Tribological Analysis of Steels in Fuel Environments: Impact of Alloy Content and Hardness
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Materials
2.2. Tribological Testing
2.3. Wear Characterization
2.4. Lubrication Analysis
3. Results and Discussion
3.1. Lubrication Status Analyses
3.2. Friction and Wear Performance
3.3. Characterization of the Wear Tracks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thiagarajan, D.; Vacca, A.; Watkins, S. On the lubrication performance of external gear pumps for aerospace fuel delivery applications. Mech. Syst. Signal Process. 2019, 129, 659–676. [Google Scholar] [CrossRef]
- Cesur, I.; Ayhan, V.; Parlak, A.; Savaş, Ö.; Aydin, Z. The Effects of Different Fuels on Wear between Piston Ring and Cylinder. Adv. Mech. Eng. 2014, 6, 503212. [Google Scholar] [CrossRef]
- Jacques, K.; Murthy, N.; Dixit, S.; Berman, D.; Berkebile, S. Method for tribological experiment to study scuffing initiation on AISI 52100 steel and hard ceramic coatings. Tribol. Int. 2021, 160, 107001. [Google Scholar] [CrossRef]
- Lacey, P.I.; Westbrook, S.R. Fuel Lubricity Additive Evaluation Interim Rep. BFLRF 1997. Available online: https://apps.dtic.mil/sti/citations/ADA326098 (accessed on 12 January 2023).
- Aird, R.T.; Forgham, S.L. The lubricating quality of aviation fuels. Wear 1971, 18, 361–380. [Google Scholar] [CrossRef]
- Mitchell, K. Continued Evaluation of Diesel Fuel Lubricity by Pump Rig Tests; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1998. [Google Scholar] [CrossRef]
- Hsieh, P.Y.; Bruno, T.J. A perspective on the origin of lubricity in petroleum distillate motor fuels. Fuel Process. Technol. 2015, 129, 52–60. [Google Scholar] [CrossRef]
- Jacques, K.; Joy, T.; Shirani, A.; Berman, D. Effect of Water Incorporation on the Lubrication Characteristics of Synthetic Oils. Tribol. Lett. 2019, 67, 105. [Google Scholar] [CrossRef]
- Macknojia, A.; Ayyagari, A.; Zambrano, D.; Rosenkranz, A.; Shevchenko, E.V.; Berman, D. Macroscale Superlubricity Induced by MXene/MoS2 Nanocomposites on Rough Steel Surfaces under High Contact Stresses. ACS Nano 2023, 17, 2421–2430. [Google Scholar] [CrossRef]
- Shaha, K.; Pei, Y.; Martinez-Martinez, D.; De Hosson, J. Influence of hardness and roughness on the tribological performance of TiC/a-C nanocomposite coatings. Surf. Coat. Technol. 2010, 205, 2624–2632. [Google Scholar] [CrossRef]
- Wang, L.; Gong, P.; Li, W.; Luo, T.; Cao, B. Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear. Tribol. Int. 2020, 146, 106228. [Google Scholar] [CrossRef]
- Wadumesthrige, K.; Ara, M.; Salley, S.O.; Ng, K.Y.S. Investigation of lubricity characteristics of biodiesel in petroleum and synthetic fuel. Energy Fuels 2009, 23, 2229–2234. [Google Scholar] [CrossRef]
- Wu, X.; Cong, P.; Nanao, H.; Minami, I.; Mori, S. Tribological behaviors of 52100 steel in carbon dioxide atmosphere. Tribol. Lett. 2004, 17, 925–930. [Google Scholar] [CrossRef]
- Türedi, E.; Yilmaz, M.; Senol, V. Tribological response of heat treated AISI 52100 steels against steel and ceramic counterparts. Arch. Foundry Eng. 2017, 17, 222–228. [Google Scholar] [CrossRef]
- Elwasli, F.; Mzali, S.; Zemzemi, F.; Mkaddem, A.; Mezlini, S. Effects of initial surface topography and contact regimes on tribological behavior of AISI-52100/AA5083 materials’ pair when reciprocating sliding. Int. J. Mech. Sci. 2018, 137, 271–283. [Google Scholar] [CrossRef]
- Bosch, J.; DellaCorte, C. Rheological Characterization and Tribological Evaluation of Water-Based Lubricants in AISI 52100 Bearing Steel. Tribol. Lett. 2023, 72, 10. [Google Scholar] [CrossRef]
- Ozimina, D.; Madej, M.; Styp-Rekowski, M. Antiwear additives as retarding agents of elements with ceramic coatings wear. Ind. Lubr. Tribol. 2010, 62, 275–278. [Google Scholar] [CrossRef]
- Sun, H.; Li, D.; Diao, Y.; He, Y.; Yan, L.; Pang, X.; Gao, K. Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel. Mater. Charact. 2022, 188, 111885. [Google Scholar] [CrossRef]
- Wijnant, Y.H. Contact Dynamics in the Field of Elastohydrodynamic Lubrication. 30 October 1998. Available online: https://research.utwente.nl/en/publications/contact-dynamics-in-the-field-of-elastohydrodynamic-lubrication (accessed on 15 January 2024).
- Morales-Espejel, G.E.; Lugt, P.M.; Van Kuilenburg, J.; Tripp, J.H. Effects of surface micro-geometry on the pressures and internal stresses of pure rolling EHL contacts. Tribol. Trans. 2003, 46, 260–272. [Google Scholar] [CrossRef]
- Qiu, M.; Lu, J.; Yin, Y. Numerical analysis of non-Newtonian TEHL line contact problem based on real-coded genetic algorithm. Tribol. Int. 2009, 42, 1052–1060. [Google Scholar] [CrossRef]
- Chevalier, F.; Lubrecht, A.; Cann, P.; Colin, F. Film Thickness in Starved EHL Point Contacts. 1998. Available online: https://asmedigitalcollection.asme.org/tribology/article-abstract/120/1/126/439173 (accessed on 8 February 2024).
- Wang, W.Z.; Li, S.; Shen, D.; Zhang, S.; Hu, Y.Z. A mixed lubrication model with consideration of starvation and interasperity cavitations. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 1023–1038. [Google Scholar] [CrossRef]
- Pu, W.; Wang, J.; Zhu, D. Progressive Mesh Densification Method for Numerical Solution of Mixed Elastohydrodynamic Lubrication. J. Tribol. 2016, 138, 021502. [Google Scholar] [CrossRef]
- Jiang, X.; Hua, D.Y.; Cheng, H.S.; Ai, X.; Lee, S.C. A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact. J. Tribol. 1999, 121, 481–491. [Google Scholar] [CrossRef]
- Nash, J. Continuity of Solutions of Parabolic and Elliptic Equations. 1958. Available online: https://www.jstor.org/stable/2372841 (accessed on 1 December 2023).
- Lugt, P.M.; Morales-Espejel, G.E. A review of elasto-hydrodynamic lubrication theory. Tribol. Trans. 2011, 54, 470–496. [Google Scholar] [CrossRef]
- Kubiak, K.; Mathia, T. Influence of roughness on contact interface in fretting under dry and boundary lubricated sliding regimes. Wear 2009, 267, 315–321. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, D. Interfacial Mechanics: Theories and Methods for Contact and Lubrication; CRC Press: Boca Raton, FL, USA, 2019; p. 636. [Google Scholar]
- Stanley, H.M.; Kato, T. An FFT-Based Method for Rough Surface Contact. J. Tribol. 1997, 119, 481–485. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Q.; Liu, G. A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 2000, 243, 101–111. [Google Scholar] [CrossRef]
- Peralta, A.; Kouris, D.; Knap, J.; Sieradzki, K. Eigenstrains and the elastic field of an adatom. J. Mech. Phys. Solids 1998, 46, 1557–1579. [Google Scholar] [CrossRef]
- Ramesh, M.; Kailas, S.V.; Simha, K.R.Y. Micro and macro contact mechanics for interacting asperities. Sadhana–Acad. Proc. Eng. Sci. 2008, 33, 329–338. [Google Scholar] [CrossRef]
- Sotiriadou, S.; Ntonti, E.; Velliadou, D.; Antoniadis, K.D.; Assael, M.J.; Huber, M.L. Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures up to 102 MPa. Int. J. Thermophys. 2023, 44, 40. [Google Scholar] [CrossRef]
- Bair, S.; Liu, Y.; Wang, Q.J. The pressure-viscosity coefficient for newtonian ehl film thickness with general piezoviscous response. J. Tribol. 2006, 128, 624–631. [Google Scholar] [CrossRef]
- Caudwell, D.R.; Trusler, J.P.M.; Vesovic, V.; Wakeham, W.A. Viscosity and density of five hydrocarbon liquids at pressures up to 200 MPa and temperatures up to 473 K. J. Chem. Eng. Data 2008, 54, 359–366. [Google Scholar] [CrossRef]
- Grejtak, T.; Qu, J. Improving mechanical properties of carbon and tool steels via chromizing. Adv. Appl. Ceram. 2023, 122, 215–225. [Google Scholar] [CrossRef]
- Meng, A.M.; Leech, H.L.-T. International, and Undefined 2019, Mechanical Properties and Tribological Behavior of Electroless Ni–P–Cu Coatings on Corrosion-Resistant Alloys under Ultrahigh Contact Stress with Sprayed. In Tribology International; Elsevier: Amsterdam, The Netherlands, 2019; Available online: https://www.sciencedirect.com/science/article/pii/S0301679X19303469 (accessed on 6 February 2024).
- Pogrebnjak, A.D.; Bagdasaryan, A.A.; Pshyk, A.; Dyadyura, K. Adaptive multicomponent nanocomposite coatings in surface engineering. Uspekhi Fiz. Nauk. 2017, 187, 629–652. [Google Scholar] [CrossRef]
- Jacques, K.; Shirani, A.; Smith, J.; Scharf, T.W.; Walck, S.D.; Berkebile, S.; Eryilmaz, O.L.; Voevodin, A.A.; Aouadi, S.; Berman, D. MoVN-Cu coatings for in situ tribocatalytic formation of carbon-rich tribofilms in low-viscosity fuels. ACS Appl. Mater. Interfaces 2023, 15, 30070–30082. [Google Scholar] [CrossRef] [PubMed]
- Shirani, A.; Li, Y.; Smith, J.; Curry, J.; Lu, P.; Wilson, M.; Chandross, M.; Argibay, N.; Berman, D. Mechanochemically driven formation of protective carbon films from ethanol environment. Mater. Today Chem. 2022, 26, 101112. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A. Achieving Ultralow Friction and Wear by Tribocatalysis: Enabled by In-Operando Formation of Nanocarbon Films. ACS Nano 2021, 15, 18865–18879. [Google Scholar] [CrossRef] [PubMed]
- Huynh, K.K.; Pham, S.T.; Tieu, K.A.; Wan, S. Tribocatalysis Induced Carbon-Based Tribofilms—An Emerging Tribological Approach for Sustainable Lubrications. Lubricants 2023, 11, 327. [Google Scholar] [CrossRef]
- Fu, X.; Cao, L.; Wan, Y.; Li, R. Superlubricity achieved with TiN coatings via the in situ formation of a carbon-based film at the sliding interfaces. Ceram. Int. 2021, 47, 33917–33921. [Google Scholar] [CrossRef]
- Fu, X.; Guo, S.; Wan, Y.; Zheng, C.; Li, Q.; Liu, B. Superlubricity of TiN coating using glycerol with the addition of Cu nanoparticles. Tribol. Int. 2023, 181, 108327. [Google Scholar] [CrossRef]
- Ronkainen, H.; Likonen, J.; Koskinen, J.; Varjus, S. Effect of tribofilm formation on the tribological performance of hydrogenated carbon coatings. Surf. Coat. Technol. 1996, 79, 87–94. [Google Scholar] [CrossRef]
Steel | Fe wt.% | C wt.% | Cr wt.% | Mn wt.% | S wt.% | Si wt.% | P wt.% | Co wt.% | Mo wt.% | V wt.% | Ni wt.% | Cu wt.% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
52100 | Bal | 1.1 | 1.6 | 0.45 | 0.025 | 0.30 | 0.025 | - | - | - | - | - |
CF2 | Bal | 0.06 | - | 0.52 | - | - | - | - | - | - | 2.58 | 2.48 |
D2 | Bal | 1.3 | 12 | 0.6 | 0.03 | 0.6 | 0.03 | 1 | 0.8 | 1.10 | 0.3 | 0.03 |
Steels | Average Hardness (HV0.5) |
---|---|
Soft 52100 | 373 ± 15 |
Hard 52100 | 810 ± 14 |
Soft CF2 | 355 ± 10 |
Soft D2 | 371 ± 12 |
Hard D2 | 787 ± 15 |
Operating Parameter | Value |
---|---|
Applied Load | 10 N |
Maximum Contact Pressure | 1.01–1.18 GPa |
Stroke Length | 10 mm |
Temperature | 40 °C |
Frequency | 20 Hz |
Average Sliding Velocity | 400 mm/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macknojia, A.Z.; Montoya, V.L.; Cairns, E.; Eskandari, M.; Liu, S.; Chung, Y.-W.; Wang, Q.J.; Berkebile, S.P.; Aouadi, S.M.; Voevodin, A.A.; et al. Tribological Analysis of Steels in Fuel Environments: Impact of Alloy Content and Hardness. Appl. Sci. 2024, 14, 1898. https://doi.org/10.3390/app14051898
Macknojia AZ, Montoya VL, Cairns E, Eskandari M, Liu S, Chung Y-W, Wang QJ, Berkebile SP, Aouadi SM, Voevodin AA, et al. Tribological Analysis of Steels in Fuel Environments: Impact of Alloy Content and Hardness. Applied Sciences. 2024; 14(5):1898. https://doi.org/10.3390/app14051898
Chicago/Turabian StyleMacknojia, Ali Z., Vanessa L. Montoya, Euan Cairns, Mohammad Eskandari, Shuangbiao Liu, Yip-Wah Chung, Q. Jane Wang, Stephen P. Berkebile, Samir M. Aouadi, Andrey A. Voevodin, and et al. 2024. "Tribological Analysis of Steels in Fuel Environments: Impact of Alloy Content and Hardness" Applied Sciences 14, no. 5: 1898. https://doi.org/10.3390/app14051898