Extraction of Glycyrrhizic Acid from Glycyrrhiza uralensis Using Ultrasound and Its Process Extraction Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Reagents
2.3. Apparatus
2.4. Ultrasound-Assisted Extraction
2.5. Single Factor Experimental Design
2.6. Modeling Theoretical
2.7. HPLC Analyses
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Process Parameters
3.1.1. Effect of Ultrasonic Power
3.1.2. Effect of Ultrasonic Frequency
3.1.3. Effect of Extraction Temperature
3.2. Extraction Model for The Extraction Process of Glycyrrhizic Acid
3.3. Verification of Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, D.Q.; Wang, X.H.; Xia, L.P. Advancement of the clinical pharmacological research and application of licorice. China Pharm. 2000, 9, 55–56. [Google Scholar]
- Hu, J.F.; Shen, F.J. A survey of the studies on chemical constituents of Glycyrrhiza. Nat. Prod. Res. Dev. 1996, 8, 77–91. [Google Scholar]
- Zhou, Y.; Wang, M.K.; Liao, X.; Zhu, X.M.; Peng, S.L.; Ding, L.S. Rapid identification of compounds in Glycyrrhiza uralensis by liquid chromatography/Tandem mass spectrometry. Chin. J. Anal. Chem. 2004, 32, 174–178. [Google Scholar]
- Zhang, J.; Yao, J.; Ding, L. Advancement of research on the utilization of Glycyrrhiza. Grassl. Turf. 2000, 2, 12–17. [Google Scholar]
- Kersemans, M.; Martens, A.; Degrieck, J.; van den Abeele, K.; Delrue, S.; Pyl, L.; van Paepegem, W. The ultrasonic polar scan for composite characterization and damage assessment: Past, present and future. Appl. Sci. 2016, 6, 58. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, S.Y.; Kim, B.Y.; Lee, E.K.; Ryu, J.H.; Lim, G.B. Effect of modifier on supercritical CO2 extraction of glycyrrhizin from licorice and the morphology of licorice tissue after extraction. Biotechnol. Bioprocess Eng. 2004, 9, 447–453. [Google Scholar] [CrossRef]
- Tan, T.W.; Huo, Q.; Ling, Q. Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system. Biotechnol. Lett. 2002, 24, 1417–1420. [Google Scholar]
- Niu, G.G.; Xie, Y.C.; Lou, J.F.; Liu, H.Z. Isolation and purification of glycyrrhizic acid with solvent extraction. Sep. Purif. Technol. 2005, 44, 189–196. [Google Scholar] [CrossRef]
- Shen, S.; Chang, Z.; Liu, J.; Sun, X.; Hu, X.; Liu, H. Separation of glycyrrhizic acid and liquiritin from Glycyrrhiza uralensis Fisch extract by three-liquid-phase extraction systems. Sep. Purif. Technol. 2007, 53, 216–223. [Google Scholar] [CrossRef]
- Sun, C.; Xie, Y.; Liu, H. Microwave-assisted micellar extraction and glycyrrhizic acid and liquiritin in licorice. Chin. J. Chem. Eng. 2007, 15, 474–477. [Google Scholar] [CrossRef]
- Charpe, T.W.; Rathod, V.K. Extraction of glycyrrhizic acid from licorice root using ultrasound: Process intensification studies. Chem. Eng. Process. 2012, 54, 37–41. [Google Scholar] [CrossRef]
- Díaz, A.; Casas, M.T.; Puiggalí, J. Dispersion of functionalized silica micro-and nanoparticles into poly(nonamethyleneazelate) by ultrasonic micro-molding. Appl. Sci. 2015, 5, 1252–1271. [Google Scholar] [CrossRef]
- Zhao, L.; Fu, Y.; Chen, C.; Yang, W.; Hu, Q. Ultrasonic-assisted extraction and chromatography separation of polysaccharides from the base of flammulinavelutipes stipe. Sep. Sci. Technol. 2015, 50, 824–832. [Google Scholar] [CrossRef]
- Qiu, L.; Shao, Z.; Wang, W.; Wang, F.; Wang, J.; Wang, D.; Wang, Y. Enhanced Cyclability of C/Lithium iron phosphate cathodes with a novel water-soluble lithium-ion binder. Electrochim. Acta 2014, 145, 11–18. [Google Scholar] [CrossRef]
- Liao, J.; Zheng, N.; Qu, B. An improved ultrasonic-assisted extraction method by optimizing the ultrasonic frequency for enhancing the extraction efficiency of lycopene from tomatoes. Food Anal. Methods 2016, 9, 2288–2298. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Hu, X.; Zhou, Y.; Ding, C.; Yang, R.; Li, D. Optimization of ultrasound-assisted extraction of artemisinin from Artemisia annua L. by response surface methodology. Sep. Sci. Technol. 2014, 49, 673–681. [Google Scholar] [CrossRef]
- Li, D.J.; Song, J.F.; Xu, A.Q.; Liu, C.Q. Optimization of the ultrasound-assisted synthesis of lutein disuccinate using uniform design. Ultrason. Sonochem. 2014, 21, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, L.L.; Liu, T.T.; Zu, Y.G.; Yang, F.J.; Zhao, C.J.; Zhang, Z.H. Development of sample preparation method for isoliquiritigenin, liquiritin, and glycyrrhizic acid analysis in licorice by ionic liquids-ultrasound based extraction and high-performance liquid chromatography detection. Food Chem. 2013, 138, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sharma, R.; Pandotra, P.; Jaglan, S.; Gupta, A.P. Chromolithic method development, validation and system suitability analysis of ultra-sound assisted extraction of glycyrrhizic acid and glycyrrhetinic acid from Glycyrrhiza glabra. Nat. Prod. Commun. 2012, 7, 991–994. [Google Scholar] [PubMed]
- Pan, X.; Liu, H.; Jia, G.; Shu, Y.Y. Microwave-assisted extraction of glycyrrhizic acid from licorice root. Biochem. Eng. J. 2000, 5, 173–177. [Google Scholar] [CrossRef]
- Vorobiev, E.; Lebovka, N. Pulsed-electric-fields-induced effects in plant tissues: Fundamental aspects and perspectives of applications. In Electrotechnologies for Extraction from Food Plants and Biomaterials; Springer: New York, NY, USA, 2009; pp. 233–246. [Google Scholar]
- Van der Poel, P.; Schiweck, H.; Schwartz, T. Sugar Technology Beet and Cane Sugar Manufacture, Beet Sugar Development Foundation; Verlag Dr Albert Bartens KG: Denver, CO, USA, 1998; pp. 103–145. [Google Scholar]
- Jemai, A.B.; Vorobiev, E. Effect ofmoderate electric field pulses on the diffusion coefficient of soluble substance from apple slices. Int. J. Food Sci. Technol. 2002, 37, 73–86. [Google Scholar] [CrossRef]
- Wu, J.C.S.; Lee, E.H. Ultrafiltration of soybean oil/hexane extract by porous ceramic membranes. J. Membr. Sci. 1999, 154, 251–259. [Google Scholar]
- Pordesimo, H.; Li, L.; Weiss, J. High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int. 2004, 37, 731–738. [Google Scholar]
- Schwartzberg, H.G.; Chao, R.Y. Solute diffusivities in leaching processes. Food Technol. 1982, 36, 73–86. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; pp. 456–467. [Google Scholar]
- Schwartzberg, H.G. Mathematical analysis of solubilization kinetics and diffusion in foods. J. Food Sci. 1975, 40, 211–213. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitisvinifera L.)—A response surface approach. Ultrason. Sonochem. 2014, 21, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Yue, L.; Ouyang, W.; Wang, Z. A kinetic model for ultrasound-assisted extraction of geniposide from gardenia jasminoides. Sep. Sci. Technol. 2015, 50, 1518–1522. [Google Scholar] [CrossRef]
- Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles-Theoretical study. Ultrason. Sonochem. 2013, 20, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Fabiano-Tixier, A.S.; Vian, M.A.; Allaf, T.; Vorobiev, E. Solvent-free extraction of food and natural products. TrAC Trends Anal.Chem. 2015, 71, 157–168. [Google Scholar] [CrossRef]
- Hasegawa, H. Phase-sensitive 2D motion estimators using frequency spectra of ultrasonic echoes. Appl. Sci. 2016, 6, 195. [Google Scholar] [CrossRef]
- Liao, J.; Qu, B.; Liu, D.; Zheng, N. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency. Ultrason. Sonochem. 2015, 27, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Qu, B.; Xu, B. A novel on-line ultrasonic extraction system for determination of the optimal ultrasonic frequency for plant material. Anal. Methods 2015, 7, 336–341. [Google Scholar] [CrossRef]
- Carail, M.; Fabiano-Tixier, A.S.; Meullemiestre, A.; Chemat, F.; Caris-Veyrat, C. Effects of high power ultrasound on all-E-β-carotene, newly formed compounds analysis by ultra-high-performance liquid chromatography—Tandem mass spectrometry. Ultrason. Sonochem. 2015, 26, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Sun, D.W. Enhancement of food processes by ultrasound: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 70–594. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Pan, Z.; Ma, H. Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 2010, 99, 16–23. [Google Scholar] [CrossRef]
- Şahin, S.; İlbay, Z.; Kırbaşlar, Ş.İ. Study on optimum extraction conditions for olive leaf extracts rich in polyphenol and flavonoid. Sep. Sci. Technol. 2015, 50, 1181–1189. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
Ultrasonic Power (W) | 20 | 50 | 75 | 100 | 125 |
---|---|---|---|---|---|
Ce (g/L) | 2.397 | 2.754 | 3.425 | 3.696 | 4.208 |
λ (10−1 s−1) | 0.482 | 0.876 | 1.440 | 2.759 | 4.516 |
R2 | 0.998 | 0.999 | 0.997 | 0.999 | 0.996 |
Ultrasonic Frequency (kHz) | 20 | 30 | 40 | 55 | 90 |
---|---|---|---|---|---|
Ce (g/L) | 3.688 | 3.755 | 5.086 | 7.121 | 5.827 |
λ (10−1 s−1) | 1.088 | 1.026 | 1.275 | 1.922 | 2.645 |
R2 | 0.999 | 0.999 | 0.997 | 0.998 | 0.998 |
Extraction Temperature (°C) | 20 | 25 | 35 | 60 | 70 |
---|---|---|---|---|---|
Ce (g/L) | 2.623 | 2.853 | 3.226 | 4.786 | 6.289 |
λ (10−1 s−1) | 0.971 | 1.022 | 1.258 | 3.556 | 6.267 |
R2 | 0.996 | 0.998 | 0.997 | 0.999 | 0.998 |
Ultrasonic Power | Ultrasonic Frequency | Extraction Temperature | ||||||
---|---|---|---|---|---|---|---|---|
P (W) | RDmax a (%) | The Average of RD b (%) | f (kHz) | RDmax (%) | The Average of RD (%) | T (°C) | RDmax (%) | The Average of RD (%) |
20 | 6.25 | 1.25 | 20 | 5.54 | 2.02 | 20 | 5.22 | 1.88 |
50 | 3.09 | 0.96 | 30 | 5.98 | 3.36 | 25 | 4.31 | 1.97 |
75 | 5.62 | 2.37 | 40 | 7.69 | 4.36 | 35 | 8.74 | 4.21 |
100 | 7.98 | 3.66 | 55 | 4.33 | 1.85 | 60 | 6.32 | 2.65 |
125 | 4.65 | 1.99 | 90 | 8.21 | 4.05 | 70 | 3.10 | 1.02 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Qu, B.; Zheng, N. Extraction of Glycyrrhizic Acid from Glycyrrhiza uralensis Using Ultrasound and Its Process Extraction Model. Appl. Sci. 2016, 6, 319. https://doi.org/10.3390/app6110319
Liao J, Qu B, Zheng N. Extraction of Glycyrrhizic Acid from Glycyrrhiza uralensis Using Ultrasound and Its Process Extraction Model. Applied Sciences. 2016; 6(11):319. https://doi.org/10.3390/app6110319
Chicago/Turabian StyleLiao, Jiangqing, Baida Qu, and Nan Zheng. 2016. "Extraction of Glycyrrhizic Acid from Glycyrrhiza uralensis Using Ultrasound and Its Process Extraction Model" Applied Sciences 6, no. 11: 319. https://doi.org/10.3390/app6110319
APA StyleLiao, J., Qu, B., & Zheng, N. (2016). Extraction of Glycyrrhizic Acid from Glycyrrhiza uralensis Using Ultrasound and Its Process Extraction Model. Applied Sciences, 6(11), 319. https://doi.org/10.3390/app6110319