A Numerical Investigation to Calculate Ultimate Limit State Capacity of Cable Bolts Subjected to Impact Loading
Abstract
:1. Introduction
2. Literature Review
2.1. Drop Testing
- Terratek;
- SRK Drop Weight Test Facility;
- SIMRAC Dynamic Stop Test Facility;
- SRK/Duraset Wedge-Block Loading Device;
- GRC Weight Drop Test;
- Noranda Technology Centre/CANMET Dynamic Testing Apparatus;
- WASM Dynamic Testing Facility;
- MIRARCO Impact Test.
2.2. Blasting
2.3. Numerical Analysis
2.4. Summary
3. Parametric Study of Cable Bolts
4. Materials and Methods
4.1. Developing the Model
4.1.1. Geometry of Parts
4.1.2. Material Properties
4.1.3. Assembly of Parts
4.1.4. Rigid Bodies
4.1.5. Boundary Conditions and Load Cells
4.1.6. Contact Interactions
4.1.7. Outputs and Solvers
4.1.8. Mesh Generation and Calibration
4.2. Developing the Model
5. Results
5.1. Static Results
5.2. Dynamic Results
6. Discussion
6.1. Static Modelling
6.2. Dynamic Modelling
6.2.1. Bolt Diameter
6.2.2. Steel Yield and Ultimate Strength
6.2.3. Load Cell Velocity
6.2.4. Load Cell Mass
6.3. Static vs. Dynamic Comparison
7. Limitations of the Study
7.1. Model Simplification
7.2. Numerical Model Calibration
7.3. Mesh Accuracy
8. Conclusions
Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
- Python code to estimate fracture energy of steel.
- from google.colab import drive
- drive.mount(‘/content/gdrive’)
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- import csv
- dataset_path = “gdrive/My Drive/Colab Notebooks/thesis/stressstrain.csv”
- import csv
- with open(dataset_path, newline = ‘‘) as csvfile:
- data = list(csv.reader(csvfile, delimiter = ‘\n’))
- new_array = []
- for thing in data:
- for string in thing:
- string = string.split(“,”)
- for element in string:
- element.strip(“,”)
- string[:] = [x for x in string if x]
- new_array.append(string)
- new_array = [x for x in new_array if x]
- newer_array = []
- for line in new_array:
- if len(line) == 144:
- line = [val for val in line for _ in (0, 1)]
- newer_array.append(line)
- else:
- try:
- line = [float(x) for x in line]
- newer_array.append(line)
- except ValueError:
- continue
- coords_with_names = newer_array
- list_t_names = np.array(coords_with_names).T.tolist()
- coords = newer_array[1:]
- list_t = np.array(coords).T.tolist()
- from scipy import integrate
- table = []
- i = 0
- while True:
- if i > 286:
- break
- table_row = []
- table_sums = []
- x = list_t[i]
- y = list_t[i + 1]
- y_int = integrate.cumtrapz(y, x, initial = 0)
- y_int_sum = np.trapz(y, x)
- name = list_t_names[i]
- table_row.append(name[0])
- for integral in y_int:
- table_row.append(integral)
- table.append(table_row)
- table_sums.append(y_int_sum)
- plt.plot(x, y_int, ‘r’, label = ‘test 1’)
- plt.legend(loc = ‘best’)
- plt.show
- i += 2
- np_table = np.array(table).T.tolist()
- file = open(‘gdrive/My Drive/Colab Notebooks/thesis/fractureresults.csv’, ‘w’)
- writer = csv.writer(file)
- for row in np_table:
- writer.writerow(row)
- file.close()
Appendix A.2
- Python code to calculate absorbed energy as a function of measured displacement.
- from google.colab import drive
- drive.mount(‘/content/gdrive’)
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- import csv
- dataset_path = “gdrive/My Drive/Colab Notebooks/thesis/dynamicdata.csv”
- import csv
- with open(dataset_path, newline = ‘‘) as csvfile:
- data = list(csv.reader(csvfile, delimiter = ‘\n’))
- new_array = []
- for thing in data:
- for string in thing:
- string = string.split(“,”)
- for element in string:
- element.strip(“,”)
- string[:] = [x for x in string if x]
- new_array.append(string)
- new_array = [x for x in new_array if x]
- newer_array = []
- for line in new_array:
- if len(line) == 144:
- line = [val for val in line for _ in (0, 1)]
- newer_array.append(line)
- else:
- try:
- line = [float(x) for x in line]
- newer_array.append(line)
- except ValueError:
- continue
- coords_with_names = newer_array
- list_t_names = np.array(coords_with_names).T.tolist()
- coords = newer_array[1:]
- list_t = np.array(coords).T.tolist()
- from scipy import integrate
- table = []
- i = 0
- while True:
- if i > 286:
- break
- table_row = []
- x = list_t[i]
- y = list_t[i + 1]
- y_int = integrate.cumtrapz(y, x, initial = 0)
- name = list_t_names[i]
- table_row.append(name[0])
- for integral in y_int:
- table_row.append(integral)
- table.append(table_row)
- plt.plot(x, y_int, ‘r’, label = ‘test 1’)
- plt.legend(loc = ‘best’)
- plt.show
- i += 2
- np_table = np.array(table).T.tolist()
- file = open(‘gdrive/My Drive/Colab Notebooks/thesis/energyresults.csv’, ‘w’)
- writer = csv.writer(file)
- for row in np_table:
- writer.writerow(row)
- file.close()
References
- Feng, X.-T.; Xiao, Y.-X.; Feng, G.-L.; Yao, Z.; Chen, B.; Yang, C.; Su, G. Study on the development process of rockbursts. Chin. J. Rock Mech. Eng. 2019, 38, 649–673. [Google Scholar]
- Potvin, Y.; Wesseloo, J. Towards an understanding of dynamic demand on ground support. J. South. Afr. Inst. Min. Metall. 2013, 113, 913–922. Available online: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532013001200007&nrm=iso (accessed on 17 November 2022).
- Durrheim, R.J.; Milev, A.M.; Spottiswoode, S.M.; Vakalisa, B. Improvement of worker safety through the investigation of the site response to rockbursts. CSIR 1997. Available online: http://hdl.handle.net/10204/1690 (accessed on 17 November 2022).
- Zhang, C.; Canbulat, I.; Hebblewhite, B.; Ward, C.R. Assessing coal burst phenomena in mining and insights into directions for future research. Int. J. Coal Geol. 2017, 179, 28–44. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Zhang, C.; Wei, C.; Canbulat, I.; Saydam, S.; Sepasgozar, S. A new concept to design combined support under dynamic loading using numerical modelling. Tunn. Undergr. Space Technol. 2021, 117, 104132. [Google Scholar] [CrossRef]
- Hadjigeorgiou, J.; Potvin, Y. A Critical Assessment of Dynamic Rock Reinforcement and Support Testing Facilities. Rock Mech. Rock Eng. 2011, 44, 565–578. [Google Scholar] [CrossRef]
- Potvin, Y.; Wesseloo, J.; Heal, D. An interpretation of ground support capacity submitted to dynamic loading. Trans. Inst. Min. Metall. Sect. A Min. Technol. 2010, 119, 233–245. [Google Scholar] [CrossRef]
- Stacey, T.R. A philosophical view on the testing of rock support for rockburst conditions. J. South Afr. Inst. Min. Metall. 2012, 112, 1–8. Available online: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532012000800007&nrm=iso (accessed on 17 November 2022).
- He, M.; Ren, F.; Liu, D. Rockburst mechanism research and its control. Int. J. Min. Sci. Technol. 2018, 28, 829–837. [Google Scholar] [CrossRef]
- Roberts, T.; Talu, S.; Wang, Y. Design and Testing of High Capacity Surface Support. 2018. Available online: https://www.ausimm.com/publications/conference-proceedings/the-fourth-australasian-ground-control-in-mining-conference-ausrock/design-and-testing-of-high-capacity-surface-support/ (accessed on 17 November 2022).
- Brown, E. Underground Excavations in Rock; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar]
- Hildyard, M.W.; Milev, A. Simulated rockburst experiment: Development of a numerical model for seismic wave propagation from the blast, and forward analysis. J. South Afr. Inst. Min. Metall. 2001, 101, 235–245. [Google Scholar]
- Li, X.; Gong, F.; Tao, M.; Dong, L.; Du, K.; Ma, C.; Yin, T. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review. J. Rock Mech. Geotech. Eng. 2017, 9, 767–782. [Google Scholar] [CrossRef]
- Heal, D.; Hudyma, M.; Potvin, Y. Assessing the in-situ performance of ground support systems subjected to dynamic loading. In Proceedings of the Ground Support in Mining and Underground Construction, Proceedings of the Fifth International Symposium on Ground Support, Perth, Australia, 28 September 2004. [Google Scholar]
- Hagan, D.M.; Milev, T.O.; Spottiswoode, A.M.; Hidyard, S.M.; Grodner, M.W.; Rorke, M.; Le Bron, A.T. Simulated rockburst experiment—An overview. J. South Afr. Inst. Min. Metall. 2001, 101, 217–222. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Cai, M. Design of rock support system under rockburst condition. J. Rock Mech. Geotech. Eng. 2012, 4, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Archibald, J.F.; Baidoes, J.P.; Katsabanis, P.T. Comparative assessment of conventional support systems and spray-on rock linings in a rockburst prone environment. In Proceedings of the 3rd International Seminar on Surface Support Liners: Thin Spray-on Liners, Shotcrete and Mesh, Quebec City, QC, Canada, 25–27 August 2003. [Google Scholar]
- Jing, L.; Hudson, J.A. Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. 2002, 39, 409–427. [Google Scholar] [CrossRef]
- Miranda, E.E. Deformation and Fracture of Concrete under Uniaxial Impact Loading. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 1972. [Google Scholar]
- Blake, W. Rock-burst mechanics. Q. Colo. Sch. Mines 1972, 67, 1–64. Available online: https://www.osti.gov/biblio/5298057 (accessed on 17 November 2022).
- Ortlepp, W.D. The behaviour of tunnels at great depth under large static and dynamic pressures. Tunn. Undergr. Space Technol. 2001, 16, 41–48. [Google Scholar] [CrossRef]
- Ortlepp, W.D.; Stacey, T.R. Rockburst mechanisms in tunnels and shafts. Tunn. Undergr. Space Technol. 1994, 9, 59–65. [Google Scholar] [CrossRef]
- Jing, L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 2003, 40, 283–353. [Google Scholar] [CrossRef]
- Castro, L.M.; Bewick, R.; Carter, T. An overview of numerical modelling applied to deep mining. In Innovative Numerical Modeling in Geomechanics; CRC Press: Boca Raton, FL, USA, 2012; pp. 393–414. [Google Scholar] [CrossRef]
- Vlachopoulos, N.; Diederichs, M.S. Appropriate Uses and Practical Limitations of 2D Numerical Analysis of Tunnels and Tunnel Support Response. Geotech. Geol. Eng. 2014, 32, 469–488. [Google Scholar] [CrossRef]
- Zivaljic, N.; Smoljanovic, H.; Nikolic, Z. A combined finite-discrete element model for RC structures under dynamic loading. Eng. Comput. 2013, 30, 982–1010. [Google Scholar] [CrossRef]
- Wang, J.; Apel, D.B.; Pu, Y.; Hall, R.; Wei, C.; Sepehri, M. Numerical modeling for rockbursts: A state-of-the-art review. J. Rock Mech. Geotech. Eng. 2021, 13, 457–478. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Zhang, C.; Canbulat, I.; Vardar, O.; Saydam, S. Numerical and analytical simulation of the structural behaviour of fully grouted cable bolts under impulsive loading. Int. J. Min. Sci. Technol. 2018, 28, 807–811. [Google Scholar] [CrossRef]
- Mirzaghorbanali, A.; Rasekh, H.; Aziz, N.; Yang, G.; Khaleghparast, S.; Nemcik, J. Shear strength properties of cable bolts using a new double shear instrument, experimental study, and numerical simulation. Tunn. Undergr. Space Technol. 2017, 70, 240–253. [Google Scholar] [CrossRef]
- Bahaaddini, M.; Hagan, P.C.; Mitra, R.; Hebblewhite, B.K. Scale effect on the shear behaviour of rock joints based on a numerical study. Eng. Geol. 2014, 181, 212–223. [Google Scholar] [CrossRef]
- Zafar, A.; Andrawes, B. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars. Smart Mater. Struct. 2012, 21, 025013. [Google Scholar] [CrossRef]
- Arasaratnam, P.; Sivakumaran, K.S.; Tait, M.J. True Stress-True Strain Models for Structural Steel Elements. ISRN Civ. Eng. 2011, 2011, 656401. [Google Scholar] [CrossRef] [Green Version]
- Ardalany, M.; Deam, B.; Fragiacomo, M. Experimental results of fracture energy and fracture toughness of Radiata Pine laminated veneer lumber (LVL) in mode I (opening). Mater. Struct. 2012, 45, 1189–1205. [Google Scholar] [CrossRef]
- Hajikarimi, P.; Moghadas Nejad, F. Chapter 7-Application of viscoelasticity for experimental tests. In Applications of Viscoelasticity; Hajikarimi, P., Nejad, F.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 141–180. [Google Scholar]
- Sumer, Y.; Aktas, M. Defining parameters for cocnrete damage plasticity model. Chall. J. Struct. Mech. 2015, 1, 149–155. [Google Scholar] [CrossRef]
- ABAQUSinc. ABAQUS Analysis User’s Manuals. 2009. Available online: http://130.149.89.49:2080/v6.14/books/usb/default.htm (accessed on 17 November 2022).
- Aziz, N.; Craig, P.; Mirzaghorbanali, A.; Rasekh, H.; Nemcik, J.; Li, X. Behaviour of Cable Bolts in Shear; Experimental Study and Mathematical Modelling; University of Wollongong: Wollongong, NSW, Australia, 2015. [Google Scholar]
- Krykovskyi, O.; Krykovska, V.; Skipochka, S. Interaction of rock-bolt supports while weak rock reinforcing by means of injection rock bolts. Min. Miner. Depos. 2021, 15, 8–14. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
Simple and quick to perform | Impact loading may not be representative of rockburst loading |
Repeatable results | When impact via a load spreader is used, the true load impacted to the support is unknown |
Suitable for comparative testing and quality control testing | Appropriate representation of lateral continuity of support is unlikely to be achieved |
The effect of the stress in, or confinement or, the rock mass is usually not considered |
Numerical Approach | Subtype | Commercial/Academic Code | Institution/Author (Year) |
---|---|---|---|
Continuum method | Finite element method (FEM) | ABAQUS | Dassault Systemes |
ADINA | ADINA R&D, Inc. | ||
ANSYS | ANSYS, Inc | ||
GEO5 | Fine Software | ||
LS-DYNA | LSTC | ||
Midas GTS NX | MIDAS IT | ||
PLAXIS2D, PLAXIS3D | Plaxis | ||
RFPA2D, RFPA3D | Mechsoft | ||
RS2 (Phase 2), RS3 | Rosceience | ||
Finite difference method (FDM) | FLAC, FLAC3D | Itasca Consulting Group, Inc. | |
Boundary element method (BEM) | Examine | Rosceience | |
Map3D Non-Linear | Map3D | ||
Discontinuum method | Discrete element method (DEM) | PFC2D, PFC3D | Itasca Consulting Group, Inc. |
UDEC, 3DEC | Itasca Consulting Group, Inc. | ||
Discontinuous deformation analysis (DDA) | DDA codes | Goodman and Shi (1985) | |
Discrete fracture network (DFN) | FracMan | Golder | |
NAPSAC | AEA Technology | ||
Hybrid method | BEM/DEM | DEM_SRS + BEDA + FNET + BEFA | Wei (1992), Wei and Hudson (1998) |
BEM/FEM | BEM/FEM codes | Zienkiewicz et al. (1977) | |
DEM/FEM | CA3 | Fakhimi (2009) | |
ELFEN | Rockfield | ||
IRAZU | Geomechanica | ||
NMM | Shi (1991) | ||
Y2D | Munjiza et al. (2004) | ||
Y-Geo | Mahabadi et al. (2012) | ||
DEM/FDM | PFC2D/FLAC, PFC3D/FLAC3D | Itasca Consulting Group, Inc. |
Jenmar Bolt Type | Bolt Diameter (mm) | Typical Yield Strength (kN) | Typical Ultimate Tensile Strength (kN) |
---|---|---|---|
17.8 Yield Lok Bolt | 18 | 147 | 196 |
J-Tech® 20 mm Bolt | 20 | 170 | 200 |
Yield Lok® Bolt 23 mm | 23 | 245 | 328 |
J-Tech® 25 mm Bolt | 25 | 245 | 294 |
63T Sumo Cable Bolt | 28 | 560 | 630 |
70T 12 Wire Sumo Cable Bolt | 31 | 640 | 705 |
Density (kg/m3) | Elastic Modulus (MPa) | Yield Strength (MPa) | Ultimate Strength (MPa) | Poisson’s Ratio |
---|---|---|---|---|
7800 | 200,000 | 922 | 1031 | 0.3 |
Fracture Strain | Shear Stress Ratio | Strain Rate | Fracture Energy (N/mm) |
---|---|---|---|
0.3 | 0.13 | 0.0001 | 336,302 |
Compressive Strength (MPa) | Density (kg/m3) | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|
40 | 2400 | 33,346 | 0.2 |
Density (kg/m3) | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|
7800 | 33346 | 0.2 |
Constraint Type | Sliding Formulation | Tangential Behaviour | Normal Behaviour |
---|---|---|---|
Penalty Contact | Finite Sliding | Friction Coefficient 0.5 | Pressure Overclose Hard Contact |
Region | Type | Frequency/Interval | Factor | Target Time Increment |
---|---|---|---|---|
Whole Model | Target time Inc. | Beginning of Step | None | 1 × 10−5 |
Fine Mesh Seed Size (%) | Maximum Shear Force (kN) | Computational Time (s) |
---|---|---|
Experimental | 795.50 | N/A |
10 | 625.77 | 1746 |
15 | 631.81 | 1025 |
20 | 647.92 | 618 |
25 | 652.12 | 431 |
Fine Mesh Seed Size (%) | Computational Time (s) |
---|---|
1 | 828 |
2 | 341 |
5 | 254 |
10 | 239 |
Part | Coarse Mesh Seed Size (mm) | Fine Mesh Seed Size (mm) |
---|---|---|
Bolt | 11.2 | 5.6 |
Box | 30 | 5.6 |
Sphere | N/A | 6 |
Bolt Diameter (mm) | Steel Yield/Ultimate Stress fy/fu (MPa) | Load Sphere Velocity (mm/s) | Load Sphere Mass (kg) |
---|---|---|---|
18 | 550/650 | 100 | 33 |
20 | 565/685 | 200 | 64 |
23 | 633/844 | 400 | 110 |
25 | 847/934 | 600 | 175 |
28 | 922/1031 | ||
31 | 1382/1553 |
Maximum Shear Load (kN) | ||||||
---|---|---|---|---|---|---|
Bolt Diameter (mm) | fy = 500 MPa | fy = 565 MPa | fy = 633 MPa | fy = 847 MPa | fy = 922 MPa | fy = 1382 MPa |
18 | 129.0 | 136.4 | 189.0 | 185.0 | 211.3 | 339.3 |
20 | 186.4 | 197.5 | 269.4 | 270.5 | 302.0 | 492.5 |
23 | 254.8 | 272.3 | 369.2 | 364.5 | 409.8 | 705.7 |
25 | 305.1 | 325.8 | 443.1 | 441.3 | 497.8 | 848.0 |
28 | 394.8 | 423.0 | 582.6 | 575.4 | 647.0 | 1084.5 |
31 | 498.1 | 535.5 | 721.3 | 716.6 | 818.4 | 1301.5 |
Maximum Displacement at Failure (mm) | ||||||
---|---|---|---|---|---|---|
Bolt Diameter (mm) | fy = 500 MPa | fy = 565 MPa | fy = 633 MPa | fy = 847 MPa | fy = 922 MPa | fy = 1382 MPa |
18 | 36.2 | 36.9 | 45.1 | 41.6 | 43.0 | 49.5 |
20 | 43.6 | 44.3 | 51.0 | 45.1 | 45.8 | 60.7 |
23 | 45.8 | 46.5 | 57.0 | 51.0 | 52.5 | 81.0 |
25 | 51.0 | 53.3 | 63.8 | 55.5 | 60.0 | 91.5 |
28 | 57.8 | 61.5 | 76.5 | 68.2 | 72.0 | 109.5 |
31 | 65.2 | 70.5 | 87.0 | 76.5 | 85.5 | 120.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahmasebinia, F.; Yang, A.; Feghali, P.; Skrzypkowski, K. A Numerical Investigation to Calculate Ultimate Limit State Capacity of Cable Bolts Subjected to Impact Loading. Appl. Sci. 2023, 13, 15. https://doi.org/10.3390/app13010015
Tahmasebinia F, Yang A, Feghali P, Skrzypkowski K. A Numerical Investigation to Calculate Ultimate Limit State Capacity of Cable Bolts Subjected to Impact Loading. Applied Sciences. 2023; 13(1):15. https://doi.org/10.3390/app13010015
Chicago/Turabian StyleTahmasebinia, Faham, Adam Yang, Patrick Feghali, and Krzysztof Skrzypkowski. 2023. "A Numerical Investigation to Calculate Ultimate Limit State Capacity of Cable Bolts Subjected to Impact Loading" Applied Sciences 13, no. 1: 15. https://doi.org/10.3390/app13010015