Scattering Characteristics of X-, C- and L-Band PolSAR Data Examined for the Tundra Environment of the Tuktoyaktuk Peninsula, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site Description
2.2. Database
2.2.1. Land Cover Reference
2.2.2. Polarimetric SAR Data and Decompositions
2.3. Correlation, Class Separability, and Feature Selection
3. Results
3.1. Corrleation
3.2. Backscatter Characterisics
3.3. Class Separability and Feature Selection
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Jeffries, M.; Morris, K.; Liston, G. A method to determine lake depth and water availability on the North Slope of Alaska with spaceborne imaging radar and numerical ice growth modelling. ARCTIC 1996, 49, 367–374. [Google Scholar] [CrossRef]
- Kozlenko, N.; Jeffries, M. Bathymetric mapping of shallow water in thaw lakes on the North Slope of Alaska with spaceborne imaging radar. ARCTIC 2000, 53, 306–316. [Google Scholar] [CrossRef]
- Hall-Atkinson, C.; Smith, L.C. Delineation of delta ecozones using interferometric SAR phase coherence Mackenzie River Delta, N.W.T., Canada. Remote Sens. Environ. 2001, 78, 229–238. [Google Scholar] [CrossRef]
- Hugenholtz, C.; Sanden, V.-D.J. Polarimetric SAR for Geomorphic Mapping in the Intertidal Zone, Minas Basinm Bay of Fundy, Nova Scotia; Natural Resources Canada & Canadian Center for Remote Sensing: Ottawa, ON, Canada, 2011; pp. 1–28. [Google Scholar]
- May, I.; Ludwig, R.; Bernier, M. Using TerraSAR-X imagery for the monitoring of permafrost dynamics in Northern Quebec. In Proceedings of the 4th TerraSAR-X Science Team Meeting, Oberpfaffenhofen, Germany, 14–16 February 2011; pp. 1–8. [Google Scholar]
- Banks, S.N.; King, D.J.; Merzouki, A.; Duffe, J.; Solomon, S. Assessing Radarsat-2 polarimetric SAR for mapping shoreline cleanup and assessment technique (SCAT) classes in the Canadian. In Proceedings of the 32nd Canadian Symposium on Remote Sensing, Sherbrooke, QC, Canada, 13–16 June 2011; pp. 1–8. [Google Scholar]
- Banks, S.; King, D.; Merzouki, A.; Duffe, J. Assessing RADARSAT-2 for mapping shoreline cleanup and assessment technique (SCAT) classes in the Canadian Arctic. Can. J. Remote Sens. 2014, 40, 243–267. [Google Scholar] [CrossRef]
- Sobiech, J.; Boike, J.; Dierking, W. Observation of melt onset in an arctic tundra landscape using high resolution TerraSAR-X and RADARSAT-2 data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 3552–3555. [Google Scholar]
- Regmi, P.; Grosse, G.; Jones, M.; Jones, M.; Anthony, K. Characterizing post-drainage succession in thermokarst lake basins on the Seward Peninsula, Alaska with TerraSAR-X backscatter and Landsat-based NDVI data. Remote Sens. 2012, 4, 3741–3765. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Stockamp, J.; Hajnsek, I.; Ludwig, R. Identification of Soil Freezing and Thawing States Using SAR Polarimetry at C-band. Remote Sens. 2014, 6, 2008–2023. [Google Scholar] [CrossRef]
- Ullmann, T.; Schmitt, A.; Roth, A.; Duffe, J.; Dech, S.; Hubberten, H.-W.; Baumhauer, R. Land Cover Characterization and Classification of Arctic Tundra Environments by Means of Polarized Synthetic Aperture X- and C-Band Radar (PolSAR) and Landsat 8 Multispectral Imagery—Richards Island, Canada. Remote Sens. 2014, 6, 8565–8593. [Google Scholar] [CrossRef]
- Collingwood, A.; Treitz, P.; Charbonneau, F.; Atkinson, D. Artificial neural network modelling of high arctic phytomass using synthetic aperture radar and multispectral data. Remote Sens. 2014, 6, 2134–2153. [Google Scholar] [CrossRef]
- Banks, S.; Millard, K.; Pasher, J.; Richardson, M.; Wang, H.; Duffe, J. Assessing the Potential to Operationalize Shoreline Sensitivity Mapping: Classifying Multiple Wide Fine Quadrature Polarized RADARSAT-2 and Landsat 5 Scenes with a Single Random Forest Model. Remote Sens. 2015, 7, 13528–13563. [Google Scholar] [CrossRef]
- Ullmann, T.; Schmitt, A.; Jagdhuber, T. Two Component Decomposition of Dual Polarimetric HH/VV SAR Data: Case Study for the Tundra Environment of the Mackenzie Delta Region, Canada. Remote Sens. 2016, 8, 1027. [Google Scholar] [CrossRef]
- Widhalm, B.; Bartsch, A.; Leibmann, M.; Khomutov, A. Active-layer thickness estimation from X-band SAR backscatter intensity. Cryosphere 2017, 11, 483–496. [Google Scholar]
- Brisco, B.; Short, N.; Budkewitsch, P.; Murnaghan, K.; Charbonneau, F. SAR interferometry and polarimetry for mapping and monitoring permafrost in Canada. In Proceedings of the 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry (PolInSAR 2009), Frascati, Italy, 26–30 January 2009; pp. 1–4. [Google Scholar]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Short, N.; LeBlanc, A.-M.; Sladen, W.; Oldenborger, G.; Mathon-Dufour, V.; Brisco, B. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada. Remote Sens. Environ. 2014, 141, 40–51. [Google Scholar] [CrossRef]
- Schaefer, T. Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar. Remote Sens. 2015, 7, 3735–3759. [Google Scholar] [CrossRef]
- Iwahana, G.; Uchida, M.; Liu, L.; Gong, W.; Meyer, F.J.; Guritz, R.; Yamanokuchi, T.; Hinzman, L. InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR. Remote Sens. 2016, 8, 218. [Google Scholar] [CrossRef]
- Jia, Y.; Kim, J.-W.; Shum, C.K.; Lu, Z.; Ding, X.; Zhang, L.; Erkan, K.; Kuo, C.-Y.; Shang, K.; Tseng, K.-H.; et al. Characterization of Active Layer Thickening Rate over the Northern Qinghai-Tibetan Plateau Permafrost Region Using ALOS Interferometric Synthetic Aperture Radar Data, 2007–2009. Remote Sens. 2017, 9, 84. [Google Scholar] [CrossRef]
- Larsen, J.; Anisimov, O.; Constable, A.; Hollowed, A.B.; Maynard, N.; Prestrud, P.; Prowse, T.; Stone, J. Polar Regions. In Climate Change 2014: Impacts, Adaptation, and Vulnerability—Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1567–1612. [Google Scholar]
- Lawrence, D.M.; Slater, A.G.; Tomas, R.A.; Holland, M.M.; Deser, C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett. 2008, 35, L11506. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Smith, S.L.; Christiansen, H.H. Permafrost thermal state in the polar northern hemisphere during the international polar year 2007–2009: A synthesis. Permafr. Periglac. Proc. 2010, 21, 106–116. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Cloude, S.R. The Dualpol Entropy/Alpha decomposition: A PALSAR case study. In Proceedings of the 3th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry (PolInSAR), Frascati, Italy, 22–26 January 2007. [Google Scholar]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. A four-component decomposition of POLSAR images based on the Coherency Matrix. IEEE Trans. Geosci. Remote Sens. 2006, 3, 292–296. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Touzi, R.; Goze, S.; Le Toan, T.; Lopes, A.; Mougin, E. Polarimetric discriminators for SAR images. IEEE Geosci. Remote Sens. 1992, 30, 973–980. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Hajnsek, I.; Caputo, M.; Papathanassiou, K.P. Soil Moisture Estimation Using Dual-Polarimetric Coherent (HH/VV) TerraSAR-X and TanDEM-X Data. In Proceedings of the TSX/TDX Science Meeting, Oberpfaffenhofen, Germany, 10–14 June 2013. [Google Scholar]
- Schmitt, A.; Wendleder, A.; Hinz, S. The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS J. Photogramm. Remote Sens. 2015, 102, 122–139. [Google Scholar] [CrossRef]
- Ecological Stratification Working Group (Canada); Center for Land and Biological Resources Research (Canada); State of the Environment Directorate, Canada. A National Ecological Framework for Canada; Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 1996; pp. 1–132. [Google Scholar]
- Burn, C.R.; Kokelj, S.V. The environment and permafrost of the Mackenzie Delta Area. Permafr. Periglac. Proc. 2009, 20, 83–105. [Google Scholar] [CrossRef]
- NWT-Geomatics. Northwest Territories (NWT) Centre for Geomatics. 2016. Available online: http:geomatics.gov.nt.ca (accessed on 15 April 2017).
- Government of Canada; Natural Resources Canada; Earth Sciences Sector; Canada Centre for Mapping and Earth Observation. GeoBase-Land Cover, Circa 2000 Vector Data Product Specifications; Centre for Topographic Information Earth Sciences Sector Natural Resources Canada: Ottawa, ON, Canada, 2009; pp. 1–21.
- Corns, I.G.W. Arctic plant communities east of the Mackenzie Delta. Can. J. Bot. 1974, 52, 1731–1745. [Google Scholar] [CrossRef]
- Moffat, N.D.; Lantz, T.C.; Fraser, R.H.; Olthof, I. Recent Vegetation Change (1980–2013) in the Tundra Ecosystems of the Tuktoyaktuk Coastlands, NWT, Canada. Arct. Antarct. Alp. Res. 2016, 48, 581–597. [Google Scholar] [CrossRef]
- Lantz, T.C.; Marsh, P.; Kokelj, S.V. Recent Shrub Proliferation in the Mackenzie Delta Uplands and Microclimatic Implications. Ecosystems 2013, 16, 47–59. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing with Imaging Radar; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–361. [Google Scholar]
- Ullmann, T.; Büdel, C.; Baumhauer, R. Characterization of Arctic Surface Morphology by Means of Intermediated TanDEM-X Digital Elevation Model Data. Z. Geomorphol. 2017, 61, 3–25. [Google Scholar] [CrossRef]
- Guissard, A. Mueller and Kennaugh matrices in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1994, 32, 590–597. [Google Scholar] [CrossRef]
- Cloude, S.R. Polarisation—Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2009; pp. 1–453. [Google Scholar]
- Lee, J.-S.; Pottier, E. Introduction to the Polarimetric Target Decomposition Concept. In Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–422. [Google Scholar]
- Jagdhuber, T.; Hajnsek, I.; Caputo, M.; Papathanassiou, K.P. Dual-Polarimetry for soil moisture inversion at X-Band. In Proceedings of the EUSAR, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1995; pp. 1–544. [Google Scholar]
- Swain, P.H. A Result from Studies of Transformed Divergence; LARS Technical Reports; Laboratory Applications of Remote Sensing, Purdue University: West Lafayette, IN, USA, 1973; Volume 42, pp. 1–5. [Google Scholar]
- Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 1943, 35, 99–109. [Google Scholar]
- Mausel, P.W.; Kramber, W.J.; Lee, J.K. Optimal band selection for supervised classification of multispectral data. Photogramm. Eng. Remote Sens. 1990, 56, 55–60. [Google Scholar]
- Swain, P.H.; Davis, S.M. Remote Sensing: The Quantitative Approach; McGraw Hill Book Company: New York, NY, USA, 1978. [Google Scholar]
- Mitsunobu, S.; Kazuo, O.; Chan-Su, Y. On the eigenvalue analysis using HH-VV dual-polarization SAR data and its applications to monitoring of coastal oceans. In Proceedings of the SPIE Conference on Ocean Sensing and Monitoring V, Baltimore, MD, USA, 30 April–1 May 2013; p. 8724. [Google Scholar]
- Heine, I.; Jagdhuber, T.; Itzerott, S. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series. Remote Sens. 2016, 8, 552. [Google Scholar] [CrossRef]
Study Area | Sensor | Task and Method | Year and Reference |
---|---|---|---|
Alaska, USA | ERS | Bathymetric mapping of shallow water via time series Analysis | 1996 & 2000 [1,2] |
Mackenzie Delta Region, Canada | ERS | Delineation of delta ecozones via InSAR—Coherence | 2001 [3] |
Nova Scotia, Canada | R-1 | Mapping of geomorphological units in the intertidal zone via unsupervised classification | 2001 [4] |
Quebec, Canada | TSX | Monitoring of permafrost dynamics via InSAR | 2011 [5] |
Herschel Island, Canada | TSX R-2 ALOS | Monitoring of surface movements via InSAR | 2009 & 2011 [16,17] |
Mackenzie Delta Region, Canada | R-2 | Classification of tundra land cover and shoreline types via PolSAR | 2011 & 2014 [6,7] |
Lena Delta, Russia | TSX R-2 | Characterization of melt onset and geomorphological units via PolSAR | 2012 [8] |
Alaska, USA | TSX | Characterization of post-drainage succession via time series analysis and PolSAR | 2012 [9] |
Sodankylä, Finland | R-2 | Identification of soil freezing and thawing states | 2014 [10] |
Richards Island, Canada | TSX R-2 | Classification of tundra land cover via PolSAR | 2014 [11] |
Baffin Island, Canada | R-2 | Monitoring of surface movements via InSAR | 2014 [18] |
Northern Canada | R-2 | Modeling of phytomass via PolSAR | 2014 [12] |
Dease Strait, Nunavut, Canada | R-2 | Classification of shoreline types via PolSAR | 2015 [13] |
Barrow, Alaska | ALOS | Active-layer thickness estimation via InSAR | 2015 [19] |
Mackenzie Delta Region, Canada | TSX R-2 | Characterization of tundra land cover via PolSAR | 2016 [14] |
Northern Alaska, USA | ALOS | Active-layer change and subsidence monitoring via InSAR | 2016 [20] |
Northern Qinghai-Tibetan Plateau | ALOS | Active-layer change via InSAR | 2017 [21] |
Yamal Peninsula, Russia | TSX | Active-layer thickness estimation via backscatter intensity | 2017 [15] |
Land Cover Class Name | Description | Abbr. | Class Color | |
---|---|---|---|---|
Tundra Vegetation “T” | Herb Dominated Tundra | upland tundra composed of short herbaceous vegetation and low shrubs (<25 cm) | HT | |
Shrub Dominated Tundra | upland tundra dominated by tall shrubs (>25 cm) | ST | ||
Bare Ground “B” | Sand | sediment dominated by sand (0.0625–2.0 mm) | BS | |
Mixed Sediment | mixed sandy sediment dominated by gravel, pebble or cobble (2.0–256.0 mm) and without woody debris | BM | ||
Driftwood Accumulation | accumulations of driftwood (>80%) | BW | ||
Wetland “W” | Wetland | wetland vegetation communities dominated by grasses, sedges or rushes | WT | |
Inundated Low Lying Tundra | vegetated tundra at or near a water body | WI | ||
Water | Permanent Water Bodies | ocean, inland lakes, river channels and ponds | OL |
(a) PolSAR Database | |||||
Sensor | Wavelength/Band | Date of Acquisition | Mode | Polarization | Incidence Angle |
TSX | 3.1 cm/X | 3 August 2011 | Stripmap | Dual HH/VV | 38.8° |
TSX | 3.1 cm/X | 23 July 2011 | Stripmap | Dual HH/HV | 38.8° |
R-2 | 5.5 cm/C | 19 August 2011 | Fine | Quad HH/HV/VH/VV | 40.5° |
ALOS | 23.6 cm/L | 21 July 2010 | Fine Beam Dual (FBD) | Dual HH/HV | 34.3° |
ALOS-2 | 24.2 cm/L | 15 September 2016 | Stripmap (SM) | Quad HH/HV/VH/VV | 28.4° |
(b) Multispectral Imagery | |||||
Sensor | Spectrum | Date of Acquisition | Path/Row | Sun Azimuth/Elevation | |
Landsat TM 5 | 0.07 µm–0.27 µm (excluding the thermal band) | 19 August 2011 | 63/11 | 171°/32° | |
(c) Polarimetric Features | |||||
Name/Model | Polarization | Feature Name(s) | Feature Symbol(s) | Source | |
Polarimetric Channels (sigma nought intensities) | Single/Dual/Quad | n/a | HH | n/a | |
HV | |||||
VH | |||||
VV | |||||
Two Component Decomposition | Dual (HH/VV) | Double Bounce | DBL2 | [14] | |
Surface Scattering | ODD2 | ||||
Two Component Decomposition | Dual (HH/VV) | Volume Scattering | VOL2 | [30] | |
Ground Scattering | GRD2 | ||||
Yamaguchi Decomposition | Quad | Double Bounce | DBL3 | [27] | |
Volume Scattering | VOL3 | ||||
Surface Scattering | ODD3 | ||||
Eigen-decomposition/Entropy/Alpha | Dual/Quad | Entropy | ENT | [25,26] | |
Alpha of T-Matrix | ALPT | ||||
Alpha of C-Matrix | ALPC | ||||
Kennaugh Matrix | Single/Dual/Quad | Kennaugh Matrix Elements; total intensity (K0), absorption elements (K1,K2,K3), diattenuation elements (K4,K5,K6), retardance elements (K7,K8,K9) | K0, K1, K2, K3, K4, K5, K6, K7, K8, K9 | [31] |
# | SENSOR | POL. | FEATURES | OL | BS | BM | BW | HT | ST | WI | WT | AV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ALOS-2 | quad | K-Matrix | 2000 | 1990 | 1963 | 1999 | 1999 | 2000 | 1973 | 2000 | 1991 |
2 | Landsat TM | n/a | (Band 1-5 & 7) | 2000 | 1925 | 1925 | 2000 | 1993 | 1921 | 1926 | 2000 | 1961 |
3 | ALOS-2 | HHVV | K-Matrix | 2000 | 1763 | 1593 | 1952 | 1930 | 1868 | 1849 | 1881 | 1854 |
4 | R-2 | quad | K-Matrix | 2000 | 1993 | 1640 | 1908 | 1680 | 1731 | 1782 | 1999 | 1842 |
5 | ALOS-2 | quad | HH/HV/VV | 2000 | 1550 | 1439 | 1929 | 1796 | 1766 | 1817 | 1636 | 1742 |
6 | ALOS | HHHV | K-Matrix | 2000 | 1681 | 1516 | 1914 | 1645 | 1717 | 1652 | 1740 | 1733 |
7 | ALOS-2 | VVVH | K-Matrix | 2000 | 1521 | 1394 | 1961 | 1743 | 1621 | 1736 | 1661 | 1705 |
8 | TSX | HHVV | K-Matrix | 1998 | 1934 | 1447 | 1574 | 1464 | 1605 | 1620 | 1966 | 1701 |
9 | ALOS-2 | quad | DBL3/VOL3/ODD3 | 1999 | 1433 | 1353 | 1938 | 1787 | 1685 | 1696 | 1558 | 1681 |
10 | ALOS-2 | HHHV | K-Matrix | 2000 | 1381 | 1334 | 1951 | 1838 | 1675 | 1514 | 1556 | 1656 |
11 | ALOS-2 | VVVH | VV/VH | 1999 | 1384 | 1265 | 1929 | 1680 | 1582 | 1657 | 1520 | 1627 |
12 | R-2 | HHVV | K-Matrix | 1998 | 1805 | 1282 | 1671 | 1306 | 1395 | 1442 | 1982 | 1610 |
13 | TSX | HHHV | K-Matrix | 2000 | 1677 | 1320 | 1566 | 1488 | 1554 | 1311 | 1891 | 1601 |
14 | ALOS-2 | HHHV | HH/HV | 1995 | 1318 | 1211 | 1898 | 1727 | 1628 | 1538 | 1428 | 1593 |
15 | R-2 | quad | DBL3/VOL3/ODD3 | 1992 | 1875 | 1206 | 1529 | 1320 | 1633 | 1288 | 1893 | 1592 |
16 | ALOS-2 | HHVV | DBL2/ODD2 | 1997 | 1315 | 1177 | 1871 | 1745 | 1580 | 1465 | 1486 | 1579 |
17 | ALOS-2 | HHVV | VOL2/GRD2 | 1995 | 1292 | 1188 | 1829 | 1770 | 1615 | 1433 | 1491 | 1577 |
18 | ALOS | HHHV | HH/HV | 2000 | 1464 | 1249 | 1848 | 1410 | 1609 | 1349 | 1605 | 1567 |
19 | TSX | HHVV | HH/VV | 1995 | 1883 | 1302 | 1289 | 1340 | 1530 | 1340 | 1848 | 1566 |
20 | TSX | HHHV | HH/HV | 1998 | 1657 | 1268 | 1401 | 1418 | 1485 | 1261 | 1844 | 1542 |
21 | ALOS-2 | HHVV | HH/VV | 2000 | 1401 | 1073 | 1562 | 1469 | 1462 | 1582 | 1476 | 1503 |
22 | R-2 | quad | HH/HV/VV | 1996 | 1865 | 1134 | 1459 | 1317 | 1464 | 1219 | 1561 | 1502 |
23 | R-2 | HHHV | K-Matrix | 1997 | 1849 | 1057 | 1362 | 1240 | 1429 | 1062 | 1560 | 1445 |
24 | TSX | HHVV | DBL2/ODD2 | 1995 | 1834 | 1046 | 1151 | 1187 | 1327 | 1030 | 1747 | 1415 |
25 | R-2 | HHVV | DBL2/ODD2 | 1991 | 1755 | 984 | 1332 | 1136 | 1139 | 1031 | 1742 | 1389 |
26 | TSX | HHHV | ENT/ALPC | 1980 | 1344 | 1164 | 1218 | 1422 | 1308 | 1279 | 1390 | 1388 |
27 | R-2 | HHHV | HH/HV | 1994 | 1844 | 970 | 1322 | 1221 | 1378 | 969 | 1334 | 1379 |
28 | TSX | HHVV | VOL2/GRD2 | 1990 | 1811 | 1009 | 1009 | 1082 | 1235 | 983 | 1899 | 1377 |
29 | ALOS-2 | quad | ENT/ALPT/ANI | 2000 | 1097 | 1001 | 1541 | 1339 | 1486 | 1245 | 1306 | 1377 |
30 | R-2 | VVVH | K-Matrix | 1990 | 1790 | 930 | 1060 | 1083 | 1327 | 1115 | 1535 | 1354 |
31 | R-2 | VVVH | VV/VH | 1985 | 1803 | 882 | 1077 | 1100 | 1321 | 1076 | 1377 | 1328 |
32 | R-2 | HHVV | HH/VV | 1989 | 1672 | 970 | 1230 | 1087 | 1143 | 1051 | 1439 | 1322 |
33 | R-2 | HHVV | VOL2/GRD2 | 1988 | 1729 | 909 | 1148 | 1075 | 1023 | 948 | 1573 | 1299 |
34 | ALOS-2 | HHVV | ENT/ALPT | 2000 | 997 | 862 | 1426 | 1255 | 1281 | 1036 | 1264 | 1265 |
35 | ALOS-2 | VVVH | ENT/ALPC | 2000 | 923 | 841 | 1763 | 868 | 979 | 1312 | 1152 | 1230 |
36 | R-2 | quad | ENT/ALPT/ANI | 1436 | 959 | 896 | 1110 | 1043 | 1241 | 1119 | 1924 | 1216 |
37 | R-2 | HHVV | ENT/ALPT | 1433 | 794 | 800 | 852 | 810 | 1009 | 1060 | 1911 | 1084 |
38 | TSX | HHVV | ENT/ALPT | 1016 | 764 | 738 | 1234 | 807 | 830 | 1385 | 1788 | 1070 |
39 | ALOS | HHHV | ENT/ALPC | 1445 | 1016 | 722 | 1123 | 877 | 840 | 875 | 1546 | 1056 |
40 | ALOS-2 | HHHV | ENT/ALPC | 1580 | 814 | 599 | 1232 | 920 | 751 | 716 | 1019 | 954 |
41 | R-2 | VVVH | ENT/ALPC | 1291 | 721 | 567 | 681 | 915 | 1131 | 849 | 914 | 883 |
42 | R-2 | HHHV | ENT/ALPC | 571 | 593 | 489 | 1058 | 838 | 1133 | 493 | 1092 | 784 |
# | SENSOR | POL. | FEATURES | OL | BS | BM | BW | HT | ST | WI | WT | AV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ALOS-2 | quad | K-Matrix | 2.00 | 1.96 | 1.90 | 1.98 | 1.98 | 1.98 | 1.95 | 2.00 | 1.97 |
2 | Landsat TM | n/a | (Band 1-5 & 7) | 2.00 | 1.91 | 1.84 | 2.00 | 1.94 | 1.83 | 1.83 | 2.00 | 1.92 |
3 | R-2 | quad | K-Matrix | 2.00 | 1.97 | 1.57 | 1.86 | 1.61 | 1.67 | 1.69 | 1.99 | 1.80 |
4 | ALOS-2 | HHVV | K-Matrix | 1.99 | 1.51 | 1.31 | 1.82 | 1.69 | 1.60 | 1.64 | 1.64 | 1.65 |
5 | TSX | HHVV | K-Matrix | 1.97 | 1.86 | 1.33 | 1.51 | 1.39 | 1.52 | 1.46 | 1.87 | 1.61 |
6 | ALOS | HHHV | K-Matrix | 1.90 | 1.32 | 1.31 | 1.82 | 1.43 | 1.50 | 1.40 | 1.60 | 1.53 |
7 | R-2 | HHVV | K-Matrix | 1.97 | 1.68 | 1.22 | 1.58 | 1.24 | 1.32 | 1.31 | 1.95 | 1.53 |
8 | ALOS-2 | quad | HH/HV/VV | 1.99 | 1.33 | 1.13 | 1.80 | 1.44 | 1.45 | 1.66 | 1.43 | 1.53 |
9 | TSX | HHVV | HH/VV | 1.96 | 1.79 | 1.20 | 1.25 | 1.26 | 1.45 | 1.20 | 1.76 | 1.48 |
10 | ALOS-2 | quad | DBL3/VOL3/ODD3 | 1.95 | 1.21 | 1.06 | 1.81 | 1.40 | 1.42 | 1.54 | 1.38 | 1.47 |
11 | ALOS-2 | VVVH | K-Matrix | 1.92 | 1.23 | 1.08 | 1.82 | 1.40 | 1.34 | 1.43 | 1.44 | 1.46 |
12 | TSX | HHHV | K-Matrix | 1.96 | 1.55 | 1.07 | 1.39 | 1.27 | 1.41 | 1.16 | 1.80 | 1.45 |
13 | R-2 | quad | DBL3/VOL3/ODD3 | 1.94 | 1.68 | 1.09 | 1.44 | 1.16 | 1.45 | 1.17 | 1.67 | 1.45 |
14 | ALOS-2 | HHHV | K-Matrix | 1.89 | 1.17 | 1.06 | 1.84 | 1.49 | 1.37 | 1.29 | 1.40 | 1.44 |
15 | R-2 | quad | HH/HV/VV | 1.97 | 1.70 | 1.07 | 1.35 | 1.20 | 1.37 | 1.15 | 1.49 | 1.41 |
16 | TSX | HHHV | HH/HV | 1.95 | 1.52 | 1.00 | 1.29 | 1.23 | 1.38 | 1.13 | 1.76 | 1.41 |
17 | ALOS | HHHV | HH/HV | 1.85 | 1.14 | 1.08 | 1.73 | 1.23 | 1.40 | 1.18 | 1.48 | 1.39 |
18 | ALOS-2 | VVVH | VV/VH | 1.96 | 1.10 | 0.96 | 1.75 | 1.27 | 1.28 | 1.47 | 1.29 | 1.39 |
19 | R-2 | HHHV | K-Matrix | 1.97 | 1.65 | 0.99 | 1.30 | 1.15 | 1.33 | 0.98 | 1.46 | 1.35 |
20 | ALOS-2 | HHVV | DBL2/ODD2 | 1.93 | 1.05 | 0.92 | 1.69 | 1.29 | 1.25 | 1.23 | 1.29 | 1.33 |
21 | R-2 | HHVV | DBL2/ODD2 | 1.93 | 1.59 | 0.96 | 1.28 | 1.09 | 1.07 | 0.99 | 1.71 | 1.33 |
22 | TSX | HHVV | DBL2/ODD2 | 1.94 | 1.74 | 0.93 | 1.12 | 1.12 | 1.21 | 0.88 | 1.63 | 1.32 |
23 | ALOS-2 | HHHV | HH/HV | 1.86 | 1.05 | 0.89 | 1.76 | 1.30 | 1.26 | 1.28 | 1.17 | 1.32 |
24 | ALOS-2 | HHVV | VOL2/GRD2 | 1.87 | 1.02 | 0.89 | 1.67 | 1.31 | 1.25 | 1.16 | 1.23 | 1.30 |
25 | R-2 | HHHV | HH/HV | 1.96 | 1.64 | 0.91 | 1.21 | 1.11 | 1.28 | 0.91 | 1.27 | 1.29 |
26 | TSX | HHVV | VOL2/GRD2 | 1.93 | 1.71 | 0.88 | 0.95 | 1.03 | 1.13 | 0.84 | 1.75 | 1.28 |
27 | R-2 | HHVV | HH/VV | 1.96 | 1.56 | 0.94 | 1.20 | 1.05 | 1.07 | 1.03 | 1.39 | 1.28 |
28 | ALOS-2 | HHVV | HH/VV | 1.96 | 1.09 | 0.87 | 1.32 | 1.15 | 1.17 | 1.40 | 1.17 | 1.27 |
29 | R-2 | VVVH | K-Matrix | 1.91 | 1.56 | 0.88 | 1.01 | 1.02 | 1.25 | 1.04 | 1.44 | 1.26 |
30 | ALOS-2 | quad | ENT/ALPT/ANI | 2.00 | 0.93 | 0.89 | 1.40 | 1.20 | 1.29 | 1.13 | 1.16 | 1.25 |
31 | R-2 | VVVH | VV/VH | 1.90 | 1.54 | 0.84 | 1.00 | 1.01 | 1.26 | 1.01 | 1.32 | 1.23 |
32 | R-2 | HHVV | VOL2/GRD2 | 1.93 | 1.57 | 0.86 | 1.09 | 1.02 | 0.96 | 0.88 | 1.48 | 1.22 |
33 | ALOS-2 | HHVV | ENT/ALPT | 1.99 | 0.83 | 0.77 | 1.27 | 1.10 | 1.09 | 0.95 | 1.14 | 1.14 |
34 | TSX | HHHV | ENT/ALPC | 1.85 | 0.94 | 0.83 | 0.95 | 1.02 | 0.96 | 0.94 | 1.16 | 1.08 |
35 | ALOS-2 | VVVH | ENT/ALPC | 1.92 | 0.76 | 0.73 | 1.47 | 0.76 | 0.86 | 1.14 | 0.99 | 1.08 |
36 | R-2 | quad | ENT/ALPT/ANI | 1.33 | 0.84 | 0.79 | 0.95 | 0.89 | 1.04 | 0.93 | 1.81 | 1.07 |
37 | R-2 | HHVV | ENT/ALPT | 1.36 | 0.73 | 0.73 | 0.77 | 0.74 | 0.88 | 0.88 | 1.80 | 0.99 |
38 | TSX | HHVV | ENT/ALPT | 0.83 | 0.60 | 0.63 | 1.02 | 0.61 | 0.62 | 0.84 | 1.57 | 0.84 |
39 | ALOS | HHHV | ENT/ALPC | 0.89 | 0.65 | 0.51 | 0.81 | 0.66 | 0.58 | 0.65 | 1.07 | 0.73 |
40 | ALOS-2 | HHHV | ENT/ALPC | 1.14 | 0.57 | 0.46 | 0.98 | 0.64 | 0.55 | 0.52 | 0.81 | 0.71 |
41 | R-2 | VVVH | ENT/ALPC | 1.05 | 0.48 | 0.45 | 0.51 | 0.73 | 0.89 | 0.69 | 0.75 | 0.69 |
42 | R-2 | HHHV | ENT/ALPC | 0.47 | 0.47 | 0.41 | 0.86 | 0.66 | 0.92 | 0.41 | 0.91 | 0.64 |
(a) Transformed Divergence (TD) | (b) Transformed Divergence (TD) | ||||||||||||||||||||||
OL | BS | BM | BW | HT | ST | WI | WT | AV | % | OL | BS | BM | BW | HT | ST | WI | WT | AV | % | ||||
K0 | 100 | 193 | 150 | 183 | 226 | 168 | 186 | 82 | 161 | 49.8 | K0 | 30 | 115 | 172 | 65 | 109 | 91 | 92 | 56 | 91 | 10.2 | ||
K2 | 99 | 129 | 137 | 143 | 182 | 129 | 224 | 163 | 151 | 48.8 | K1 | 32 | 84 | 177 | 84 | 86 | 115 | 99 | 43 | 90 | 10.1 | ||
K3 | 90 | 107 | 133 | 170 | 111 | 128 | 152 | 123 | 127 | 39.2 | K3 | 34 | 86 | 162 | 83 | 89 | 100 | 103 | 43 | 87 | 9.9 | ||
K1 | 100 | 207 | 101 | 90 | 117 | 173 | 162 | 37 | 123 | 35.6 | K2 | 28 | 74 | 143 | 68 | 83 | 86 | 78 | 34 | 74 | 8.4 | ||
K4 | 97 | 92 | 63 | 116 | 61 | 73 | 118 | 19 | 80 | 28.2 | K4 | 36 | 47 | 103 | 35 | 42 | 84 | 145 | 30 | 65 | 7.7 | ||
K9 | 2 | 10 | 63 | 92 | 34 | 37 | 45 | 23 | 38 | 5.0 | K7 | 23 | 74 | 97 | 23 | 83 | 53 | 76 | 53 | 60 | 6.8 | ||
K7 | 1 | 14 | 29 | 32 | 30 | 22 | 45 | 94 | 33 | 4.9 | K9 | 14 | 86 | 65 | 36 | 25 | 27 | 24 | 38 | 40 | 4.0 | ||
K5 | 5 | 11 | 52 | 49 | 29 | 22 | 37 | 36 | 30 | 4.8 | K6 | 13 | 34 | 41 | 9 | 29 | 24 | 21 | 30 | 25 | 2.7 | ||
K8 | 6 | 12 | 19 | 49 | 32 | 23 | 21 | 36 | 25 | 4.4 | K5 | 16 | 21 | 34 | 21 | 18 | 23 | 24 | 13 | 21 | 2.2 | ||
K6 | 2 | 7 | 16 | 46 | 27 | 13 | 14 | 11 | 17 | 2.3 | K8 | 10 | 22 | 38 | 10 | 11 | 15 | 18 | 32 | 20 | 2.0 | ||
(c) Jefferys Matusita Distance (JD) | (d) Jefferys Matusita Distance (JD) | ||||||||||||||||||||||
OL | BS | BM | BW | HT | ST | WI | WT | AV | % | OL | BS | BM | BW | HT | ST | WI | WT | AV | % | ||||
K0 | 0.11 | 0.29 | 0.15 | 0.19 | 0.22 | 0.18 | 0.19 | 0.11 | 0.18 | 57.2 | K3 | 0.09 | 0.16 | 0.24 | 0.14 | 0.16 | 0.16 | 0.20 | 0.13 | 0.16 | 18.3 | ||
K2 | 0.10 | 0.19 | 0.13 | 0.13 | 0.16 | 0.13 | 0.20 | 0.21 | 0.16 | 51.9 | K0 | 0.07 | 0.18 | 0.24 | 0.09 | 0.20 | 0.15 | 0.17 | 0.14 | 0.16 | 17.6 | ||
K3 | 0.09 | 0.15 | 0.13 | 0.16 | 0.11 | 0.14 | 0.15 | 0.15 | 0.14 | 45.0 | K1 | 0.09 | 0.15 | 0.24 | 0.12 | 0.17 | 0.16 | 0.17 | 0.12 | 0.15 | 17.0 | ||
K1 | 0.11 | 0.25 | 0.10 | 0.09 | 0.11 | 0.19 | 0.14 | 0.04 | 0.13 | 39.8 | K2 | 0.06 | 0.13 | 0.22 | 0.10 | 0.15 | 0.14 | 0.15 | 0.10 | 0.13 | 14.8 | ||
K4 | 0.10 | 0.09 | 0.06 | 0.10 | 0.06 | 0.07 | 0.10 | 0.02 | 0.07 | 30.4 | K4 | 0.14 | 0.09 | 0.13 | 0.04 | 0.08 | 0.11 | 0.21 | 0.07 | 0.11 | 14.2 | ||
K7 | 0.00 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.04 | 0.12 | 0.04 | 6.7 | K7 | 0.05 | 0.11 | 0.12 | 0.04 | 0.14 | 0.11 | 0.14 | 0.13 | 0.11 | 13.0 | ||
K9 | 0.00 | 0.02 | 0.05 | 0.08 | 0.03 | 0.03 | 0.04 | 0.02 | 0.03 | 5.7 | K9 | 0.03 | 0.10 | 0.07 | 0.04 | 0.04 | 0.04 | 0.03 | 0.08 | 0.06 | 6.2 | ||
K5 | 0.00 | 0.02 | 0.05 | 0.05 | 0.03 | 0.02 | 0.04 | 0.03 | 0.03 | 5.0 | K6 | 0.03 | 0.07 | 0.06 | 0.02 | 0.06 | 0.05 | 0.04 | 0.08 | 0.05 | 5.3 | ||
K8 | 0.00 | 0.02 | 0.02 | 0.05 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 4.9 | K8 | 0.02 | 0.04 | 0.05 | 0.02 | 0.03 | 0.03 | 0.03 | 0.09 | 0.04 | 4.3 | ||
K6 | 0.00 | 0.01 | 0.02 | 0.05 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 2.7 | K5 | 0.03 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.04 | 4.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullmann, T.; Banks, S.N.; Schmitt, A.; Jagdhuber, T. Scattering Characteristics of X-, C- and L-Band PolSAR Data Examined for the Tundra Environment of the Tuktoyaktuk Peninsula, Canada. Appl. Sci. 2017, 7, 595. https://doi.org/10.3390/app7060595
Ullmann T, Banks SN, Schmitt A, Jagdhuber T. Scattering Characteristics of X-, C- and L-Band PolSAR Data Examined for the Tundra Environment of the Tuktoyaktuk Peninsula, Canada. Applied Sciences. 2017; 7(6):595. https://doi.org/10.3390/app7060595
Chicago/Turabian StyleUllmann, Tobias, Sarah N. Banks, Andreas Schmitt, and Thomas Jagdhuber. 2017. "Scattering Characteristics of X-, C- and L-Band PolSAR Data Examined for the Tundra Environment of the Tuktoyaktuk Peninsula, Canada" Applied Sciences 7, no. 6: 595. https://doi.org/10.3390/app7060595
APA StyleUllmann, T., Banks, S. N., Schmitt, A., & Jagdhuber, T. (2017). Scattering Characteristics of X-, C- and L-Band PolSAR Data Examined for the Tundra Environment of the Tuktoyaktuk Peninsula, Canada. Applied Sciences, 7(6), 595. https://doi.org/10.3390/app7060595