Dynamics of Semiconductor Laser Coupled with Two External Cavities
Abstract
:1. Introduction
2. Time-Delay Model of Two-Reflector OFB
3. Numerical Calculations
4. Numerical Simulation Results and Discussions
4.1. Laser Dynamic States under Single External Cavity
4.2. Laser Dynamic States under Double External Cavity
4.2.1. Region of Short Double OFB (Lex2 = 3.5 × 10−2 m)
4.2.2. Region of Long Double OFB (Lex2 = 10−1 m)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heeger, A.J. Light emission from semiconducting polymers: Light-emitting diodes, light-emitting electrochemical cells, lasers and white light for the future. Solid State Commun. 1998, 107, 673–679. [Google Scholar] [CrossRef]
- Cardoza-Avendano, L.; Spirin, V.; López-Gutiérrez, R.M.; López-Mercado, C.A.; Cruz-Hernández, C. Experimental characterization of dfb and fp chaotic lasers with strong incoherent optical feedback. Opt. Laser Technol. 2011, 43, 949–955. [Google Scholar] [CrossRef]
- Ahmed, M. Longitudinal mode competition in semiconductor lasers under optical feedback: Regime of short-external cavity. Opt. Laser Technol. 2009, 41, 53–63. [Google Scholar] [CrossRef]
- Rusu, S.S.; Oloinic, T.; Tronciu, V.Z. Quantum dots lasers dynamics under the influence of double cavity external feedback. Opt. Commun. 2016, 381, 140–145. [Google Scholar] [CrossRef]
- Abdulrhmann, S.; Ahmed, M.; Okamoto, T.; Ishimori, W.; Yamada, M. An improved analysis of semiconductor laser dynamics under strong optical feedback. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 265–274. [Google Scholar] [CrossRef]
- Abdulrhmann, S.; Ahmed, M.; Yamada, M. New model of analysis of semiconductor laser dynamics under strong optical feedback in fiber communication system. Proc. SPIE 2003, 4986, 490–501. [Google Scholar]
- Abdulrhmann, S.; Hakami, J.; Alhasan, A.M.; Altowyan, A.S.; Afifi, G. Impact of α-factor, combined optical phase and gain saturation on the onset of chaos of short external cavity semiconductor lasers. Opt.-Int. J. Light Electron Opt. 2023, 286, 171030. [Google Scholar] [CrossRef]
- Imran, S.; Yamada, M. Numerical Analysis of Suppression Effects on Optical Feedback Noise by Superposition of High Frequency Current in Semiconductor Lasers. IEEE J. Quantum Electron. 2013, 49, 196–204. [Google Scholar] [CrossRef]
- Bakry, A. Modeling of Millimeter-Wave Modulation Characteristics of Semiconductor Lasers under Strong Optical Feedback. Sci. World J. 2014, 2014, 728458. [Google Scholar] [CrossRef]
- de Mey, R.; Jolly, S.W.; Virte, M. Clarifying the impact of dual optical feedback on semiconductor lasers through analysis of the effective feedback phase. arXiv 2023, arXiv:2306.04006. [Google Scholar]
- Pal, V.; Suelzer, J.S.; Prasad, A.; Vemuri, G.; Ghosh, R. Semiconductor Laser Dynamics with Two Filtered Optical Feedbacks. IEEE J. Quantum Electron. 2013, 49, 340–349. [Google Scholar] [CrossRef]
- Bakry, A.; Abdulrhmann, S.; Ahmed, M. Theoretical Modeling of the Dynamics of Semiconductor Laser Subject to Double-Reflector Optical Feedback. J. Exp. Theor. Phys. 2016, 122, 960–969. [Google Scholar] [CrossRef]
- Tromborg, B.; Lassen, H.E.; Olesen, H. Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra. IEEE J. Quantum Electron. 1994, 30, 939–956. [Google Scholar] [CrossRef]
- Schunk, N.; Petermann, K. Numerical analysis of the feedback regimes for a 3(i) an7single-mode semiconductor laser with external feedback. IEEE J. Quantum Electron. 1988, QE-24, 1242–1247. [Google Scholar] [CrossRef]
- Spiteri, R.J.; Wei, S. Fractional-step runge–kutta methods: Representation and linear stability analysis. J. Comput. Phys. 2023, 476, 111900. [Google Scholar] [CrossRef]
- Chen, L.-H.; Zhang, Z.-X.; Cai, Z.-J.; Yang, Y.-T.; Liu, J.-H.; Luo, Z.-C. Period- doubling bifurcation to chaos in a pure-sextic soliton fiber laser. Infrared Phys. Technol. 2023, 134, 104912. [Google Scholar] [CrossRef]
- Prat, J.; Balaguer, P.E.; Gené, J.M.; Díaz, O.; Figuerola, S. Fiber-to-the-Home Technologies; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Dang, L.; Zheng, B.; Cao, Y.; Zhang, C.; Huang, L.; Iroegbu, P.I.; Shi, L.; Lan, T.; Li, J.; Yin, G.; et al. Tunable ultra-narrow linewidth linear-cavity fiber lasers assisted by distributed external feedback. Opt. Laser Technol. 2023, 166, 109529. [Google Scholar] [CrossRef]
- Ahmed, M.; Yamada, M. An infinite order perturbation approach to gain calculation in injection semiconductor lasers. J. Appl. Phys. 1998, 84, 3004. [Google Scholar] [CrossRef]
- Yamada, M.; Suematsu, Y. Analysis of gain suppression in undoped injection lasers. J. Appl. Phys. 1981, 52, 2653. [Google Scholar] [CrossRef]
- Nishimura, Y.; Kobayashi, K.; Ikegami, T.; Suematsu, Y. Hole-burning effect in semiconductor lasers. In Proceedings of the International Quantum Electronics Conference, Kyoto, Japan, 7–10 September 1970. [Google Scholar]
- Agrawal, G.P. Optical Fiber Communication Systems; Chapter 6; Van Nostrand Reinhold: New York, NY, USA, 2003. [Google Scholar]
- Petermann, K. Laser Diode Modulation and Noise; Chapter 7; Kluwer Academic: Dordrecht, The Netherlands, 1988; p. 152. [Google Scholar]
- Yamamoto, Y. AM and FM quantum noise in semiconductor lasers—Part I: Theoretical analysis. IEEE J. Quantum Electron. 1983, 19, 34–46. [Google Scholar] [CrossRef]
- Marcuse, D. Computer simulation of laser photon fluctuations: Theory of single-cavity laser. IEEE J. Quantum Electron. 1984, 20, 1139–1148. [Google Scholar] [CrossRef]
- Yamada, M. Theoretical analysis of line broadening due to mode-competition and optical feedback in semiconductor injection lasers. Trans. IEICE 1988, E71, 152–160. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed.; Chapter 7; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
- Ahmed, M.; Yamada, M.; Saito, M. Numerical modeling of intensity and phase noise in semiconductor lasers. IEEE J. Quantum Electron. 2001, 37, 1600–1610. [Google Scholar] [CrossRef]
- Mahmood, R.; Bin-Tarik, F.; Imran, S.M.S. Analysis of Intensity and Phase Noise of Solitary Semiconductor Lasers Operating in Single-Mode. Int. J. Photonics Opt. Technol. 2018, 4, 1–6. [Google Scholar]
- Kao, Y.H.; Wang, N.M.; Chen, H.M. Mode description of routes to chaos in external-cavity coupled semiconductor lasers. IEEE J. Quantum Electron. 1994, 30, 1732–1739. [Google Scholar]
- Nada, F.; Tarek, M.; Alaa, M. Impact of linewidth enhancement factor and gain suppression on chirp characteristics of high-speed laser diode and performance of 40 Gbps optical fiber links. Appl. Phys. B 2022, 128, 45. [Google Scholar]
- Hao, C.; Zheng, W.; Liu, A. Dynamics and feedback sensitivity of vertical-cavity surface-emitting lasers with arbitrary optical feedback intensity. J. Phys. D Appl. Phys. 2023, 56, 215103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulrhmann, S.; Alhasan, A.M.; Madkhli, A.Y. Dynamics of Semiconductor Laser Coupled with Two External Cavities. Appl. Sci. 2023, 13, 12827. https://doi.org/10.3390/app132312827
Abdulrhmann S, Alhasan AM, Madkhli AY. Dynamics of Semiconductor Laser Coupled with Two External Cavities. Applied Sciences. 2023; 13(23):12827. https://doi.org/10.3390/app132312827
Chicago/Turabian StyleAbdulrhmann, Salah, Abu Mohamed Alhasan, and A. Y. Madkhli. 2023. "Dynamics of Semiconductor Laser Coupled with Two External Cavities" Applied Sciences 13, no. 23: 12827. https://doi.org/10.3390/app132312827