Fault Location in Double Circuit Medium Power Distribution Networks Using an Impedance-Based Method
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review and Challenges
1.3. Approach and Contributions
1.4. Paper Organization
2. The Proposed Method
3. The Developed Fault Location Algorithm
- (1)
- Fault detection.
- (2)
- Determining the fault type.
- (3)
- Estimation of the fault current using the equation below:
- (4)
- Determining the fault’s distance from the general fault location equation (Equation (13)).
- (5)
- Determining the exact physical location of the fault.
- (6)
- Checking the convergence of using Equation (15):
- (7)
- If is convergent with the analyzed part of the last section, then is the fault’s location and go to the next step; if it is convergent with a location beyond the current location, then we update and in the system’s next bus (changing the reference bus) and return to section one.
- (8)
- Calculating the fault’s point voltage by using Equation (5), , voltages and currents of the bus in the correct analyzed upstream section (k in and refers to the reference bus).
- (9)
- Updating the fault’s downstream current in the faulted phases using the calculated voltage of the fault point and based on Equation (16), finally is obtained using Fortescue’s conversion as seen in Equation (20).
- (10)
- Updating the faults current by using Equation (21):
- (11)
- Return to step four.
Determining a Physical Solution
4. Simulation Results
4.1. The Studied Network
4.2. Numerical Results
4.2.1. The Effect of the Fault’s Resistance
4.2.2. The Effect of the Fault’s Location
4.2.3. The Effect of the Fault’s Inception Angle
4.2.4. The Effect of Instruments Error
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
VSabc | voltage at the beginning of section |
ISabc | current at the beginning of section |
zzabc | matrix of line impedance |
Yabc | admittance matrix or line capacitance |
VRabc | voltage at the end of line |
IRabc | current at the end of line |
VS1,2,0 | positive, negative Seq. voltage at the beginning of section |
IS1,2,0 | positive, negative Seq. injection current at the beginning of section |
VF1,2,0 | positive, negative Seq. Fault point voltage at the fault point |
IF1,2,0 | positive, negative Seq. injection current at the fault point |
I | identity matrix |
r | real parts |
i | imaginary parts |
lt | total length of feeder |
Im | imaginary parts |
Re | real parts |
PDN | power distribution network |
KCL | Kirchhoff’s current law |
IL | load current |
Iu | output current |
IF | fault current |
IBFLM | impedance-based fault location method |
xactual | actual fault distance |
Z1,0 | (positive, zero sequence of series impedance and parallel admittance of line) |
Zm0 | (mutual sequence of impedance series of line) |
Y1,0 | (Positive, zero sequence of parallel admittance of line) |
Ym0 | (mutual sequence of parallel admittance of line) |
xcalculated | calculated fault distance |
References
- Srinivasan, K.; Jacques, A. A new fault location algorithm for radial transmission lines with loads. IEEE Trans. Power Deliv. 1989, 4, 1676–1682. [Google Scholar]
- Das, R.; Sachdev, M.S.; Sidhu, T.S. A fault locator for radial subtransmission and distribution lines. In Proceedings of the Power Engineering Society Summer Meeting, Seattle, WA, USA, 16–20 July 2000; pp. 443–448. [Google Scholar]
- Yang, X.; Choi, M.S.; Lee, S.J.; Ten, C.W.; Lim, S.I. Fault location for underground power cable using distributed parameter approach. IEEE Trans. Power Syst. 2008, 23, 1809–1816. [Google Scholar] [CrossRef]
- Filomena, A.D.; Resener, M.; Salim, R.H.; Bretas, A.S. Fault location for underground distribution feeders: An extended impedance-based formulation with capacitive current compensation. Int. J. Electr. Power Energy Syst. 2009, 31, 489–496. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, M.S.; Kang, S.H.; Jin, B.G.; Lee, D.S.; Ahn, B.S.; Yoon, N.S.; Kim, H.S.; Wee, S.B. An intelligent and efficient fault location and diagnosis scheme for radial distribution systems. IEEE Trans. Power Deliv. 2004, 19, 524–532. [Google Scholar] [CrossRef]
- Salim, R.H.; Wang, B.; Liu, D.; Gou, S. Further improvements on impedance-based fault location for power distribution systems. IET Gen. Transm. Distrib. 2011, 5, 467–478. [Google Scholar] [CrossRef]
- Dashti, R.; Sadeh, J. Accuracy improvement of impedance based fault location method for power distribution network using distributed-parameter line model. Int. Trans. Electr. Energy Syst. 2012, 24, 318–334. [Google Scholar] [CrossRef]
- Dashti, R.; Sadeh, J. Applying dynamic load estimation and distributed parameter line model to enhance the accuracy of impedance based fault location methods for power distribution networks. Electr. Power Compon. Syst. 2013, 41, 1334–1362. [Google Scholar] [CrossRef]
- Dashti, R.; Sadeh, J. Fault section estimation in power distribution network using impedance-based fault distance calculation and frequency spectrum analysis. IET Gen. Transm. Distrib. 2014, 8, 1406–1417. [Google Scholar] [CrossRef]
- Orozco-Henao, C.; Bretas, A.S.; Chouhy-Leborgne, R.; Herrera-Orozco, A.R.; Marín-Quintero, J. Active distribution network fault location methodology: A minimum fault reactance and Fibonacci search approach. Int. J. Electr. Power Energy Syst. 2017, 84, 232–241. [Google Scholar] [CrossRef]
- Liang, R.; Wang, F.; Fu, G.; Xue, X.; Zhou, R. A general fault location method in complex power grid based on wide-area traveling wave data acquisition. Int. J. Electr. Power Energy Syst. 2016, 83, 213–218. [Google Scholar] [CrossRef]
- Jamali, S.; Bahmanyar, A. A new fault location method for distribution networks using sparse measurements. Int. J. Electr. Power Energy Syst. 2016, 81, 459–468. [Google Scholar] [CrossRef]
- Sarwat, A.I.; Amini, M.; Domijan, A.; Damnjanovic, A.; Kaleem, F. Weather-based interruption prediction in the smart grid utilizing chronological data. J. Mod. Power Syst. Clean Energy 2015, 4, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Kezunovic, M.; Abur, A.; Kojovic, L.J.; Skendzic, V.; Singh, H. DYNA-TEST simulator for relay testing, part II: Performance evaluation. IEEE Trans. Power Deliv. 1992, 7, 1097–1103. [Google Scholar] [CrossRef]
- Daisy, M.; Dashti, R. Single phase fault location in electrical distribution feeder using hybrid method. Energy 2016, 103, 356–368. [Google Scholar] [CrossRef]
- Dashti, R.; Daisy, M.; Shaker, H.R.; Tahavori, M. Impedance-Based Fault Location Method for Four-Wire Power Distribution Networks. IEEE Access 2018, 6, 1342–1349. [Google Scholar] [CrossRef]
- Cifuentes-Chaves, H.; Mora-Flórez, J.; Pérez-Londoño, S. Time domain analysis for fault location in power distribution systems considering the load dynamics. Electr. Power Syst. Res. 2017, 146, 331–340. [Google Scholar] [CrossRef]
- Bahmanyar, A.; Jamali, S. Fault location in active distribution networks using non-synchronized measurements. Electr. Power Energy Syst. 2017, 93, 451–458. [Google Scholar] [CrossRef]
- Dashti, R.; Ghasemi, M.; Daisy, M. Fault Location in Power Distribution Network with Presence of Distributed Generation Resources Using Impedance Based Method and Applying π Line Model. Energy 2018, in press. [Google Scholar] [CrossRef]
- De Aguiar, R.A.; Dalcastagnê, A.L.; Zürn, H.H.; Seara, R. Impedance-based fault location methods: Sensitivity analysis and performance improvement. Electr. Power Syst. Res. 2018, 155, 236–245. [Google Scholar] [CrossRef]
- Gabr, M.A.; Ibrahim, D.K.; Ahmed, E.S.; Gilany, M.I. A new impedance-based fault location scheme for overhead unbalanced radial distribution networks. Electr. Power Syst. Res. 2017, 142, 153–162. [Google Scholar] [CrossRef]
- Chen, R.; Lin, T.; Bi, R.; Xu, X. Novel Strategy for Accurate Locating of Voltage Sag Sources in Smart Distribution Networks with Inverter-Interfaced Distributed Generators. Energies 2017, 10, 1885. [Google Scholar] [CrossRef]
- Deng, X.; Yuana, R.; Xiaob, Z.; Li, T.; Wang, K.L.L. Fault location in loop distribution network using SVM technology. Electr. Power Energy Syst. 2015, 65, 254–261. [Google Scholar] [CrossRef]
- Liang, R.; Fu, G.; Zhu, X.; Xue, X. Fault location based on single terminal travelling wave analysis in radial distribution network. Electr. Power Energy Syst. 2015, 66, 160–165. [Google Scholar] [CrossRef]
- Alamuti, M.M.; Nouri, H.; Ciric, R.M.; Terzija, V. Intermittent fault location in distribution feeders. IEEE Trans. Power Deliv. 2012, 27, 96–103. [Google Scholar] [CrossRef]
Proposed Method | Dashti et al., 2018 [19] | Aguiar et al. (2018) [20] | Dashti et al. (2018) [16] | Gabr et al., 2017 [21] | Chen et al. (2017) [22] | Daisy et al., 2016 [15] | Deng et al., 2015 [23] | Rui et al., 2015 [24] | Dashti et al., 2012 [7] | Dashti et al., 2013 [8] | Alamiti et al., 2012 [25] | Salim et al. (2011) [6] | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
π model | π model | DPLM a | DPLM a | short line model | short line model | DPLM a | DPLM a | π model | DPLM a | DPLM a | DPLM | π model | Line model |
constant load | constant load | constant load | static load | constant load | constant load | static load | constant load | constant load | constant load | static load | static load | static load | Load model |
- | - | - | - | - | - | √ | - | - | - | √ | √ | √ | Load estimation |
√ | √ | - | √ | √ | - | √ | - | - | √ | √ | - | √ | Non-homogeneity |
√ | √ | - | √ | - | - | √ | - | - | √ | √ | - | √ | Unbalanced system |
√ | √ | √ | √ | √ | √ | √ | - | √ | √ | √ | - | √ | Laterals |
√ | √ | - | √ | √ | √ | √ | √ | - | √ | √ | - | √ | Load taps |
All | All | All | All | All | All | SLG d | SLG d | All | All | All | All | All | Fault type |
- | - | - | - | - | - | Voltage sag | Support vector machine | - | - | CP b and PD c | - | - | Section detection |
Radial | Radial and loop | Radial | Radial | Radial | Radial | Radial | loop | Radial | Redial | Redial | Redial | Redial | Network Type |
- | √ | - | - | - | √ | - | √ | - | - | - | - | - | Smart Grid |
- | √ | - | - | - | √ | - | - | - | - | - | - | Distributed generation | |
- | - | - | - | - | - | - | - | √ | - | - | √ | - | Time domain |
√ | √ | √ | √ | √ | √ | √ | √ | - | √ | √ | - | √ | Phase domain |
- | - | - | - | - | - | √ | √ | - | - | - | - | - | Sequence domain |
Bus from | Bus to | Distance (km) | Bus from | Bus to | Distance (km) |
---|---|---|---|---|---|
1 | 2 | 4.6 | 5 | 6 | 3.2 |
2 | 3 | 4.6 | 5 | 11 | 2.6 |
3 | 4 | 7.763 | 6 | 7 | 2.6 |
3 | 9 | 5.1 | 6 | 13 | 3 |
4 | 5 | 7.763 | 7 | 8 | 4 |
4 | 10 | 5 | 11 | 12 | 2 |
Fault Resistance (Ω) | Fault Distance (km) | Fault Type | |||
---|---|---|---|---|---|
Single-Phase to the Ground | Two Phases to the Ground | Two Phases to Each Other | Three Phases to the Ground | ||
Error Percentage | |||||
0 | 6.6 | 0.00 | 0.00 | 0.00 | 0.00 |
16.96 | 0.02 | 0.02 | 0.02 | 0.03 | |
26.82 | 0.09 | 0.08 | 0.10 | 0.11 | |
32.62 | 0.07 | 0.06 | 0.06 | 0.08 | |
25 | 6.6 | 0.03 | 0.02 | 0.01 | 0.01 |
16.96 | 0.05 | 0.04 | 0.02 | 0.03 | |
26.82 | 0.14 | 0.20 | 0.20 | 0.35 | |
32.62 | 0.11 | 0.17 | 0.22 | 0.22 | |
50 | 6.6 | 0.03 | 0.02 | 0.01 | 0.01 |
16.96 | 0.05 | 0.04 | 0.02 | 0.03 | |
26.82 | 0.14 | 0.20 | 0.20 | 0.35 | |
32.62 | 0.11 | 0.17 | 0.22 | 0.22 | |
100 | 6.6 | 0.05 | 0.04 | 0.04 | 0.05 |
16.96 | 0.09 | 0.08 | 0.08 | 0.08 | |
26.82 | 0.44 | 0.64 | 0.62 | 0.96 | |
32.62 | 0.29 | 0.22 | 0.23 | 0.23 |
Average Error Percentage (%) | Maximum Error Percentage (%) | Fault Inception Angle Degrees |
---|---|---|
0/19 | 0/51 | 0 |
0/18 | 0/50 | 30 |
0/19 | 0/49 | 45 |
0/17 | 0/50 | 90 |
Fault Location (km) | Fault Type | |||
---|---|---|---|---|
Single-Phase to Ground | Double-Phase to Each Other | Double-Phase to Ground | Three Phases to Ground | |
Average Error Percentage | ||||
6 | 0.0821 | 0.1380 | 0.1105 | 0.0683 |
12 | 0.1202 | 0.2103 | 0.2055 | 0.1352 |
22 | 0.9577 | 0.7376 | 0.7352 | 0.5015 |
30 | 1.0751 | 0.9100 | 0.9098 | 0.6872 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dashti, R.; Salehizadeh, S.M.; Shaker, H.R.; Tahavori, M. Fault Location in Double Circuit Medium Power Distribution Networks Using an Impedance-Based Method. Appl. Sci. 2018, 8, 1034. https://doi.org/10.3390/app8071034
Dashti R, Salehizadeh SM, Shaker HR, Tahavori M. Fault Location in Double Circuit Medium Power Distribution Networks Using an Impedance-Based Method. Applied Sciences. 2018; 8(7):1034. https://doi.org/10.3390/app8071034
Chicago/Turabian StyleDashti, Rahman, Seyed Mehdi Salehizadeh, Hamid Reza Shaker, and Maryamsadat Tahavori. 2018. "Fault Location in Double Circuit Medium Power Distribution Networks Using an Impedance-Based Method" Applied Sciences 8, no. 7: 1034. https://doi.org/10.3390/app8071034
APA StyleDashti, R., Salehizadeh, S. M., Shaker, H. R., & Tahavori, M. (2018). Fault Location in Double Circuit Medium Power Distribution Networks Using an Impedance-Based Method. Applied Sciences, 8(7), 1034. https://doi.org/10.3390/app8071034