Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG
Abstract
:1. Introduction
2. Primary Theory
2.1. Fuzzy Entropy
- Assume that a time series is denoted as , where is the length of time series. Then, the mean of consecutive values can be calculated as follows:
- Suppose that (; ) is denoted as the maximum distance between and . Then, can be calculated according to Equation (3):
- Suppose that is denoted as a fuzzy function:
- is obtained from Equation (6):
- Repeat Steps (1)–(4) for obtaining dimensional vector , and can be described as
- The FE of time series can be calculated as follows:
2.2. Multiscale Fuzzy Entropy
2.3. Support Vector Machine
3. Description of Feature Extraction
4. Experimental Research
4.1. Data Source
4.2. Optimal Selection of Time Interval for MI-EEG
4.3. Multiscale Analysis
4.4. Construction of Feature Vector
4.5. The Parameters’ Independent Optimization of MFE
4.6. Comparison of Multi-Feature Extraction Methods
4.6.1. Comparison with Multiple Nonlinear Dynamic Methods
4.6.2. Comparison with Multiple Classical Feature Extraction Methods
4.7. Comparison of Multiple Recognition Methods
4.8. Computation Time
4.9. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ang, K.K.; Chua, K.S.; Phua, K.S.; Wang, C.; Chin, Z.Y.; Kuah, C.W. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 2015, 46, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, H.; Guan, C. Bayesian learning for spatial filtering in an EEG-based brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Recognition of motor imagery EEG based on AR and SVM. J. Huazhong Univ. Sci. Technol. 2011, 39, 103–106. [Google Scholar]
- Li, M.A.; Wang, R.; Hao, D.M. Feature extraction and classification of EEG for imagery left-right hands movement. Chin. J. Biomed. Eng. 2009, 28, 166–170. [Google Scholar]
- Boonnak, N.; Kamonsantiroj, S.; Pipanmaekaporn, L. Wavelet transform enhancement for drowsiness classification in EEG records using energy coefficient distribution and neural network. Int. J. Mach. Learn. 2015, 5, 288–293. [Google Scholar] [CrossRef]
- Nasihatkon, B.; Boostani, R.; Jahromi, M.Z. An efficient hybrid linear and kernel CSP approach for EEG feature extraction. Neurocomputing 2009, 73, 432–437. [Google Scholar] [CrossRef]
- Dornhege, G.; Blankertz, B.; Krauledat, M.; Losch, F.; Curio, G.; Müller, K.R. Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 2006, 53, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Lemm, S.; Blankertz, B.; Curio, G.; Müller, K.R. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 2005, 52, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Novi, Q.; Guan, C.; Dat, T.H.; Xue, P. Sub-band common spatial pattern (SBCSP) for brain-computer interface. In Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007.
- Kai, K.A.; Zheng, Y.C.; Zhang, H.; Guan, C. Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface. In Proceedings of the IEEE International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008; pp. 2390–2397.
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.H.; Noel, J.; Fernandez, J.R. Cognitive task discrimination using approximate entropy (ApEn) on EEG signals. In Proceedings of the 2013 ISSNIP Biosignals and Biorobotics Conference (BRC), Rio de Janeiro, Brazil, 18–20 February 2013; pp. 1–4.
- Zhang, Z.; Du, S.H.; Chen, Z.Y.; Tian, X.H.; Zhou, Y.; Zhang, Y. The application of approximate entropy and support vector machine in classifying signal of epilepsy. J. Biomed. Eng. Res. 2013, 32, 74–79. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, 2039–2049. [Google Scholar]
- Zhou, P.; Ge, J.Y.; Cao, H.B.; Zhang, S.; Wang, M.S. Classification of motor imagery based on sample entropy. Inf. Control 2008, 37, 191–196. [Google Scholar]
- Wang, L.; Xu, G.Z.; Yang, S.; Wang, J.; Guo, M.M.; Yan, W.L. Motor Imagery BCI Research Based on Sample Entropy and SVM. In Proceedings of the 2012 Sixth International Conference on Electromagnetic Field Problems and Applications (ICEF), Dalian, China, 19–21 June 2012; pp. 1–4.
- Chen, W.T.; Zhuang, J.; Yu, W.X.; Wang, Z.Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Luo, Z.Z. Motor imagery EEG feature extraction based on fuzzy entropy. J. Huazhong Univ. Sci. Technol. 2013, 41, 92–95. [Google Scholar]
- Xu, L.Q.; Liu, J.X.; Xiao, G.C.; Jin, W.D. Characterization and classification of EEG attention based on fuzzy entropy. J. Comput. Appl. 2012, 32, 3268–3270. [Google Scholar]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bruzzo, A.A.; Gesierich, B.; Santi, M.; Tassinari, C.A.; Birbaumer, N.; Rubboli, G. Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study. Neurol. Sci. 2008, 29, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, N.; Georgiou, J. The use of permutation entropy to characterize sleep electroencephalograms. Clin. EEG Neurosci. 2011, 42, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Fadlallah, B.; Chen, B.; Keil, A.; Príncipe, J. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E. 2013, 87, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Mammone, N.; Duunhenriksen, J.; Kjaer, T.; Morabito, F. Differentiating interictal and ictal states in childhood absence epilepsy through permutation Rényi entropy. Entropy 2015, 17, 4627–4643. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E. 2005, 71, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.Y.; Zhou, P.; Zhao, X.; Liu, H.Y.; Wang, M.S. Multiscale entropy analysis of EEG signal. Comput. Eng. Appl. 2009, 45, 13–15. [Google Scholar]
- Liu, M.M.; Ai, L.M. Application of multi-scale entropy for detecting driving fatigue in EEG. Comput. Technol. Dev. 2011, 21, 209–212. [Google Scholar]
- Aziz, W.; Arif, M. Multiscale Permutation Entropy of Physiological Time Series. In Proceedings of the 9th International Multitopic Conference, Karachi, Pakistan, 23–24 December 2005.
- Ouyang, G.X.; Li, J.; Liu, X.Z.; Li, X.L. Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis. Epilepsy Res. 2013, 104, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Morabito, F.C.; Labate, D.; Foresta, F.L.; Bramanti, A.; Morabito, G.; Palamara, I. Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy 2012, 7, 1186–1202. [Google Scholar] [CrossRef]
- Zheng, J.D.; Chen, M.J.; Cheng, J.S.; Yang, Y. Multiscale fuzzy entropy and its application in rolling bearing fault diagnosis. J. Vib. Eng. 2014, 27, 145–151. [Google Scholar]
- Azami, H.; Escudero, J. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals. Physica A 2017, 465, 261–276. [Google Scholar] [CrossRef]
- Li, M.A.; Guo, S.D.; Yang, J.F. A novel EEG feature extraction method based on OEMD and CSP algorithm. J. Intell. Fuzzy Syst. 2016, 30, 2971–2983. [Google Scholar]
- Blankertz, B.; Müller, K.R.; Curio, G.; Vaughan, T.M.; Schalk, G.; Wolpaw, J.R.; Schlögl, A.; Neuper, C.; Pfurtscheller, G.; Hinterberger, T.; et al. The BCI Competition 2003: Progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 2004, 5, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.J.; Wu, X.M. Feature extraction of electroencephalogram for imagery movement based on Mu/Beta rhythm. J. Clin. Rehabil. 2010, 14, 8061–8064. [Google Scholar]
- Liu, C.; Zhao, H.B.; Li, C.S.; Wang, H. CSP/SVM-based EEG classification of imagined hand movements. J. Northeast. Univ. 2010, 31, 1098–1101. [Google Scholar]
- Wu, Y.; Ge, Y.B. A novel method for motor imagery EEG adaptive classification based biomimetic pattern recognition. Neurocomputing 2013, 116, 280–290. [Google Scholar] [CrossRef]
- Su, S.J.; Fang, H.J.; Wang, G. EEG features extraction based on multi-parameter common spatio-spectral pattern algorithm. Microcomput. Appl. 2011, 30, 72–75. [Google Scholar]
- Xu, B.G.; Song, A.G.; Fei, S.M. Pattern recognition method of motor imagery tasks. Chin. J. Sci. Instrum. 2011, 32, 13–18. [Google Scholar]
- Wang, Y.R.; Li, X.; Li, H.H.; Shao, C.C.; Ying, L.J.; Wu, S.C. Feature extraction of motor imagery electroencephalography based on time-frequency-space domains. J. Biomed. Eng. 2014, 31, 955–961. [Google Scholar]
- Ren, Y.L. Electroencephalogram recognition of imaginary right and left hand movements by brain-computer interface. J. Clin. Rehabil. 2009, 13, 3370–3374. [Google Scholar]
- Li, F.; Qiu, T.S.; Ma, Z. Study on wavelet feature extraction and semi-supervised recognition of brain signal. Chin. J. Biomed. 2010, 29, 650–653. [Google Scholar]
- Li, D.M.; Wang, D.H.; Yan, J.; Wang, Y.T.; Song, M.L.; Yu, B.B. Movement imagery electroencephalogram recognition based on MOWDT. Comput. Eng. 2014, 10, 161–167. [Google Scholar]
- Zhang, X.P.; Fan, Y.L.; Yang, Y. On the classification of consciousness tasks based on the EEG singular spectrum entropy. Comput. Eng. Sci. 2009, 31, 117–120. [Google Scholar]
- Ren, Y.L. Applying wavelet packet entropy and BP neural networks in recognition of mental tasks. Comput. Appl. Softw. 2009, 26, 78–81. [Google Scholar]
- Yu, W.; Wan, D.L.; Yang, X.J.; Zhou, Y. An improved FCM algorithm and its application to EEG signal processing. J. Chongqing Univ. 2014, 37, 83–89. [Google Scholar]
- Yu, W.; Han, Q.; Ma, J.J.; Xie, P. EEG signal processing method based on EMD and SVM. J. Kunming Univ. Sci. Technol. 2012, 37, 38–42. [Google Scholar]
- Li, M.A.; Tian, X.X.; Sun, Y.J.; Yang, J.F. Adaptive recognition method based on improved-GHSOM for motor imagery EEG. Chin. J. Sci. Instrum. 2015, 36, 1064–1071. [Google Scholar]
Feature Vector | Classifier | Top Classification Rate (%) | Average Classification Rate with 10-Fold CV (%) |
---|---|---|---|
SVM | 96.43 | 88.93 | |
SVM | 100 | 90.36 |
Feature Extraction Method | Classifier | Top Classification Rate (%) | Average Classification Rate with 10-Fold CV (%) |
---|---|---|---|
MFE | SVM | 100 | 90.36 ± 2.67 |
IMFE | SVM | 100 | 92.14 ± 2.1 |
Feature Extraction | Classifier | Top Classification Rate (%) | Average Classification Rate with 10-Fold CV (%) |
---|---|---|---|
WT | Bayes | 89.29 | - |
ERD | LDA | 86.43 | - |
AR | LDA | 84.29 | - |
IMFE | SVM | 100 | 92.14 |
Reference Number | Feature Extraction | Classifier | Top Classification Rate (%) | Average Classification Rate with 10-Fold CV (%) |
---|---|---|---|---|
4 | WT | BP | 92.4 | - |
36 | WPT | LDA | 88.57 | - |
37 | CSP | SVM | 82.86 | - |
38 | CSP | BPR | 90 | - |
39 | CSSP | SVM | 87.14 | - |
40 | WT--AR | LDA | 92.86 | - |
41 | WT--ICA | GA--SVM | 90.71 | - |
42 | WT--PSD | LDA | 89.29 | - |
43 | WT--WE | Kmeans | 90.1 | - |
44 | MOWT | SVM | 91.8 | - |
45 | SSE | KNN | 85.16 | - |
46 | WPE | BP | 88.57 | - |
47 | EMD | FCM | 83 | - |
48 | EMD | PSO--SVM | 87.6 | - |
49 | PCA | GHSOM | 96 | - |
this paper | IMFE | SVM | 100 | 92.14 |
t-test | Channel | |||
---|---|---|---|---|
C3 | Cz | C4 | ||
Null hypothesis rejection | True | True | True | |
p value | 0.0037 | 2.4309 × 10−4 | 7.0122 × 10−6 | |
Test statistic | 2.7161 | 3.5727 | 4.5037 | |
Null hypothesis rejection | True | True | True | |
p value | 7.0122 × 10−6 | 0.0169 | 1.4949 × 10−8 | |
Test statistic | 4.5037 | 2.1425 | 5.8743 | |
Null hypothesis rejection | True | True | True | |
p value | 1.3387 × 10−6 | 0.0497 | 5.3877 × 10−17 | |
Test statistic | 4.8958 | 1.6591 | 9.4577 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.-a.; Liu, H.-n.; Zhu, W.; Yang, J.-f. Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG. Appl. Sci. 2017, 7, 92. https://doi.org/10.3390/app7010092
Li M-a, Liu H-n, Zhu W, Yang J-f. Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG. Applied Sciences. 2017; 7(1):92. https://doi.org/10.3390/app7010092
Chicago/Turabian StyleLi, Ming-ai, Hai-na Liu, Wei Zhu, and Jin-fu Yang. 2017. "Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG" Applied Sciences 7, no. 1: 92. https://doi.org/10.3390/app7010092
APA StyleLi, M.-a., Liu, H.-n., Zhu, W., & Yang, J.-f. (2017). Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG. Applied Sciences, 7(1), 92. https://doi.org/10.3390/app7010092