Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review
Abstract
:1. Introduction
2. Rare-Earth Active Ions for Phosphate Fiber Lasers
3. CW Phosphate Fiber Lasers and Amplifiers
3.1. Yb-Doped Phosphate Fiber Lasers and Amplifiers
3.2. Nd-Doped Phosphate Fiber Lasers and Amplifiers
3.3. Er and Yb/Er Co-Doped Phosphate Fiber Lasers and Amplifiers
4. CW Single-Frequency Phosphate Fiber Lasers and Amplifiers
4.1. Yb-Doped Single-Frequency Phosphate Fiber Lasers
4.2. Er and Yb/Er Co-Doped Single-Frequency Phosphate Fiber Lasers
5. Pulsed Phosphate Fiber Lasers and Amplifiers
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Snitzer, E. Optical maser action of Nd+3 in a barium crown glass. Phys. Rev. Lett. 1961, 7, 444–446. [Google Scholar] [CrossRef]
- Koester, C.J.; Snitzer, E. Amplification in a fiber laser. Appl. Opt. 1964, 7, 1182–1186. [Google Scholar] [CrossRef]
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives. J. Opt. Soc. Am. B 2010, 27, B63–B92. [Google Scholar] [CrossRef]
- Nilsson, J.; Payne, D.N. High-power fiber lasers. Science 2011, 332, 921–922. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.; Krol, D.; Hirao, K. Glasses for photonic applications. Int. J. Appl. Glass Sci. 2010, 1, 74–86. [Google Scholar] [CrossRef]
- Jiang, S.; Mendes, S.B.; Hu, Y.; Nunzi Conti, G.; Chavez-Pirson, A.; Kaneda, Y.; Luo, T.; Chen, Q.; Hocde, S.; Nguyen, D.T.; et al. Compact multimode pumped erbium-doped phosphate fiber amplifiers. Opt. Eng. 2003, 42, 2817–2820. [Google Scholar] [CrossRef]
- Qiu, T.; Li, L.; Schülzgen, A.; Temyanko, V.L.; Luo, T.; Jiang, S.; Mafi, A.; Moloney, J.V.; Peyghambarian, N. Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers. IEEE Photonics Technol. Lett. 2004, 16, 2592–2594. [Google Scholar] [CrossRef]
- Lee, Y.-W.; Sinha, S.; Digonnet, M.J.F.; Byer, R.L.; Jiang, S. 20 W single-mode Yb3+-doped phosphate fiber laser. Opt. Lett. 2006, 31, 3255–3257. [Google Scholar] [CrossRef] [PubMed]
- Izumitani, T.S. Optical Glass, 3rd ed.; American Institute of Physics: College Park, MD, USA, 1993; ISBN 0883185067. [Google Scholar]
- Seneschal, K.; Smektala, F.; Bureau, B.; Le Floch, M.; Jiang, S.; Luo, T.; Lucas, J.; Peyghambarian, N. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers. Mater. Res. Bull. 2005, 40, 1433–1442. [Google Scholar] [CrossRef]
- Hwang, B.-C.; Jiang, S.; Luo, T.; Watson, J.; Sorbello, G.; Peyghambarian, N. Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses. J. Opt. Soc. Am. B 2000, 17, 833–839. [Google Scholar] [CrossRef]
- Pugliese, D.; Boetti, N.G.; Lousteau, J.; Ceci-Ginistrelli, E.; Bertone, E.; Geobaldo, F.; Milanese, D. Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers. J. Alloys Compd. 2016, 657, 678–683. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Honkanen, S.; Najafi, S.I.; Peyghambarian, N. Cooperative upconversion effects on the performance of Er3+-doped phosphate glass waveguide amplifiers. J. Opt. Soc. Am. B 1997, 14, 1838–1845. [Google Scholar] [CrossRef]
- Jiang, C.; Hu, W.; Zeng, Q. Numerical analysis of concentration quenching model of Er3+-doped phosphate fiber amplifier. IEEE J. Quantum Electron. 2003, 39, 1266–1271. [Google Scholar] [CrossRef]
- Lee, Y.W.; Sinha, S.; Digonnet, M.J.F.; Byer, R.L.; Jiang, S. Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres. Electron. Lett. 2008, 44, 14–16. [Google Scholar] [CrossRef]
- Campbell, J.H.; Hayden, J.S.; Marker, A. High-power solid-state lasers: A laser glass perspective. Int. J. Appl. Glass Sci. 2011, 2, 3–29. [Google Scholar] [CrossRef]
- Boetti, N.G.; Lousteau, J.; Mura, E.; Abrate, S.; Milanese, D. CW cladding pumped phosphate glass fibre laser operating at 1.054 μm. In Proceedings of the 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 6–10 July 2014; IEEE: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- SciGlass-Glass Property Information System. Available online: http://www.akosgmbh.de/sciglass/sciglass.htm (accessed on 25 October 2017).
- Jiang, S. Erbium-doped phosphate fiber amplifiers. In Proceedings of the SPIE 5246, Active and Passive Optical Components for WDM Communications III, Information Technologies and Communications (ITCom 2003), Orlando, FL, USA, 7–11 September 2003; SPIE: Bellingham, DC, USA, 2003. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, W.; Zong, J.; Nguyen, D.; Norwood, R.A.; Chavez-Pirson, A.; Peyghambarian, N. 976 nm single-frequency distributed Bragg reflector fiber laser. Opt. Lett. 2012, 37, 4167–4169. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Petersen, E.B.; Leigh, M.; Zong, J.; Yao, Z.; Chavez-Pirson, A.; Peyghambarian, N. High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band. Opt. Express 2009, 17, 8237–8245. [Google Scholar] [CrossRef] [PubMed]
- Zervas, M.N.; Codemard, C.A. High power fiber lasers: A review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 1–23. [Google Scholar] [CrossRef]
- Pask, H.M.; Carman, R.J.; Hanna, D.C.; Tropper, A.C.; Mackechnie, C.J.; Barber, P.R.; Dawes, J.M. Ytterbium-doped silica fiber lasers: Versatile sources for the 1–12 μm region. IEEE J. Sel. Top. Quantum Electron. 1995, 1, 2–13. [Google Scholar] [CrossRef]
- Digonnet, M.J.F. Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 2001; ISBN 0-8247. [Google Scholar]
- Boetti, N.G.; Negro, D.; Lousteau, J.; Freyria, F.S.; Bonelli, B.; Abrate, S.; Milanese, D. Spectroscopic investigation of Nd3+ single doped and Eu3+/Nd3+ co-doped phosphate glass for solar pumped lasers. J. Non-Cryst. Solids 2013, 377, 100–104. [Google Scholar] [CrossRef]
- Boetti, N.G.; Lousteau, J.; Negro, D.; Mura, E.; Scarpignato, G.C.; Perrone, G.; Abrate, S. Solar pumping of solid state lasers for space mission: A novel approach. In Proceedings of the International Conference on Space Optics 2012, Ajaccio, France, 9–12 October 2012; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
- Ceci-Ginistrelli, E.; Smith, C.; Pugliese, D.; Lousteau, J.; Boetti, N.G.; Clarkson, W.A.; Poletti, F.; Milanese, D. Nd-doped phosphate glass cane laser: From materials fabrication to power scaling tests. J. Alloys Compd. 2017, 722, 599–605. [Google Scholar] [CrossRef]
- Dubinskii, M.; Zhang, J.; Ter-Mikirtychev, V. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency. Opt. Lett. 2009, 34, 1507–1509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fromzel, V.; Dubinskii, M. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency. Opt. Express 2011, 19, 5574–5578. [Google Scholar] [CrossRef] [PubMed]
- Gapontsev, V.P.; Matitsin, S.M.; Isineev, A.A.; Kravchenko, V.B. Erbium glass lasers and their applications. Opt. Laser Technol. 1982, 14, 189–196. [Google Scholar] [CrossRef]
- Reisfeld, R.; Jørgensen, C.K. Excited state phenomena in vitreous materials. In Handbook on the Physics and Chemistry of Rare Earths, 1st ed.; Gschneidner, K.A., Eyring, L., Eds.; Elsevier Science Publishers B.V.: North-Holland, The Netherlands, 1987; Volume 9, pp. 1–99. ISBN 978-0444820143. [Google Scholar]
- Bufetov, I.A.; Semenov, S.L.; Kosolapov, A.F.; Mel’kumov, M.A.; Dudin, V.V.; Galagan, B.I.; Denker, B.I.; Osiko, V.V.; Sverchkov, S.E.; Dianov, E.M. Ytterbium fibre laser with a heavily Yb3+-doped glass fibre core. Quantum Electron. 2006, 36, 189–191. [Google Scholar] [CrossRef]
- Payne, S.A.; Marshall, C.D.; Bayramian, A.; Wilke, G.D.; Hayden, J.S. Laser properties of a new average-power Nd-doped phosphate glass. Appl. Phys. B 1995, 61, 257–266. [Google Scholar] [CrossRef]
- Lafond, C.; Osouf, J.; Laperle, P.; Soucy, J.-L.; Desrosiers, C.; Morency, S.; Croteau, A.; Parent, A. Er3+-Yb3+ co-doped phosphate glass optical fiber for application at 1.54 microns. In Proceedings of the SPIE 6343, Photonics North 2006, Quebec City, QC, Canada, 19–22 June 2006; SPIE: Bellingham, WA, USA, 2006. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Chavez-Pirson, A.; Jiang, S.; Peyghambarian, N. A novel approach of modeling cladding-pumped highly Er–Yb co-doped fiber amplifiers. IEEE J. Quantum Electron. 2007, 43, 1018–1027. [Google Scholar] [CrossRef]
- Snitzer, E.; Po, H.; Hakimi, F.; Tumminelli, R.; McCollum, B.C. Double clad, offset core Nd fiber laser. In Proceedings of the Optical Fiber Sensors 1988, New Orleans, LA, USA, 27 January 1988; OSA: Washington, DC, USA, 1988. [Google Scholar] [CrossRef]
- IPG Set to Ship 100 kW Laser. Available online: http://optics.org/news/3/10/44 (accessed on 25 October 2017).
- Stiles, E. New developments in IPG fiber laser technology. In Proceedings of the 5th International Workshop on Fiber Lasers, Dresden, Germany, 30 September–1 October 2009. [Google Scholar]
- Jeong, Y.; Yoo, S.; Codemard, C.A.; Nilsson, J.; Sahu, J.K.; Payne, D.N.; Horley, R.; Turner, P.W.; Hickey, L.; Harker, A.; et al. Erbium:Ytterbium codoped large-core fiber laser with 297-W continuous-wave output power. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 573–579. [Google Scholar] [CrossRef]
- Ehrenreich, T.; Leveille, R.; Majid, I.; Tankala, K.; Rines, G.; Moulton, P. 1-kW, all-glass Tm:fiber laser. In Proceedings of the Fiber Lasers VII: Technology, Systems, and Applications, San Francisco, CA, USA, 25–28 January 2010; SPIE: Bellingham, DC, USA, 2010. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, L.; Ding, J.; Wei, W. Design, fabrication, and optical gain performance of the gain-guided and index-antiguided Nd3+-doped phosphate glass fiber. J. Opt. Soc. Am. B 2017, 34, 998–1003. [Google Scholar] [CrossRef]
- Wang, L.; He, D.; Hu, L.; Chen, D. Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding. Laser Phys. 2015, 25, 045108. [Google Scholar] [CrossRef]
- Lee, Y.-W.; Digonnet, M.J.F.; Sinha, S.; Urbanek, K.E.; Byer, R.L.; Jiang, S. High-power Yb3+-doped phosphate fiber amplifier. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 93–102. [Google Scholar] [CrossRef]
- Franczyk, M.; Stępień, R.; Piechal, B.; Pysz, D.; Stawicki, K.; Siwicki, B.; Buczyński, R. High efficiency Yb3+-doped phosphate single-mode fibre laser. Laser Phys. Lett. 2017, 14, 105102. [Google Scholar] [CrossRef]
- Yamashita, T. Nd- and Er-doped phosphate glass for fiber laser. In Proceedings of the SPIE 1171, Fiber Laser Sources and Amplifiers, OE/FIBERS’89, Boston, MA, USA, 5–8 September 1989; SPIE: Bellingham, WA, USA, 1989. [Google Scholar] [CrossRef]
- Griebner, U.; Koch, R.; Schönnagel, H.; Grunwald, R. Efficient laser operation with nearly diffraction-limited output from a diode-pumped heavily Nd-doped multimode fiber. Opt. Lett. 1996, 21, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, M.; Yu, C.; Zhou, Q.; Qiu, J.; Hu, L.; Chen, D. Efficient generation of watt-level output from short-length Nd-doped phosphate fiber lasers. IEEE Photonics Technol. Lett. 2011, 23, 350–352. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, C.L.; Wang, M.; Zhou, Q.L.; Qiu, J.R.; Hu, L.L.; Chen, D.P. Local-cooled watt-level Nd-doped phosphate single-mode fiber laser. Laser Phys. 2012, 22, 1235–1239. [Google Scholar] [CrossRef]
- Délen, X.; Piehler, S.; Didierjean, J.; Aubry, N.; Voss, A.; Ahmed, M.A.; Graf, T.; Balembois, F.; Georges, P. 250 W single-crystal fiber Yb: YAG laser. Opt. Lett. 2012, 37, 2898–2900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhou, Q.; Yu, C.; Hu, L.; Chen, D. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding. Opt. Lett. 2012, 37, 2259–2261. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, H.; He, D.; Yu, C.; Hu, L.; Qiu, J.; Chen, D. Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power. Appl. Phys. Lett. 2014, 104, 131111. [Google Scholar] [CrossRef]
- Wang, L.; He, D.; Feng, S.; Yu, C.; Hu, L.; Chen, D. Seven-core Neodymium-doped phosphate all-solid photonic crystal fibers. Laser Phys. 2016, 26, 015104. [Google Scholar] [CrossRef]
- Jiang, S.; Hwang, B.-C.; Luo, T.; Seneschal, K.; Peyghambarian, N.; Smektala, F.; Honkanen, S.; Lucas, J. Net gain of 15.5 dB from a 5.1 cm-long Er3+-doped phosphate glass fiber. In Proceedings of the Optical Fiber Communication (OFC) Conference 2000, Baltimore, MD, USA, 7–10 March 2000; OSA: Washington, DC, USA, 2000. [Google Scholar]
- Hwang, B.-C.; Jiang, S.; Luo, T.; Seneschal, K.; Sorbello, G.; Morrell, M.; Smektala, F.; Honkanen, S.; Lucas, J.; Peyghambarian, N. Performance of high-concentration Er3+-doped phosphate fiber amplifiers. IEEE Photonics Technol. Lett. 2001, 13, 197–199. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, S.; Luo, T.; Seneschal, K.; Morrell, M.; Smektala, F.; Honkanen, S.; Lucas, J.; Peyghambarian, N. Performance of high-concentration Er3+-Yb3+-codoped phosphate fiber amplifiers. IEEE Photonics Technol. Lett. 2001, 13, 657–659. [Google Scholar] [CrossRef]
- Xu, S.H.; Yang, Z.M.; Feng, Z.M.; Zhang, Q.Y.; Jiang, Z.H.; Xu, W.C. Gain and noise characteristics of single-mode Er3+/Yb3+ co-doped phosphate glass fibers. In Proceedings of the 2nd IEEE Nanoelectronics Conference (INEC) 2008, Shanghai, China, 24–27 March 2008; IEEE: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Boetti, N.G.; Scarpignato, G.C.; Lousteau, J.; Pugliese, D.; Bastard, L.; Broquin, J.-E.; Milanese, D. High concentration Yb-Er co-doped phosphate glass for optical fiber amplification. J. Opt. 2015, 17, 065705. [Google Scholar] [CrossRef]
- Kuhn, V.; Kracht, D.; Neumann, J.; Weßels, P. Er-doped single-frequency photonic crystal fiber amplifier with 70 W of output power for gravitational wave detection. In Proceedings of the SPIE 8237, Fiber Lasers IX: Technology, Systems, and Application (SPIE LASE 2012), San Francisco, CA, USA, 21–26 January 2012; SPIE: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Canat, G.; Augère, B.; Besson, C.; Dolfi-Bouteyre, A.; Durecu, A.; Goular, D.; Le Gouët, J.; Lombard, L.; Planchat, C.; Valla, M. High peak power single-frequency MOPFA for Lidar applications. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; OSA: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Shi, W.; Leigh, M.A.; Zong, J.; Yao, Z.; Nguyen, D.T.; Chavez-Pirson, A.; Peyghambarian, N. High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 377–384. [Google Scholar] [CrossRef]
- Leger, J.R.; Nilsson, J.; Huignard, J.P.; Napartovich, A.P.; Shay, T.M.; Shirakawa, A. Introduction to the issue on laser beam combining and fiber laser systems. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 237–239. [Google Scholar] [CrossRef]
- Claps, R.; Sabbaghzadeh, J.; Fink, M. Raman spectroscopy with a single-frequency, high power, broad-area laser diode. Appl. Spectrosc. 1999, 53, 491–496. [Google Scholar] [CrossRef]
- Fu, S.; Shi, W.; Feng, Y.; Zhang, L.; Yang, Z.; Xu, S.; Zhu, X.; Norwood, R.A.; Peyghambarian, N. Review of recent progress on single-frequency fiber lasers. J. Opt. Soc. Am. B 2017, 34, A49–A62. [Google Scholar] [CrossRef]
- Balliu, E.; Engholm, M.; Hellström, J.; Elgcrona, G.; Karlsson, H. Compact nanosecond pulsed single stage Yb-doped fiber amplifier. In Proceedings of the SPIE 8959, Solid State Lasers XXIII: Technology and Devices (SPIE LASE 2014), San Francisco, CA, USA, 1–6 February 2014; SPIE: Bellingham, DC, USA, 2014. [Google Scholar] [CrossRef]
- Mermelstein, M.D.; Andrejco, M.J.; Fini, J.; Yablon, A.; Headley, C.; Di Giovanni, D.J.; McCurdy, A.H. 11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber. In Proceedings of the SPIE 6873, Fiber Lasers V: Technology, Systems, and Application, Lasers and Applications in Science and Engineering (SPIE LASE 2008), San Jose, CA, USA, 22–24 January 2008; SPIE: Bellingham, DC, USA, 2008. [Google Scholar] [CrossRef]
- Liu, A. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient. Opt. Express 2007, 15, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Products. Available online: http://www.npphotonics.com/ (accessed on 25 October 2017).
- Kaneda, Y.; Spiegelberg, C.; Geng, J.; Hu, Y.; Luo, T.; Wang, J.; Jiang, S. 200-mW, narrow-linewidth 1064.2-nm Yb-doped fiber laser. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO) 2004, San Francisco, CA, USA, 16–21 May 2004; OSA: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Xu, S.; Yang, Z.; Zhang, W.; Wei, X.; Qian, Q.; Chen, D.; Zhang, Q.; Shen, S.; Peng, M.; Qiu, J. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Opt. Lett. 2011, 36, 3708–3710. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, C.; Zhang, W.; Mo, S.; Yang, C.; Wei, X.; Feng, Z.; Qian, Q.; Shen, S.; Peng, M.; et al. Low noise single-frequency single-polarization Ytterbium-doped phosphate fiber laser at 1083 nm. Opt. Lett. 2013, 38, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhao, Q.; Feng, Z.; Peng, M.; Yang, Z.; Xu, S. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser. Opt. Express 2016, 24, 29794–29799. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhu, X.; Temyanko, V.; LaComb, L.; Norwood, R.; Peyghambarian, N. Power scaling of single-frequency fiber amplifiers at 976 nm. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; OSA: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, X.; Temyanko, V.; LaComb, L.; Kotov, L.; Kiersma, K.; Zong, J.; Li, M.; Chavez-Pirson, A.; Norwood, R.A.; et al. Yb3+-doped double-clad phosphate fiber for 976 nm single-frequency laser amplifiers. Opt. Mater. Express 2017, 7, 1310–1316. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, G.; Shi, W.; Zong, J.; Wiersma, K.; Nguyen, D.; Norwood, R.A.; Chavez-Pirson, A.; Peyghambarian, N. 976 nm Single-polarization single-frequency Ytterbium-doped phosphate fiber amplifiers. IEEE Photonics Technol. Lett. 2013, 25, 1365–1368. [Google Scholar] [CrossRef]
- Mo, S.; Xu, S.; Huang, X.; Zhang, W.; Feng, Z.; Chen, D.; Yang, T.; Yang, Z. A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser. Opt. Express 2013, 21, 12419–12423. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xu, S.; Yang, Q.; Lin, W.; Mo, S.; Li, C.; Feng, Z.; Chen, D.; Yang, Z.; Jiang, Z. High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers. Appl. Phys. Express 2014, 7, 062702. [Google Scholar] [CrossRef]
- Spiegelberg, C.; Geng, J.; Hu, Y.; Luo, T.; Kaneda, Y.; Wang, J.; Li, W.; Brutsch, M.; Hocde, S.; Chen, M.; et al. Compact 100 mW fiber laser with 2 kHz linewidth. In Proceedings of the Optical Fiber Communications Conference (OFC), Atlanta, GA, USA, 23–28 March 2003; IEEE: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Hofmann, P.; Voigtländer, C.; Nolte, S.; Peyghambarian, N.; Schülzgen, A. 550-mW output power from a narrow linewidth all-phosphate fiber laser. J. Lightwave Technol. 2013, 31, 756–760. [Google Scholar] [CrossRef]
- Qiu, T.; Suzuki, S.; Schülzgen, A.; Li, L.; Polynkin, A.; Temyanko, V.; Moloney, J.V.; Peyghambarian, N. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers. Opt. Lett. 2005, 30, 2748–2750. [Google Scholar] [CrossRef] [PubMed]
- Morkel, P.R.; Jedrzejewski, K.P.; Taylor, E.R. Q-switched Neodymium-doped phosphate glass fiber lasers. IEEE J. Sel. Top. Quantum Electron. 1993, 29, 2178–2188. [Google Scholar] [CrossRef]
- Kaneda, Y.; Hu, Y.; Spiegelberg, C.; Geng, J.; Jiang, S. Single-frequency, all-fiber Q-switched laser at 1550-nm. In Proceedings of the Advanced Solid-State Photonics, Santa Fe, NM, USA, 1–4 February 2004; OSA: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Leigh, M.; Shi, W.; Zong, J.; Wang, J.; Jiang, S.; Peyghambarian, N. Compact, single-frequency all-fiber Q-switched laser at 1 μm. Opt. Lett. 2007, 32, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Yoshida, T.; Set, S.Y.; Polynkin, P.; Peyghambarian, N. Passively mode-locked short-cavity 10 GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes. In Proceedings of the SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications (SPIE LASE 2007), San Jose, CA, USA, 20–25 January 2007; SPIE: Bellingham, DC, USA, 2007. [Google Scholar] [CrossRef]
- Ye, N.N.; Pan, Z.Q.; Yang, F.; Ye, Q.; Cai, H.W.; Qu, R.H. 7-GHz high-repetition-rate mode-locked pulse generation using short-cavity phosphate glass fiber laser. Laser Phys. 2012, 22, 1247–1251. [Google Scholar] [CrossRef]
- Thapa, R.; Nguyen, D.; Zong, J.; Chavez-Pirson, A. All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber. Opt. Lett. 2014, 39, 1418–1421. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Fang, Q.; Zhu, X.; Norwood, R.A.; Peyghambarian, N. Fiber lasers and their applications. Appl. Opt. 2014, 53, 6554–6568. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: Cambridge, MA, USA, 2012; ISBN 9780123970237. [Google Scholar]
- Kovalev, V.I.; Harrison, R.G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers. Opt. Lett. 2006, 31, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, N.; Imai, T. Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling. J. Lightwave Technol. 1993, 11, 1518–1522. [Google Scholar] [CrossRef]
- Chavez Boggio, J.M.; Marconi, J.D.; Fragnito, H.L. Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions. J. Lightwave Technol. 2005, 23, 3808–3814. [Google Scholar] [CrossRef]
- Shi, W.; Petersen, E.B.; Yao, Z.; Nguyen, D.T.; Zong, J.; Stephen, M.A.; Chavez-Pirson, A.; Peyghambarian, N. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm. Opt. Lett. 2010, 35, 2418–2420. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.; Shi, W.; Chavez-Pirson, A.; Peyghambarian, N. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses. Appl. Opt. 2012, 51, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, M.; Miller, A.; Wiersma, K.; Zong, J.; Rhonehouse, D.; Nguyen, D.T.; Chavez-Pirson, A. High energy, high average and peak power phosphate-glass fiber amplifiers for 1 micron band. In Proceedings of the SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications (SPIE LASE 2014), San Francisco, CA, USA, 1–6 February 2014; SPIE: Bellingham, WA, USA, 2014. [Google Scholar] [CrossRef]
Parameter | Ytterbium | Neodymium | Erbium |
---|---|---|---|
Absorption cross-section (cm2) | ~1.6 × 10−20 2F7/2 → 2F5/2 | ~2.0 × 10−20 4I9/2 → 2H9/2 + 4F5/2 | ~1.5 × 10−21 |
4I15/2 → 4I11/2 | |||
~6.6 × 10−21 | |||
4I15/2 → 4I13/2 | |||
Emission cross-section (cm2) | 1.4 × 10−20 | ~2.4 × 10−20 | ~7.0 × 10−21 |
2F5/2 → 2F7/2 | 4F3/2 → 4I11/2 | 4I13/2 → 4I15/2 | |
Doping level (ions/cm3) | 1.4 × 1021 | ~2.7 × 1020 | 4.0 × 1020 |
Excited state lifetime (ms) | 1.2 | 0.3 | 8.0 |
2F5/2 → 2F7/2 | 4F3/2 → 4I11/2 | 4I13/2 → 4I15/2 |
Fiber Type [Reference] | RE Doping Concentration | λpump (nm) | λsignal (nm) | Output Power (W) | Slope Efficiency (%) | Gain Length (cm) |
---|---|---|---|---|---|---|
Yb3+-doped multi-mode [8] | 12 wt % | 940 | 1064 | 20 | 34.4 | 84.6 |
Yb3+-doped single-mode [43] | 12 wt % | 977 | 1064 | 57 | 56.7 | 71.6 |
Nd3+-doped multi-mode [47] | 3.5 × 1020 Nd3+/cm3 | 795 | 1053 | 2.9 | 44.7 | 26 |
Nd3+-doped single-mode [48] | 3.5 × 1020 Nd3+/cm3 | 808 | 1053 | 1.4 | 34.1 | 21 |
Nd3+-doped single-mode PCF [52] | 3 wt % | 793 | 1053 | 15.5 | 57 | 25 |
Yb3+/Er3+ co-doped multi-mode [7] | 8.6 × 1020 Yb3+/cm3 1.1 × 1020 Er3+/cm3 | 976 | 1535 | 9.3 | 39 | 7.0 |
Yb3+/Er3+ co-doped single-mode [7] | 8.6 × 1020 Yb3+/cm3 1.1 × 1020 Er3+/cm3 | 976 | 1535 | 4.0 | 39 | 7.1 |
Fiber Type [Reference] | RE Doping Concentration | λpump (nm) | λsignal (nm) | Output Power (mW) | Slope Efficiency (%) | Gain Length (cm) | Linewidth (kHz) |
---|---|---|---|---|---|---|---|
Yb3+-doped [69] | 15.2 wt % | 976 | 1064 | 400 | 72.7 | 0.8 | <7 |
Yb3+-doped [20] | 6 wt % | 915 | 976 | 100 | 25 | 2 | <3 |
Yb3+-doped [75] | 15.2 wt % | 976 | 1014 | 164 | 21.9 | 0.5 | <7 |
Yb3+-doped [70] | 18.3 wt % | 976 | 1083 | 100 | 29.6 | 1.8 | <2 |
Yb3+/Er3+ co-doped [78] | 8 wt % Yb2O3 | 975 | 1538 | 550 | 12 | 7 | <60 |
1 wt % E2O3 | |||||||
Yb3+/Er3+ co-doped [79] | 8.6 × 1020 Yb3+/cm3 | 976 | 1550 | 1600 | 5 | - | 5.5 |
1.1 × 1020 Er3+/cm3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boetti, N.G.; Pugliese, D.; Ceci-Ginistrelli, E.; Lousteau, J.; Janner, D.; Milanese, D. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review. Appl. Sci. 2017, 7, 1295. https://doi.org/10.3390/app7121295
Boetti NG, Pugliese D, Ceci-Ginistrelli E, Lousteau J, Janner D, Milanese D. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review. Applied Sciences. 2017; 7(12):1295. https://doi.org/10.3390/app7121295
Chicago/Turabian StyleBoetti, Nadia Giovanna, Diego Pugliese, Edoardo Ceci-Ginistrelli, Joris Lousteau, Davide Janner, and Daniel Milanese. 2017. "Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review" Applied Sciences 7, no. 12: 1295. https://doi.org/10.3390/app7121295
APA StyleBoetti, N. G., Pugliese, D., Ceci-Ginistrelli, E., Lousteau, J., Janner, D., & Milanese, D. (2017). Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review. Applied Sciences, 7(12), 1295. https://doi.org/10.3390/app7121295