Microgrids for Productive Uses of Energy in the Developing World and Blockchain: A Promising Future
References
- The International Bank for Reconstruction and Development (IBRD)/World Bank. State of Electricity Access Report 2017; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- International Energy Agency (IEA). World Energy Outlook 2016; IEA: Paris, France, 2016. [Google Scholar]
- Dagnachew, A.G.; Lucas, P.L.; Hof, A.F.; Gernaat, D.E.H.J.; de Boer, H.-S.; van Vuuren, D.P. The role of decentralized systems in providing universal electricity access in sub-saharan Africa—A model-based approach. Energy 2017, 139, 184–195. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ). Photovoltaics for Productive Use Applications; GIZ: Eschborn, Germany, 2016. [Google Scholar]
- Kyriakarakos, G.; Piromalis, D.D.; Dounis, A.I.; Arvanitis, K.G.; Papadakis, G. Intelligent demand side energy management system for autonomous polygeneration microgrids. Appl. Energy 2013, 103, 39–51. [Google Scholar] [CrossRef]
- Karavas, C.-S.; Kyriakarakos, G.; Arvanitis, K.G.; Papadakis, G. A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Convers. Manag. 2015, 103, 166–179. [Google Scholar] [CrossRef]
- Nandipati, S.H.; Babu, P.T.; Chigurupati, M.; Vaithilingam, C. Interface protection and energy management system for microgrid using internet of things. Energy Procedia 2017, 117, 201–208. [Google Scholar] [CrossRef]
- Liang, H.; Choi, B.J.; Zhuang, W.; Shen, X.; Awad, A.S.A.; Abdr, A. Multiagent coordination in microgrids via wireless networks. IEEE Wirel. Commun. 2012, 19, 14–22. [Google Scholar] [CrossRef]
- Energy Sector Management Assistance Program (ESMAP)/World Bank Group. Upscaling Mini Grids for Low-Cost & Timely Access to Electricity; ESMAP: Washington, DC, USA, 2017. [Google Scholar]
- Contejean, A.; Verin, L. Making Mini-Grids Work—Productive Uses of Electricity in Tanzania; International Institute for Environment and Development (IIED): London, UK, 2017. [Google Scholar]
- Cogan, D.; Collings, S. Crowdpower—Mapping the Market for Energy Access; Global Village Energy Partnership (GVEP International): London, UK, 2016. [Google Scholar]
- Global Off-Grid Lighting Association (GOGLA). Global Off-Grid Solar Market Report—Semi-Annual Sales and Impact Data; GOGLA: Utrecht, The Netherlands, 2017. [Google Scholar]
- Iansiti, M.; Lakhani, K. The truth about blockchain. In Harvard Business Review; Harvard Business School: Boston, MA, USA, 2017; pp. 118–127. [Google Scholar]
- Marsal-Llacuna, M.-L. Future living framework: Is blockchain the next enabling network? Technol. Forecast. Soc. Chang. 2018, 128, 226–234. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Zhou, N.; Chi, Y. A novel electricity transaction mode of microgrids based on blockchain and continuous double auction. Energies 2017, 10, 1971. [Google Scholar] [CrossRef]
- Pop, C.; Cioara, T.; Antal, M.; Anghel, I.; Salomie, I.; Bertoncini, M. Blockchain based decentralized management of demand response programs in smart energy grids. Sensors 2018, 18, 162. [Google Scholar] [CrossRef] [PubMed]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The brooklyn microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- AGL Energy Limited. Peer-to-Peer Distributed Ledger Technology Assessment—Virtual Peer-to-Peer Energy Trading Using Distributed Ledger Technology: Comprehensive Project Assessment Report; AGL Energy Limited: Sydney, Australia, 2017. [Google Scholar]
- EVRY. Blockchain: Powering the Internet of Value; EVRY: Fornebu, Norway, 2015. [Google Scholar]
- Banerjee, M.; Lee, J.; Choo, K.-K.R. A blockchain future to internet of things security: A position paper. Digit. Commun. Netw. 2017. [Google Scholar] [CrossRef]
Permissioned or Private Blockchain | Permissionless or Public Blockchain | |
---|---|---|
Network access | Authorized access | Open access |
Approach in relation to laws and regulations | Able to comply with “Know Your Client (KYC)” and “Anti Money Laundering (AML)” banking regulations | Aims to create censorship resistant anonymous transactions outside of the current legal and regulatory framework |
Validator approach | Pre-selected trusted validators | Anonymous, fully decentralized validators |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakarakos, G.; Papadakis, G. Microgrids for Productive Uses of Energy in the Developing World and Blockchain: A Promising Future. Appl. Sci. 2018, 8, 580. https://doi.org/10.3390/app8040580
Kyriakarakos G, Papadakis G. Microgrids for Productive Uses of Energy in the Developing World and Blockchain: A Promising Future. Applied Sciences. 2018; 8(4):580. https://doi.org/10.3390/app8040580
Chicago/Turabian StyleKyriakarakos, George, and George Papadakis. 2018. "Microgrids for Productive Uses of Energy in the Developing World and Blockchain: A Promising Future" Applied Sciences 8, no. 4: 580. https://doi.org/10.3390/app8040580
APA StyleKyriakarakos, G., & Papadakis, G. (2018). Microgrids for Productive Uses of Energy in the Developing World and Blockchain: A Promising Future. Applied Sciences, 8(4), 580. https://doi.org/10.3390/app8040580