+ on SF:SS (4:1) follows the Freundlich model, and the adsorption kinetic of CV follows the pseudo-first-order model. The adsorption test indicates that physisorption dominates the adsorption of either CV or Cu2+ on the SF:SS composites. Full article
Show Figures

Graphical abstract

12 pages, 1457 KiB  
Article
Leaching Potential of Phosphite Fertilizer in Sandy Soils of the Southern Coastal Plain, USA
by Ariel A. Szogi, Paul D. Shumaker, Eric D. Billman and Philip J. Bauer
Environments 2021, 8(11), 126; https://doi.org/10.3390/environments8110126 - 16 Nov 2021
Cited by 1 | Viewed by 3195
Abstract
Novel biotechnology on transgenic plants capable of metabolizing phosphite (Phi), a reduced form of P, could improve the effectiveness of P fertilizers and reduce the P footprint in agriculture with the benefit of suppressing weed growth. However, potassium Phi (K-Phi) salts used as [...] Read more.
Novel biotechnology on transgenic plants capable of metabolizing phosphite (Phi), a reduced form of P, could improve the effectiveness of P fertilizers and reduce the P footprint in agriculture with the benefit of suppressing weed growth. However, potassium Phi (K-Phi) salts used as fertilizer are highly soluble in water. At the same time, sandy soils of the Southern Coastal Plain are vulnerable to leaching losses resulting from long-term Pi fertilizer application. We performed a replicated leaching trial using five soil materials that included three surface and two subsurface layers from cultivated topsoil (Ap horizon) with contrasting Phi and Pi sorption capacities. Each soil received three treatments K-Phi at rates 0 (control), 24, and 49 kg P ha−1 and leached twice with de-ionized water. All K-Phi-treated soils leached Phi except for the controls. A phosphorus saturation ratio (PSR) calculated from P, Al, and Fe in acid extracts indicated increasing environmental risk of Phi leaching in soils with lower Phi and Pi sorption capacities at rising rates of applied K-Phi. Because plants rapidly absorb Phi, further studies on the environmental impact of K-Phi fertilizer use should include the interaction of plants with soil properties and soil microbial activity at optimal Phi application rates for growing transgenic plants able to use Phi as a nutrient source. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

25 pages, 828 KiB  
Review
Low Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective
by Scott D. Lowther, Sani Dimitroulopoulou, Kerry Foxall, Clive Shrubsole, Emily Cheek, Britta Gadeberg and Ovnair Sepai
Environments 2021, 8(11), 125; https://doi.org/10.3390/environments8110125 - 16 Nov 2021
Cited by 42 | Viewed by 10802
Abstract
With modern populations in developed countries spending approximately 90% of their time indoors, and with carbon dioxide (CO2) concentrations inside being able to accumulate to much greater concentrations than outdoors, it is important to identify the health effects associated with the [...] Read more.
With modern populations in developed countries spending approximately 90% of their time indoors, and with carbon dioxide (CO2) concentrations inside being able to accumulate to much greater concentrations than outdoors, it is important to identify the health effects associated with the exposure to low-level CO2 concentrations (<5000 ppm) typically seen in indoor environments in buildings (non-industrial environments). Although other reviews have summarised the effects of CO2 exposure on health, none have considered the individual study designs of investigations and factored that into the level of confidence with which CO2 and health effects can be associated, nor commented on how the reported health effects of exposure correspond to existing guideline concentrations. This investigation aimed to (a) evaluate the reported health effects and physiological responses associated with exposure to less than 5000 parts per million (ppm) of CO2 and (b) to assess the CO2 guideline and limit concentrations in the context of (a). Of the 51 human investigations assessed, many did not account for confounding factors, the prior health of participants or cross-over effects. Although there is some evidence linking CO2 exposures with health outcomes, such as reductions in cognitive performance or sick building syndrome (SBS) symptoms, much of the evidence is conflicting. Therefore, given the shortcomings in study designs and conflicting results, it is difficult to say with confidence whether low-level CO2 exposures indoors can be linked to health outcomes. To improve the epidemiological value of future investigations linking CO2 with health, studies should aim to control or measure confounding variables, collect comprehensive accounts of participants’ prior health and avoid cross-over effects. Although it is difficult to link CO2 itself with health effects at exposures less than 5000 ppm, the existing guideline concentrations (usually reported for 8 h, for schools and offices), which suggest that CO2 levels <1000 ppm represent good indoor air quality and <1500 ppm are acceptable for the general population, appear consistent with the current research. Full article
(This article belongs to the Special Issue Indoor Air Quality and Health Risks)
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Adsorption of Polycyclic Aromatic Hydrocarbons by Natural, Synthetic and Modified Clays
by Sara Satouh, Julia Martín, María del Mar Orta, Santiago Medina-Carrasco, Nabil Messikh, Nabil Bougdah, Juan Luis Santos, Irene Aparicio and Esteban Alonso
Environments 2021, 8(11), 124; https://doi.org/10.3390/environments8110124 - 16 Nov 2021
Cited by 10 | Viewed by 4417
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are of major scientific concern owing to their widespread presence in environmental compartments and their potential toxicological effects on humans and biota. In this study, the adsorption capacity of natural (montmorillonite (Mt)), synthetic (Na-Mica-4), and modified (with octadecylamine and [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are of major scientific concern owing to their widespread presence in environmental compartments and their potential toxicological effects on humans and biota. In this study, the adsorption capacity of natural (montmorillonite (Mt)), synthetic (Na-Mica-4), and modified (with octadecylamine and octadecyltrimethylamine (ODA-Mt, ODA-Mica-4, and ODTMA-Mt and ODTMA-Mica-4)) clays were assessed and compared for the removal of 16 PAHs. Materials were synthesized and characterized by X-Ray diffraction, Zeta potential, and Fourier-transform infrared spectroscopy. The results showed its correct preparation and the incorporation of PAHs in the structure of the clays after the adsorption tests. The proposed materials were effective PAH adsorbents, with adsorption percentages close to 100%, in particular those using Mt. Mt and Na-Mica-4 presented a better adsorption capacity than their organofunctionalized derivatives, indicating that the adsorption of PAHs may occur both in the surface part and in the interlayer. The proposed adsorbents take the advantage of being a low cost and highly effective. They can be an interesting alternative for wastewater treatment and soil remediation to prevent PAH contamination. Full article
(This article belongs to the Special Issue Soil Pollution Assessment and Sustainable Remediation Strategies)
Show Figures

Figure 1

22 pages, 1766 KiB  
Article
Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region
by Tim J. Arciszewski
Environments 2021, 8(11), 123; https://doi.org/10.3390/environments8110123 - 16 Nov 2021
Cited by 4 | Viewed by 3579
Abstract
Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to [...] Read more.
Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Graphical abstract

15 pages, 1293 KiB  
Article
Short Term Elevated CO2 Interacts with Iron Deficiency, Further Repressing Growth, Photosynthesis and Mineral Accumulation in Soybean (Glycine max L.) and Common Bean (Phaseolus vulgaris L.)
by Teresa Deuchande, José Soares, Fábio Nunes, Elisabete Pinto and Marta W. Vasconcelos
Environments 2021, 8(11), 122; https://doi.org/10.3390/environments8110122 - 8 Nov 2021
Cited by 3 | Viewed by 3234
Abstract
Elevated CO2 (eCO2) has been reported to cause mineral losses in several important food crops such as soybean (Glycine max L.) and common bean (Phaseolus vulgaris L.). In addition, more than 30% of the world’s arable land is [...] Read more.
Elevated CO2 (eCO2) has been reported to cause mineral losses in several important food crops such as soybean (Glycine max L.) and common bean (Phaseolus vulgaris L.). In addition, more than 30% of the world’s arable land is calcareous, leading to iron (Fe) deficiency chlorosis and lower Fe levels in plant tissues. We hypothesize that there will be combinatorial effects of eCO2 and Fe deficiency on the mineral dynamics of these crops at a morphological, biochemical and physiological level. To test this hypothesis, plants were grown hydroponically under Fe sufficiency (20 μM Fe-EDDHA) or deficiency (0 μM Fe-EDDHA) at ambient CO2 (aCO2, 400 ppm) or eCO2 (800 ppm). Plants of both species exposed to eCO2 and Fe deficiency showed the lowest biomass accumulation and the lowest root: shoot ratio. Soybean at eCO2 had significantly higher chlorophyll levels (81%, p < 0.0001) and common bean had significantly higher photosynthetic rates (60%, p < 0.05) but only under Fe sufficiency. In addition, eCO2 increased ferric chelate reductase acivity (FCR) in Fe-sufficient soybean by 4-fold (p < 0.1) and in Fe-deficient common bean plants by 10-fold (p < 0.0001). In common bean, an interactive effect of both environmental factors was observed, resulting in the lowest root Fe levels. The lowering of Fe accumulation in both crops under eCO2 may be linked to the low root citrate accumulation in these plants when grown with unrestricted Fe supply. No changes were observed for malate in soybean, but in common bean, shoot levels were significantly lower under Fe deficiency (77%, p < 0.05) and Fe sufficiency (98%, p < 0.001). These results suggest that the mechanisms involved in reduced Fe accumulation caused by eCO2 and Fe deficiency may not be independent, and an interaction of these factors may lead to further reduced Fe levels. Full article
(This article belongs to the Special Issue Dynamic of Vegetation and Climate Change)
Show Figures

Figure 1

22 pages, 132363 KiB  
Article
Modeling of Forest Ecosystem Degradation Due to Anthropogenic Stress: The Case of Rohingya Influx into the Cox’s Bazar–Teknaf Peninsula of Bangladesh
by Mohammad Emran Hasan, Li Zhang, Riffat Mahmood, Huadong Guo and Guoqing Li
Environments 2021, 8(11), 121; https://doi.org/10.3390/environments8110121 - 4 Nov 2021
Cited by 16 | Viewed by 4793
Abstract
Overdependence and cumulative anthropogenic stresses have caused world forests to decrease at an unprecedented rate, especially in Southeast Asia. The Cox’s Bazar–Teknaf Peninsula of Bangladesh is not an exception and follows the global deforestation trend. Despite being one of the country’s richest forest [...] Read more.
Overdependence and cumulative anthropogenic stresses have caused world forests to decrease at an unprecedented rate, especially in Southeast Asia. The Cox’s Bazar–Teknaf Peninsula of Bangladesh is not an exception and follows the global deforestation trend. Despite being one of the country’s richest forest ecosystems with multiple wildlife sanctuaries, reserve forests, and influential wildlife habitats, the peninsula is now providing shelter for nearly one million Rohingya refugees. With the global deforestation trend coupled with excessive anthropogenic stresses from the Rohingya population, the forests in the peninsula are continuously deteriorating in terms of quality and integrity. In response to deforestation, the government invested in conservation efforts through afforestation and restoration programs, although the peninsula faced a refugee crisis in August 2017. The impact of this sudden increase in population on the forest ecosystem is large and has raised questions and contradictions between the government’s conservation efforts and the humanitarian response. Relocation of the refugees seems to be a lengthy process and the forest ecosystem integrity needs to be preserved; therefore, the degree of stresses, level of impacts, and pattern of deforestation are crucial information for forest conservation and protection strategies. However, there are a lack of quantitative analyses on how the forest ecosystem is deteriorating and what future results would be in both space and time. In this study, the impact of the sudden humanitarian crisis (i.e., Rohingya refugees) as anthropogenic stress in Cox’s Bazar–Teknaf peninsula has been spatiotemporally modeled and assessed using Sentinel-2 satellite imagery and other collateral data. Using the density and accessibility of the Rohingya population along with the land cover and other physiographic data, a multi-criteria evaluation (MCE) technique was applied through the Markov cellular automata technique to model the forest vegetation status. The impact of deforestation differs in cost due to variability of the forest vegetation covers. The study, therefore, developed and adopted three indices for assessment of the forest ecosystem based on the variability and weight of the forest cover loss. The spatial severity of impact (SSI) index revealed that out of 5415 ha of total degraded forest lands, 650 ha area would have the highest cost from 2017 to 2027. In the case of the ecosystem integrity (EI) index, a rapid decline in ecosystem integrity in the peninsula was observed as the integrity value fell to 1190 ha (2019) from 1340 ha (2017). The integrity is expected to further decline to 740 ha by 2027, if the stress persists in a similar fashion. Finally, the findings of ecosystem integrity depletion (EID) elucidated areas of 540 and 544 hectares that had a severe EID score of (−5) between 2017 and 2019 and 2017 and 2027, respectively. The displacement and refugee crisis is a recurrent world event that, in many cases, compromises the integrity and quality of natural space. Therefore, the findings of this study are expected to have significant global and regional implications to help managers and policymakers of forest ecosystems make decisions that have minimal or no impact to facilitate humanitarian response. Full article
Show Figures

Figure 1

16 pages, 2451 KiB  
Article
Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth
by Gloria Palmeggiani, Manhattan Lebrun, Melissa Simiele, Sylvain Bourgerie and Domenico Morabito
Environments 2021, 8(11), 120; https://doi.org/10.3390/environments8110120 - 3 Nov 2021
Cited by 3 | Viewed by 2893
Abstract
The contamination of soil by potentially toxic elements (PTEs) is a problem resulting from various anthropic activities including the exploitation of mines, which determines an accumulation of metal(loid)s in the surrounding area. It is therefore necessary to use remediation techniques to prevent the [...] Read more.
The contamination of soil by potentially toxic elements (PTEs) is a problem resulting from various anthropic activities including the exploitation of mines, which determines an accumulation of metal(loid)s in the surrounding area. It is therefore necessary to use remediation techniques to prevent the potential damage to human health and the ecosystem. One of these techniques is phytoremediation, which involves the revegetation of contaminated areas in such a way as to reduce the spread of contaminants and entry into the groundwater by stabilizing the metal(loid)s in the soil, decreasing their mobility. To increase the ability of plants to grow under the extreme conditions of contaminated soils, it is necessary to use amendments, which can also intervene directly in reducing the mobility of contaminants. In this study, an open-field mesocosm was set up using a former mining technosol contaminated mainly by As. A biochar produced from hardwood was added at two different depths to evaluate the effectiveness of these application modalities for an overall observation duration of 17 months. Iron sulphate was also applied in both non-biochar and biochar amended conditions. In addition, trees of Alnus sp. were planted to examine the effectiveness of these plants for their use in soil remediation and the effect of the treatments used. The results showed an increase in soil pH induced by the biochar, which decreased over time. During the period examined, the application of biochar in the deepest layer was able to retain As more effectively. The Alnus sp. showed similar growth rates among the various treatments, resulting from its tolerance towards arsenic. Full article
(This article belongs to the Special Issue Soil Pollution Assessment and Sustainable Remediation Strategies)
Show Figures

Figure 1

12 pages, 2169 KiB  
Article
Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study
by Sergey Kolesnikov, Tatiana Minnikova, Tatiana Minkina, Vishnu D. Rajput, Natalya Tsepina, Kamil Kazeev, Alexander Zhadobin, Elena Nevedomaya, Tigran Ter-Misakyants, Yulia Akimenko, Saglara Mandzhieva, Svetlana Sushkova, Anuj Ranjan, Ilgiz Asylbaev, Victoria Popova and Alena Tymoshenko
Environments 2021, 8(11), 119; https://doi.org/10.3390/environments8110119 - 3 Nov 2021
Cited by 6 | Viewed by 3718
Abstract
Thallium (Tl) was introduced into Haplic Chernozem in the amounts of 3, 30, and 300 mg/kg, and biological indicators were observed at 10, 30, and 90 days after incubation in the laboratory experiment. An increase in biological activities; i.e., the total number of [...] Read more.
Thallium (Tl) was introduced into Haplic Chernozem in the amounts of 3, 30, and 300 mg/kg, and biological indicators were observed at 10, 30, and 90 days after incubation in the laboratory experiment. An increase in biological activities; i.e., the total number of bacteria, Azotobacter spp. abundance, enzymes (catalase, dehydrogenases), and phytotoxic indicators (germination rate of radish) after 30 days of Tl exposure were noted. The total number of bacteria and Azotobacter spp. abundance, enzyme activity, and phytotoxicity were more sensitive (16–76%) and informative (12–65%) indicators compared to the control, respectively. Integral biological indicators of soil state (IIBS) noted at 10, 30, and 90 days decreased at a dose of 30 and 300 mg/kg by 13–43% in relation to the control. An increase in Tl concentration and duration of exposure (up to 90 days) inhibited biological properties and caused ecotoxicological effects, respectively. We concluded that the use of individual indicators served as an indicator of the state of the soil. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Graphical abstract

16 pages, 990 KiB  
Review
Phytoremediation: The Sustainable Strategy for Improving Indoor and Outdoor Air Quality
by Heayyean Lee, Ziwoo Jun and Zahra Zahra
Environments 2021, 8(11), 118; https://doi.org/10.3390/environments8110118 - 2 Nov 2021
Cited by 22 | Viewed by 7874
Abstract
Most of the world’s population is exposed to highly polluted air conditions exceeding the WHO limits, causing various human diseases that lead towards increased morbidity as well as mortality. Expenditures on air purification and costs spent on the related health issues are rapidly [...] Read more.
Most of the world’s population is exposed to highly polluted air conditions exceeding the WHO limits, causing various human diseases that lead towards increased morbidity as well as mortality. Expenditures on air purification and costs spent on the related health issues are rapidly increasing. To overcome this burden, plants are potential candidates to remove pollutants through diverse biological mechanisms involving accumulation, immobilization, volatilization, and degradation. This eco-friendly, cost-effective, and non-invasive method is considered as a complementary or alternative tool compared to engineering-based remediation techniques. Various plant species remove indoor and outdoor air pollutants, depending on their morphology, growth condition, and microbial communities. Hence, appropriate plant selection with optimized growth conditions can enhance the remediation capacity significantly. Furthermore, suitable supplementary treatments, or finding the best combination junction with other methods, can optimize the phytoremediation process. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

17 pages, 2771 KiB  
Article
Evaluating and Adapting Climate Change Impacts on Rice Production in Indonesia: A Case Study of the Keduang Subwatershed, Central Java
by Andrianto Ansari, Yu-Pin Lin and Huu-Sheng Lur
Environments 2021, 8(11), 117; https://doi.org/10.3390/environments8110117 - 29 Oct 2021
Cited by 25 | Viewed by 9235
Abstract
Predicting the effect of climate change on rice yield is crucial as global food demand rapidly increases with the human population. This study combined simulated daily weather data (MarkSim) and the CERES-Rice crop model from the Decision Support System for Agrotechnology Transfer (DSSAT) [...] Read more.
Predicting the effect of climate change on rice yield is crucial as global food demand rapidly increases with the human population. This study combined simulated daily weather data (MarkSim) and the CERES-Rice crop model from the Decision Support System for Agrotechnology Transfer (DSSAT) software to predict rice production for three planting seasons under four climate change scenarios (RCPs 2.6, 4.5, 6.0, and 8.5) for the years 2021 to 2050 in the Keduang subwatershed, Wonogiri Regency, Central Java, Indonesia. The CERES-Rice model was calibrated and validated for the local rice cultivar (Ciherang) with historical data using GenCalc software. The model evaluation indicated good performance with both calibration (coefficient of determination (R2) = 0.89, Nash–Sutcliffe efficiency (NSE) = 0.88) and validation (R2 = 0.87, NSE = 0.76). Our results suggest that the predicted changing rainfall patterns, rising temperature, and intensifying solar radiation under climate change can reduce the rice yield in all three growing seasons. Under RCP 8.5, the impact on rice yield in the second dry season may decrease by up to 11.77% in the 2050s. Relevant strategies associated with policies based on the results were provided for decision makers. Furthermore, to adapt the impact of climate change on rice production, a dynamic cropping calendar, modernization of irrigation systems, and integrated plant nutrient management should be developed for farming practices based on our results in the study area. Our study is not only the first assessment of the impact of climate change on the study site but also provides solutions under projected rice shortages that threaten regional food security. Full article
Show Figures

Figure 1

32 pages, 937 KiB  
Review
Recent Advances in Dynamic Modeling and Process Control of PVA Degradation by Biological and Advanced Oxidation Processes: A Review on Trends and Advances
by Yi-Ping Lin, Ramdhane Dhib and Mehrab Mehrvar
Environments 2021, 8(11), 116; https://doi.org/10.3390/environments8110116 - 27 Oct 2021
Cited by 8 | Viewed by 3842
Abstract
Polyvinyl alcohol (PVA) is an emerging pollutant commonly found in industrial wastewater, owing to its extensive usage as an additive in the manufacturing industry. PVA’s popularity has made wastewater treatment technologies for PVA degradation a popular research topic in industrial wastewater treatment. Although [...] Read more.
Polyvinyl alcohol (PVA) is an emerging pollutant commonly found in industrial wastewater, owing to its extensive usage as an additive in the manufacturing industry. PVA’s popularity has made wastewater treatment technologies for PVA degradation a popular research topic in industrial wastewater treatment. Although many PVA degradation technologies are studied in bench-scale processes, recent advancements in process optimization and control of wastewater treatment technologies such as advanced oxidation processes (AOPs) show the feasibility of these processes by monitoring and controlling processes to meet desired regulatory standards. These wastewater treatment technologies exhibit complex reaction mechanisms leading to nonlinear and nonstationary behavior related to variability in operational conditions. Thus, black-box dynamic modeling is a promising tool for designing control schemes since dynamic modeling is more complicated in terms of first principles and reaction mechanisms. This study seeks to provide a survey of process control methods via a comprehensive review focusing on PVA degradation methods, including biological and advanced oxidation processes, along with their reaction mechanisms, control-oriented dynamic modeling (i.e., state-space, transfer function, and artificial neural network modeling), and control strategies (i.e., proportional-integral-derivative control and predictive control) associated with wastewater treatment technologies utilized for PVA degradation. Full article
(This article belongs to the Special Issue Advanced Oxidation Applications II)
Show Figures

Figure 1

15 pages, 4403 KiB  
Article
Investigation of the Mixing Height in the Planetary Boundary Layer by Using Sodar and Microwave Radiometer Data
by Sergey Odintsov, Eugene Miller, Andrey Kamardin, Irina Nevzorova, Arkady Troitsky and Mathias Schröder
Environments 2021, 8(11), 115; https://doi.org/10.3390/environments8110115 - 27 Oct 2021
Cited by 4 | Viewed by 3492
Abstract
The height of the mixing layer is a significant parameter for describing the dynamics of the planetary boundary layer (PBL), especially for air quality control and for the parametrizations in numerical modeling. The problem is that the heights of the mixing layer cannot [...] Read more.
The height of the mixing layer is a significant parameter for describing the dynamics of the planetary boundary layer (PBL), especially for air quality control and for the parametrizations in numerical modeling. The problem is that the heights of the mixing layer cannot be measured directly. The values of this parameter are depending both on the applied algorithms for calculation and on the measuring instruments which have been used by the data source. To determine the height of a layer of intense turbulent heat exchange, data were used from acoustic meteorological locator (sodar) and from a passive single-channel scanning microwave radiometer MTP-5 (MWR) to measure the temperature profile in a layer of up to 1 km. Sodar can provide information on the structure of temperature turbulence in the PBL directly. These data have been compared with the mixing layer height calculated with the Parcel method by using the MTP-5 data. For the analysis, July and September 2020 were selected in the city of Tomsk in Siberia as characteristic periods of mid-summer and the transition period to autumn. The measurement results, calculations and inter-comparisons are shown and discussed in this work. During temperature inversions in the boundary layer, it was observed that turbulent heat transfer (increased dispersion of air temperature) is covering the inversion layers and the overlying ones. Moreover, this phenomenon is not only occurring during the morning destruction of inversions, but also in the process of their formation and development. Full article
Show Figures

Figure 1

13 pages, 3546 KiB  
Article
Ambient Air Quality Measurement with Low-Cost Optical and Electrochemical Sensors: An Evaluation of Continuous Year-Long Operation
by Jiří Bílek, Ondřej Bílek, Petr Maršolek and Pavel Buček
Environments 2021, 8(11), 114; https://doi.org/10.3390/environments8110114 - 27 Oct 2021
Cited by 11 | Viewed by 2826
Abstract
Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University [...] Read more.
Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM). Full article
Show Figures

Figure 1

18 pages, 890 KiB  
Article
Stakeholders’ Perceptions on Agricultural Land-Use Change, and Associated Factors, in Nigeria
by Eberechukwu Johnpaul Ihemezie and Martin Dallimer
Environments 2021, 8(11), 113; https://doi.org/10.3390/environments8110113 - 27 Oct 2021
Cited by 3 | Viewed by 2949
Abstract
Agricultural Land-Use Change (ALUC) is a major driver of global environmental change, not least via its direct impact on the sustainability and resilience of the rural economy. Its drivers are complex and have remained contentious, necessitating further empirical study. This study aims to [...] Read more.
Agricultural Land-Use Change (ALUC) is a major driver of global environmental change, not least via its direct impact on the sustainability and resilience of the rural economy. Its drivers are complex and have remained contentious, necessitating further empirical study. This study aims to derive context-specific evidence on the driving factors and effects of ALUC from different stakeholders’ perceptions. We carried out household surveys and participatory rural appraisal across Benue State, Nigeria. ALUC has economic, social, ecological, and institutional implications for farmers and on agricultural productivity. Farmers perceived that the main factors driving ALUC were land conflict, government land-use policies and infrastructural development. Stakeholders’ perceptions revealed that although the factors driving ALUC are diverse in nature, they are somewhat embedded within the broader issue of land-use conflict, which has led to cropland abandonment, clearing of forest vegetation, soil degradation, changes from large scale to subsistence farming, and farmers’ eventual loss of interest in agriculture. This suggest that the drivers and implications of ALUC go beyond simple changes to the extent of land used for agriculture, but also incorporates other regional socio-ecological changes. Our study highlights the importance of stakeholders’ perceptions in understanding complex socio-ecological issues if we are to provide clear direction into areas where policy interventions are most needed. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

15 pages, 2539 KiB  
Article
Microbial Contamination Survey of Environmental Fresh and Saltwater Resources of Upolu Island, Samoa
by Michael A. Ochsenkühn, Cong Fei, Odmaa Bayaara, Emarosa Romeo, Patila Amosa, Youssef Idaghdour, Gary Goldstein, Timothy G. Bromage and Shady A. Amin
Environments 2021, 8(11), 112; https://doi.org/10.3390/environments8110112 - 25 Oct 2021
Cited by 5 | Viewed by 2733
Abstract
Analysis of microbe diversity in freshwater resources and nearshore seawater samples of Upolu Island was performed to investigate the distribution of harmful bacteria. For this, 124 samples were collected from 23 river systems, two volcanic lakes, and 45 locations inside and outside the [...] Read more.
Analysis of microbe diversity in freshwater resources and nearshore seawater samples of Upolu Island was performed to investigate the distribution of harmful bacteria. For this, 124 samples were collected from 23 river systems, two volcanic lakes, and 45 locations inside and outside the barrier reef of Upolu Island, Samoa. Physicochemical parameters for general water quality, detection of coliform bacteria and 16S rRNA amplicon sequencing were performed on all samples. Fecal indicator bacteria (FIB) testing indicated a wide distribution of coliform bacteria in all sampled freshwater sites with evidence of fecal coliform in most locations. Importantly, evidence of coliform bacteria was found in most seawater samples inside and along the reef, apart from those samples taken ~20 km offshore. Illumina 16S rRNA amplicon sequencing of the V4 hypervariable region confirmed the presence of various types of harmful bacterial species, namely from the Enterobacteriaceae, Enterococcae, Streptococcaceae, and Vibrionacea families. By combining the sensitivity of FIB testing and next-generation sequencing, we were able to show the extent of potential contaminations in fresh and seawater samples and simultaneously identify the potential pathogenic bacterial genera present. The wide distribution of potential harmful bacteria from river runoff or direct sewage dumping has an impact on human health, leading to many skin and intestinal diseases, and is potentially detrimental to coral reef community health. Full article
(This article belongs to the Special Issue Monitoring and Management of Inland Waters)
Show Figures

Figure 1

14 pages, 2108 KiB  
Article
Potential Use of Copper-Contaminated Soils for Hemp (Cannabis sativa L.) Cultivation
by Giulia Quagliata, Silvia Celletti, Eleonora Coppa, Tanja Mimmo, Stefano Cesco and Stefania Astolfi
Environments 2021, 8(11), 111; https://doi.org/10.3390/environments8110111 - 20 Oct 2021
Cited by 11 | Viewed by 3935
Abstract
To mitigate climate change, reducing greenhouse gas emissions can be achieved by decreasing the use of fossil fuels and increasing that of alternative sources, such as energy crops. However, one of the most important problems in the use of biomass as a fuel [...] Read more.
To mitigate climate change, reducing greenhouse gas emissions can be achieved by decreasing the use of fossil fuels and increasing that of alternative sources, such as energy crops. However, one of the most important problems in the use of biomass as a fuel is that of changing soil use and consumption, leading to competition with food crops. We addressed the topic by evaluating the possibility to exploit contaminated areas for energy crops cultivation. Indeed, soil contamination makes land inappropriate for cultivation, with damaging consequences for ecosystems, as well as posing serious health hazards to living beings. Specifically, this work aimed to evaluate the ability of hemp (Cannabis sativa L.) plants to grow on a copper (Cu)-contaminated medium. In addition, the effectiveness of an environment-friendly treatment with sulfate in improving plant ability to cope with Cu-induced oxidative stress was also explored. Results showed that plants were able to grow at high Cu concentrations. Therefore, hemp could represent an interesting energy crop in Cu-contaminated soils. Although the response of Cu-treated plants was evidenced by the increase in thiol content, following modulation of sulfur metabolism, it remains to be clarified whether the use of exogenous sulfate could be an agronomic practice to improve crop performance under these edaphic conditions. Full article
(This article belongs to the Special Issue Soil Pollution Assessment and Sustainable Remediation Strategies)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop