A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances
Abstract
:1. Introduction
2. Methodology of Literature Sources
3. Treatment Techniques for Short-Chain PFASs
3.1. Adsorption Technique
3.1.1. Adsorption by Carbon-Based Adsorbents
3.1.2. Anion-Exchange Resin Adsorption
3.1.3. Coagulation and Electrocoagulation
Adsorbent | Adsorbent Dose/(mg/L) | PFASs | PFAS Concentration (mg/L) | Experiment Condition | Removal Efficiency | References |
---|---|---|---|---|---|---|
GAC (F400) | 1000 | PFBS | 15–150 | DI, 30 °C, pH = 7.2 | 98.7 mg/g | [23] |
BdAC | 200 | PFHxA | 31.4 | WW, 25 °C pH = 4, 48 h 170 r/min | 18.84 mg/g | [25] |
IRA67 | 100 | PFHxA | 31.4 | WW, 25 °C pH = 4, 48 h 170 r/min | 37.68 mg/g | [25] |
AC (micropore) | 250 | PFBA | 6.5–204 | DI, room temperature pH = 6, 3 d | 51.36 ± 4.28 mg/g | [26] |
PFBS | 6–247 | 51.01 ± 3 mg/g | ||||
PFHxA | 7.2–217 | 235.54 ± 72.23 mg/g | ||||
CTF | 250 | PFBA | 6.5–204 | DI, room temperature pH = 6, 3 d | 92.03 ± 4.28 mg/g | [26] |
SWCNT | 250 | PFBA | 106.4 | DI, 25 °C pH = 7, 2 d 200 r/min | 7.5% | [30] |
IRA910 | 100 | PFBS | 50–400 | DI, 25 °C, pH = 6, 240 h 160 r/min | 1023.32 mg/g | [34] |
PFBA | 635.69 mg/g | |||||
Electrocoagulation | – | PFBS | 0.031 | GW, pH = 7.0 10 min, 400 r/min Al-Zn, 12 V | 87.4% | [36] |
3.1.4. Adsorption with Other Materials
3.2. Advanced Oxidation/Reduction Techniques
3.2.1. Electrochemical Oxidation
3.2.2. Photocatalytic Degradation
Catalyst | Catalyst Dose | PFASs | Experiment Condition | Removal Efficiency (%) | References |
---|---|---|---|---|---|
Fe3+ | 5 mmol/L | PFBA | UV | 49.9 | [47] |
PFPeA | UV | 64.5 | |||
ZVI particles | 960 mmol/L | Short-chain PFSAs (C2–C6) | UV, 350 °C 20 MPa | 95 | [49] |
TiO2 | 0.66 g/L | PFOA | 254 nm pH < 3 | 100% | [50] |
TiO2-MWCNT | 0.4 g/L | PFOA | 300 W, 365 nm pH = 5 | 100% | [52] |
TiO2-rGO | 0.1 g/L | PFOA | 150 W, 254 nm pH = 3.8 | 93 ± 7% | [55] |
3.3. Other Techniques
3.3.1. Plasma Technique
3.3.2. Thermolytic and Sonochemical Degradation
3.3.3. Membrane Separation
3.3.4. Bioremediation Techniques
4. Comparisons on Different Treatment Techniques
Technique | Materials | Advantage | Disadvantage | Removal Mechanism | Treatment Time | Removal Efficiency | Energy Consumption | References |
---|---|---|---|---|---|---|---|---|
Adsorption | ACs, Anion-exchange resin | Low carbon, cost, energy consumption, and convenient operation; No change in physicochemical properties; Wide concentrations and trace short-chain PFASs could be treated. | Long adsorption time and unfortunate regeneration capacity of sorbent; Secondary contamination of elution solvent. | Electrostatic interaction; Hydrophobic interaction; Ion exchange | 10 min–10 d | 10–95.6% | — | [25,27,36] |
Electrochemical oxidation | Ti/SnO2, BDD | Low energy consumption and short time; Good treatment for short-chain PFASs. | Expensive electrode materials; Not suitable for trace contamination; Prone to secondary contamination and produced intermediates. | Oxidation; Hydrophobic interaction | 1–3 h | 31.8–98% | 45 Wh/L | [40,43] |
Photocatalytic degradation | UV, S2O82− Fe3+, ZVI | Mineralizable. | Additional catalyst; Low degradation efficiency; Complex by-products. | Oxidation; Reduction. | 6 h–10 d | 16–95% | 29–9091 Wh/L | [15,69,70] |
Plasma | Grinding nickel chrome rod | Short time; Suitable for long-chain PFASs. | High energy consumption; Low mineralization efficiency; Generate intermediates. | Reduction. | 1–2 h | 20% | — | [57,58] |
Thermolytic and sonochemical degradation | High temperature; Ultrasonic | Fully mineralized. | Long time; High energy consumption. | Disrupts molecular structure by high energy | 6–65 h | 46–74% | 2129 Wh/L | [60,61] |
Membrane separation | NF RO | Low carbon and energy consumption; Better rejection of short-chain PFASs. | Not suitable for the actual waters; Easy to occur in membrane pollution. | Rejection | — | 69–96% | — | [64] |
Bioremediation | Corn | Low carbon and environmentally-friendly; Effective to some degree for some short-chain PFASs by plant adsorption. | Long time and ineffective.; Need targeted training. | — | >2 d | −67% | — | [65] |
5. Conclusions and Future Research Recommended
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahman, M.F.; Peldszus, S.; Anderson, W.B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Res. 2013, 50, 318–340. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Chen, D.; Han, F.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Wu, S.; Lopez, I.J.; Chang, J.Y.; Karanfil, T.; Snyder, S.A. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 2020, 170, 115364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, X.; Zhao, Y.; Wang, J.; Bao, J. Treatment techniques for perfluorinated compounds and their alternatives. Environ. Chem. 2018, 37, 1860–1868. [Google Scholar] [CrossRef]
- Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The overlooked short- and ultrashort–chain poly- and perfluorinated substances: A review. Chemosphere 2019, 220, 866–882. [Google Scholar] [CrossRef] [PubMed]
- Reemtsma, T.; Berger, U.; Arp, H.P.H.; Gallard, H.; Knepper, T.P.; Neumann, M.; Quintana, J.B.; Voogt, P.D. Mind the gap: Persistent and mobile organic compounds-water contaminants that slip through. Environ. Sci. Technol. 2016, 50, 10308–10315. [Google Scholar] [CrossRef] [Green Version]
- Arp, H.P.H.; Brown, T.N.; Berger, U.; Hale, S.E. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environ. Sci-Proc. Imp. 2017, 19, 939–955. [Google Scholar] [CrossRef]
- Kotthoff, M.; Bücking, M. Four Chemical trends will shape the next decade’s directions in perfluoroalkyl and polyfluoroalkyl substances research. Front. Chem. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Gellrich, V.; Stahl, T.; Knepper, T.P. Behavior of perfluorinated compounds in soils during leaching experiments. Chemosphere 2012, 87, 1052–1056. [Google Scholar] [CrossRef]
- Brendel, S.; Fetter, É.; Staude, C.; Vierke, L.; Biegel-Engler, A. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH. Environ. Sci. Eur. 2018, 30, 9. [Google Scholar] [CrossRef]
- Zhou, Z.; Liang, Y.; Shi, Y.; Xu, L.; Cai, Y. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short–chain PFAAs in Tangxun Lake, China. Environ. Sci. Technol. 2013, 47, 9249–9257. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Li, C.; Liu, Y.; Wang, X.; Yu, W.; Liu, Z.; Shao, L.; Jin, Y. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China. Environ. Res. 2020, 188, 109751. [Google Scholar] [CrossRef] [PubMed]
- Eschauzier, C.; Beerendonk, E.; Scholte-Veenendaal, P.; Voogt, P.D. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain. Environ. Sci. Technol. 2012, 46, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.K.; Brauch, H.J. N, N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ. Sci. Technol. 2008, 42, 6340–6346. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Duan, J.; Tian, S.; Ji, H.; Zhu, Y.; Wei, Z.; Zhao, D. Short–chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chem. Eng. J. 2020, 380, 122506. [Google Scholar] [CrossRef]
- Wang, H.; Lu, X.; Deng, Y.; Sun, Y.; Nielsen, C.P.; Liu, Y.; Zhu, G.; Bu, M.; Bi, J.; McElroy, M. China’s CO2 peak before 2030 implied from characteristics and growth of cities. Nat. Sustain. 2019, 2, 748–754. [Google Scholar] [CrossRef]
- Watts, M. Commentary: Cities spearhead climate action. Nat. Clim. Chang. 2017, 7, 537–538. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Zhang, Y. Influencing factors and combined scenario prediction of carbon emission peaks in megacities in China: Based on Threshold-STIRPAT model. Acta Sci. Circumst. 2019, 39, 4284–4292. [Google Scholar] [CrossRef]
- Song, Q.; Liu, T.; Qi, Y. Policy innovation in low carbon pilot cities: Lessons learned from China. Urban Clim. 2021, 39, 100936. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, W.; Yao, M.; Yuan, J. Carbon emissions performance regulation for China’s top generation groups by 2020: Too challenging to realize? Resour. Conserv. Recy. 2017, 122, 326–334. [Google Scholar] [CrossRef]
- Ma, W.; De, J.M.; De, B.M.; Mu, R. Mix and match: Configuring different types of policy instruments to develop successful low carbon cities in China. J. Clean. Prod. 2021, 282, 125399. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Herrera, V.; Sierra-Alvarez, R. Removal of perfluorinated surfactants by sorption on to granular activated carbon, zeolite and sludge. Chemosphere 2008, 72, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Borresen, M.H.; Schlabach, M.; Cornelissen, G. Sorption of perfluorinated compounds from contaminated water to activated carbon. J. Soils Sediments 2010, 10, 179–185. [Google Scholar] [CrossRef]
- Du, Z.; Deng, S.; Chen, Y.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins. J. Hazard. Mater. 2015, 286, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lee, L.S.; Wei, C.; Fu, H.; Zheng, S.; Xu, Z.; Zhu, D. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution. Environ. Pollut. 2016, 216, 884–892. [Google Scholar] [CrossRef]
- McCleaf, P.; Englund, S.; Östlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 2017, 120, 77–87. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Q. Environmental effects and their mechanisms of biochar applied to soils. Environ. Chem. 2013, 32, 768–780. [Google Scholar] [CrossRef]
- Inyang, M.; Dickenson, E.R.V. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems. Chemosphere 2017, 184, 168–175. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, Q.; Nie, Y.; Wei, H.; Wang, B.; Huang, J.; Yu, G.; Xing, B. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environ. Pollut. 2012, 168, 138–144. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Deng, S.; Du, Z.; Liu, K.; Yu, G. Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: A comparative study. J. Hazard. Mater. 2017, 323, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Zaggia, A.; Conte, L.; Falletti, L.; Fant, M.; Chiorboli, A. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants. Water Res. 2016, 91, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Maimaiti, A.; Deng, S.; Meng, P.; Wang, W.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Competitive adsorption of perfluoroalkyl substances on anion exchange resins in simulated AFFF-impacted groundwater. Chem. Eng. J. 2018, 348, 494–502. [Google Scholar] [CrossRef]
- Deng, S.; Zhou, Q.; Yu, G.; Huang, J.; Fan, Q. Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. Water Res. 2011, 45, 1774–1780. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Zhao, Y.; Wang, J.; Lu, M.; Peng, F.; Bao, J. Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Chemosphere 2018, 201, 303–309. [Google Scholar] [CrossRef]
- Bao, J.; Yu, W.; Liu, Y.; Wang, X.; Liu, Z.; Duan, Y. Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation. Chemosphere 2020, 248, 125951. [Google Scholar] [CrossRef]
- Niu, J.; Wang, C.; Shang, E. Removal of perfluorinated compounds from wastewaters by electrochemical methods: A general review. Sci. Sin. Technol. 2017, 47, 1233–1255. [Google Scholar] [CrossRef]
- Llorca, M.; Schirinzi, G.; Martínez, M.; Barceló, D.; Farré, M. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environ. Pollut. 2018, 235, 680–691. [Google Scholar] [CrossRef]
- Niu, J.; Lin, H.; Xu, J.; Wu, H.; Li, Y. Electrochemical mineralization of per-fluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environ. Sci. Technol. 2012, 46, 10191–10198. [Google Scholar] [CrossRef]
- Soriano, A.; Gorri, D.; Urtiaga, A. Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Res. 2017, 112, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Z.; Farrell, J. Electrochemical oxidation of perfluorobutane sulfonate using borondoped diamond film electrodes. J. Appl. Electrochem. 2009, 39, 1993–1999. [Google Scholar] [CrossRef]
- Niu, J.; Li, Y.; Shang, E.; Xu, Z.; Liu, J. Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 2016, 146, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Niu, J.; Liang, S.; Wang, C.; Wang, C.; Wang, Y.; Jin, F.; Luo, Q.; Chiang, S.Y.D.; Huang, Q. Development of macroporous magneli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly- and perfluoroalkyl substances. Chem. Eng. J. 2018, 354, 1058–1067. [Google Scholar] [CrossRef]
- Niu, J.; Lin, H.; Gong, C.; Sun, X. Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environ. Sci. Technol. 2013, 47, 14341–14349. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Kiatagawa, H.; Arakawa, R. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 2005, 39, 2383–2388. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Koike, K.; Kutsuna, S.; Osaka, I.; Arakawa, R. Photochemical decomposition of environmentally persistent short–chain perfluorocarboxylic acids in water mediated by iron (II)/(III) redox reactions. Chemosphere 2007, 68, 572–578. [Google Scholar] [CrossRef]
- Hori, H.; Takano, Y.; Koike, K.; Kutsuna, S.; Einaga, H.; Ibusuki, T. Photochemical decomposition of pentafluoropropionic acid to fluoride ions with a water-soluble heteropolyacid photocatalyst. Appl. Catal. B-Environ. 2003, 46, 333–340. [Google Scholar] [CrossRef]
- Hori, H.; Nagaoka, Y.; Yamamoto, A.; Sano, T.; Yamashita, N.; Taniyasu, S.; Kutsuna, S.; Osaka, I.; Arakawa, R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environ. Sci. Technol. 2006, 40, 1049–1054. [Google Scholar] [CrossRef]
- Panchangam, S.C.; Lin, A.; Shaik, K.L.; Lin, C. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium. Chemosphere 2009, 77, 242–248. [Google Scholar] [CrossRef]
- Li, M.; Yu, Z.; Liu, Q.; Sun, L. Photocatalytic decomposition of per-fluorooctanoic acid by noble metallic nanoparticles modified TiO2. Chem. Eng. J. 2016, 286, 232–238. [Google Scholar] [CrossRef]
- Song, C.; Chen, P.; Wang, C.; Zhu, L. Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365nm UV irradiation. Chemosphere 2011, 86, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lo, S.L.; Lee, Y.C.; Huang, C.C. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. J. Hazard. Mater. 2015, 288, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhang, P. Photochemical decomposition of perfluorooctane sulfonate (PFOS) in an anoxic alkaline solution by 185nm vacuum ultraviolet. Chem. Eng. J. 2015, 280, 241–247. [Google Scholar] [CrossRef]
- Gomez-Ruiz, B.; Ribao, P.; Diban, N.; Rivero, M.J.; Ortiz, I.; Urtiaga, A. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst. J. Hazard. Mater. 2017, 344, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Stratton, G.R.; Dai, F.; Bellona, C.L.; Holsen, T.M.; Dickenson, E.R.V.; Thagard, S.M. Plasma-Based water treatment: Efficient transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater. Environ. Sci. Technol. 2017, 51, 1643–1648. [Google Scholar] [CrossRef]
- Singh, R.K.; Fernando, S.; Baygi, S.F.; Multari, N.; Thagard, S.M.; Holsen, T.M. Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process. Environ. Sci. Technol. 2019, 53, 2731–2738. [Google Scholar] [CrossRef]
- Takaki, K.; Urashima, K.; Chang, J.S. Scale-up of ferro-electric packed bed reactor for C2F6 decomposition. Thin Solid Films 2006, 506, 414–417. [Google Scholar] [CrossRef]
- Tsang, W.; Burgess, D.R.; Babushok, V. On the Incinerability of Highly Fluorinated Organic Compounds. Combust. Sci. Technol. 1998, 139, 385–402. [Google Scholar] [CrossRef]
- Krusic, P.J.; Roe, D.C. Gas-phase NMR studies of the thermolysis of perfluorooctanoic acid. Anal. Chem. 2005, 126, 1510–1516. [Google Scholar] [CrossRef]
- Watanabe, N.; Takata, M.; Takemine, S.; Yamamoto, K. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere. Environ. Sci. Pollut. Res. Int. 2018, 25, 7200–7205. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.Y.; Vecitis, C.D.; Mader, B.T.; Hoffmann, M.R. Perfluorinated surfactant chain-length effects on sonochemical kinetics. J. Phys. Chem. A 2009, 113, 9834–9842. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, N.A.; Rodriguez-Freire, L.; Keswani, M.; Sierra-Alvarez, R. Effect of chemical structure on the sonochemical degradation of perfluoroalkyl and poly-fluoroalkyl substances (PFASs). Water Res. 2016, 2, 975–983. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, L.; Xu, C.; Zhi, R.; Miao, R.; Liang, T.; Yue, X.; Lv, Y.; Liu, T. Perfluorooctane sulfonate and perfluorobutane sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular organic foulants. Chem. Eng. J. 2018, 332, 787–797. [Google Scholar] [CrossRef]
- Kwon, B.G.; Lim, H.J.; Na, S.H.; Choi, B.I.; Shin, D.S.; Chung, S.Y. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere 2014, 109, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.E.; LeFevre, G.H.; Timofte, A.E.; Hussain, F.A.; Sattely, E.S.; Luthy, R.G. Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an arabidopsis model system. Environ. Toxicol. Chem. 2016, 35, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Krippner, J.; Brunn, H.; Falk, S.; Georgii, S.; Schubert, S.; Stahl, T. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays). Chemosphere 2014, 94, 85–90. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zheng, J.T.; Qu, X.F.; Chen, H.G. Effect of granular activated carbon on degradation of methyl orange when applied in combination with high-voltage pulse discharge. J. Colloid Interface Sci. 2007, 316, 523–530. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, P.; Liu, J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. J. Environ. Sci. 2007, 19, 387–390. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Kutsuna, S. Efficient photochemical decomposition of long–chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system. Environ. Sci. Technol. 2005, 39, 7692–7697. [Google Scholar] [CrossRef]
Abbreviation | |||
---|---|---|---|
TFA | Trifluoroacetic acid | GenX | 2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3- heptafluoropropoxy) propanoic acid |
PFSAs | Perfluoroalkane sulfonates | PFCAs | Perfluoroalkyl carboxylic acids |
PFBS | Perfluorobutane sulfonic acid | PFBA | Perfluorobutanoic acid |
PFPrA | Pentafluoropropionic acid | PFPeA | Perfluoropentanoic acid |
PFHxS | Perfluorohexane sulfonic acid | PFHxA | Perfluorohexanoic acid |
PFOS | Perfluorooctane sulfonic acid | PFOA | Perfluorooctanoic acid |
PFHpA | Perfluoroheptanoic acid | PFNA | Perfluorononanoic acid |
PFDA | Perfluorodecanoic acid | PFDoA | Perfluorododecanoic acid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, T.; Bao, J.; Hu, X.; Zhao, X.; Shao, L.; Li, C.; Lu, M. A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances. Appl. Sci. 2022, 12, 1941. https://doi.org/10.3390/app12041941
Liu Y, Li T, Bao J, Hu X, Zhao X, Shao L, Li C, Lu M. A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances. Applied Sciences. 2022; 12(4):1941. https://doi.org/10.3390/app12041941
Chicago/Turabian StyleLiu, Yang, Tingyu Li, Jia Bao, Xiaomin Hu, Xin Zhao, Lixin Shao, Chenglong Li, and Mengyuan Lu. 2022. "A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances" Applied Sciences 12, no. 4: 1941. https://doi.org/10.3390/app12041941