In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization
Abstract
:1. Introduction
2. Experimental Section
2.1. Bacillus Anthracis Genomes
2.2. Universal Fingerprinting Chip (UFC-13)
Organism/Name | Size (Mb) | GC % | Genes | Proteins | RefSeq/Bioproject | Levels |
---|---|---|---|---|---|---|
Bacillus anthracis str. Ames Ancestor | 5.5 | 35.26 | 5735 | 5305 | NC_007530.2 | Gapless chromosome |
Bacillus anthracis str. Ames | 5.23 | 35.4 | 5401 | 5039 | NC_003997.3 | Gapless chromosome |
Bacillus anthracis str. Sterne | 5.23 | 35.4 | 5265 | 4955 | NC_005945.1 | Gapless chromosome |
Bacillus anthracis str. Kruger B | 5.47 | 35.1 | 5878 | 5753 | PRJNA54105 * | Scaffolds or contigs |
Bacillus anthracis str. CNEVA-9066 | 5.49 | 35.2 | 5870 | 5741 | PRJNA54133 * | Scaffolds or contigs |
Bacillus anthracis str. Western North America | 5.51 | 35.2 | 5973 | 5850 | PRJNA54107 * | Scaffolds or contigs |
Bacillus anthracis str. Australia 94 | 5.5 | 35.2 | 5987 | 5863 | PRJNA54137 * | Scaffolds or contigs |
Bacillus anthracis str. Vollum | 5.49 | 35.2 | 5962 | 5851 | PRJNA54135 * | Scaffolds or contigs |
2.3. Virtual Hybridization
2.4. Virtual Hybridization by Direct and Extended Methods
2.5. Genomic Fingerprints
2.6. Bacillus Anthracis Fingerprint Tree
3. Results and Discussion
3.1. Information Obtained for Interpreting Virtual Hybridization Results
Organism/Name | High Potential Sites (Extended) 1 mismatch * | High Potential Sites (Direct) ** 0 mismatch |
---|---|---|
Bacillus anthracis str. Ames Ancestor | 4606 | 1529 |
Bacillus anthracis str. Ames | 4607 | 1529 |
Bacillus anthracis str. Sterne | 4606 | 1530 |
Bacillus anthracis str. Kruger B | 4592 | 1520 |
Bacillus anthracis str. CNEVA-9066 | 4603 | 1526 |
Bacillus anthracis str. Western North America | 4608 | 1533 |
Bacillus anthracis str. Australia 94 | 4605 | 1529 |
Bacillus anthracis str. Vollum | 4599 | 1529 |
3.2. Bacillus Anthracis Virtual Genomic Fingerprints
3.3. Bacillus Anthracis Analysis
3.4. Distance Table
Strain | BaVollum | BaA0039 | BaFrance | BaKruger | BaAmes | BaSterne | BaAncestor | BaAmerica |
---|---|---|---|---|---|---|---|---|
BaVollum | 0 | |||||||
BaA0039 | 0.000334 | 0 | ||||||
BaFrance | 0.000802 | 0.000702 | 0 | |||||
BaKruger | 0.001088 | 0.000987 | 0.000452 | 0 | ||||
BaAmes | 0.000301 | 0.000167 | 0.000635 | 0.000920 | 0 | |||
BaSterne | 0.000284 | 0.000150 | 0.000618 | 0.000903 | 0.000083 | 0 | ||
BaAncestor | 0.000284 | 0.000150 | 0.000618 | 0.000903 | 0.000017 | 0.000067 | 0 | |
BaAmerica | 0.000251 | 0.000150 | 0.000618 | 0.000903 | 0.000117 | 0.000100 | 0.000100 | 0 |
Strain | BaVollum | BaA0039 | BaFrance | BaKrugerB | BaAmes | BaSterne | BaAncestor | BaAmerica |
---|---|---|---|---|---|---|---|---|
BaVollum | 0 | |||||||
BaA0039 | 0.000503 | 0 | ||||||
BaFrance | 0.001057 | 0.000956 | 0 | |||||
BaKrugerB | 0.001261 | 0.001261 | 0.000606 | 0 | ||||
BaAmes | 0.000503 | 0.000201 | 0.000956 | 0.001261 | 0 | |||
BaSterne | 0.000452 | 0.000151 | 0.000906 | 0.001210 | 0.00005 | 0 | ||
BaAncestor | 0.000503 | 0.000201 | 0.000956 | 0.001261 | 0 | 0.00005 | 0 | |
BaAmerica | 0.000402 | 0.000301 | 0.000854 | 0.001158 | 0.000301 | 0.000251 | 0.000301 | 0 |
3.5. Bacillus Anthracis UFC-13 Trees
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Koehler, T.M. Bacillus anthracis physiology and genetics. Mol. Aspects Med. 2009, 30, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Okinaka, R.; Cloud, K.; Hampton, O.; Hoffmaster, A.; Hill, K.; Keim, P.; Koehler, T.; Lamke, G.; Kumano, S.; Manter, D.; et al. Sequence, assembly and analysis of px01 and px02. J. Appl. Microbiol. 1999, 87, 261–262. [Google Scholar] [CrossRef] [PubMed]
- Dumetz, F.; Jouvion, G.; Khun, H.; Glomski, I.J.; Corre, J.P.; Rougeaux, C.; Tang, W.J.; Mock, M.; Huerre, M.; Goossens, P.L. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax. Am. J. Pathol. 2011, 178, 2523–2535. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Misra, M.; Sower, L.; Peterson, J.W.; Kellogg, G.E.; Schein, C.H. Novel inhibitors of anthrax edema factor. Bioorg. Med. Chem. 2008, 16, 7225–7233. [Google Scholar] [CrossRef] [PubMed]
- Leysath, C.E.; Phillips, D.D.; Crown, D.; Fattah, R.J.; Moayeri, M.; Leppla, S.H. Anthrax edema factor toxicity is strongly mediated by the n-end rule. PLoS One 2013, 8, e74474. [Google Scholar] [CrossRef] [PubMed]
- Keim, P.; Gruendike, J.M.; Klevytska, A.M.; Schupp, J.M.; Challacombe, J.; Okinaka, R. The genome and variation of bacillus anthracis. Mol. Aspects Med. 2009, 30, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Bavykin, S.G.; Mikhailovich, V.M.; Zakharyev, V.M.; Lysov, Y.P.; Kelly, J.J.; Alferov, O.S.; Gavin, I.M.; Kukhtin, A.V.; Jackman, J.; Stahl, D.A.; et al. Discrimination of bacillus anthracis and closely related microorganisms by analysis of 16s and 23s rrna with oligonucleotide microarray. Chem. Biol. Interact. 2008, 171, 212–235. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, A.; Kovac, P.; Saksena, R.; Bannert, N.; Klee, S.R.; Ranisch, H.; Grunow, R. Development of antibodies against anthrose tetrasaccharide for specific detection of bacillus anthracis spores. Clin. Vac. Immunol. 2009, 16, 1728–1737. [Google Scholar] [CrossRef]
- Rao, S.S.; Mohan, K.V.; Atreya, C.D. Detection technologies for bacillus anthracis: Prospects and challenges. J. Microbiol. Methods 2010, 82, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bumgarner, R. Overview of DNA microarrays: Types, applications, and their future. Curr. Protoc. Mol. Biol. 2013. [Google Scholar] [CrossRef]
- Universal Fingerprintig Chip (UFC). Available online: http://bioinformatica.homelinux.org/UFCVH (accessed on 16 February 2015).
- SantaLucia, J., Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 1998, 95, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Diaz, H.; Garcia-Chequer, A.J.; Mendez-Tenorio, A.; Santiago-Hernandez, J.C.; Maldonado-Rodriguez, R.; Beattie, K.L. Bacterial classification using genomic fingerprints obtained by virtual hybridization. J. Microbiol. Methods 2011, 87, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Carreno-Duran, L.R.; Larios-Serrato, V.; Jaimes-Diaz, H.; Perez-Cervantes, H.; Zepeda-Lopez, H.; Sanchez-Vallejo, C.J.; Olguin-Ruiz, G.E.; Maldonado-Rodriguez, R.; Mendez-Tenorio, A. Design of a set of probes with high potential for influenza virus epidemiological surveillance. Bioinformation 2013, 9, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Lopez, M.A.; Mendez-Tenorio, A.; Maldonado-Rodriguez, R.; Doktycz, M.J.; Fleming, J.T.; Beattie, K.L. Fingerprinting of prokaryotic 16s rrna genes using oligodeoxyribonucleotide microarrays and virtual hybridization. Nucleic Acids Res. 2003, 31, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Casique-Almazan, J.; Larios-Serrato, V.; Olguin-Ruiz, G.E.; Sanchez-Vallejo, C.J.; Maldonado-Rodriguez, R.; Mendez-Tenorio, A. Universal fingerprinting chip server. Bioinformation 2012, 8, 586–588. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Jiang, L.; Stanley, S.T.; Wilson, M.R.; Decker, R.S.; Read, T.D.; Worsham, P.; Keim, P.S.; Salzberg, S.L.; Fraser-Liggett, C.M.; et al. The complete genome sequence of bacillus anthracis ames “Ancestor”. J. Bacteriol. 2009, 191, 445–446. [Google Scholar] [CrossRef] [PubMed]
- Read, T.D.; Peterson, S.N.; Tourasse, N.; Baillie, L.W.; Paulsen, I.T.; Nelson, K.E.; Tettelin, H.; Fouts, D.E.; Eisen, J.A.; Gill, S.R.; et al. The genome sequence of bacillus anthracis ames and comparison to closely related bacteria. Nature 2003, 423, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. Genbank. Nucleic Acids Res 2014, 42, D32–D37. [Google Scholar] [CrossRef] [PubMed]
- Avarre, J.C.; de Lajudie, P.; Bena, G. Hybridization of genomic DNA to microarrays: A challenge for the analysis of environmental samples. J. Microbiol. Methods 2007, 69, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Bavykin, S.G.; Lysov, Y.P.; Zakhariev, V.; Kelly, J.J.; Jackman, J.; Stahl, D.A.; Cherni, A. Use of 16s rrna, 23s rrna, and gyrb gene sequence analysis to determine phylogenetic relationships of bacillus cereus group microorganisms. J. Clin. Microbiol. 2004, 42, 3711–3730. [Google Scholar] [CrossRef] [PubMed]
- Tottey, W.; Denonfoux, J.; Jaziri, F.; Parisot, N.; Missaoui, M.; Hill, D.; Borrel, G.; Peyretaillade, E.; Alric, M.; Harris, H.M.; et al. The human gut chip “Hugchip”, an explorative phylogenetic microarray for determining gut microbiome diversity at family level. PLoS One 2013, 8, e62544. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Prieto, F.; Garcia-Chequer, A.J.; Jaimes-Diaz, H.; Casique-Almazan, J.; Espinosa-Lara, J.M.; Palma-Orozco, R.; Mendez-Tenorio, A.; Maldonado-Rodriguez, R.; Beattie, K.L. Lifeprint: A novel k-tuple distance method for construction of phylogenetic trees. Adv. Appl. Bioinform. Chem. 2011, 4, 13–27. [Google Scholar] [PubMed]
- Vijaya Satya, R.; Zavaljevski, N.; Kumar, K.; Bode, E.; Padilla, S.; Wasieloski, L.; Geyer, J.; Reifman, J. In silico microarray probe design for diagnosis of multiple pathogens. BMC Genomics 2008, 9, e496. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaimes-Díaz, H.; Larios-Serrato, V.; Lloret-Sánchez, T.; Olguín-Ruiz, G.; Sánchez-Vallejo, C.; Carreño-Durán, L.; Maldonado-Rodríguez, R.; Méndez-Tenorio, A. In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization. Microarrays 2015, 4, 84-97. https://doi.org/10.3390/microarrays4010084
Jaimes-Díaz H, Larios-Serrato V, Lloret-Sánchez T, Olguín-Ruiz G, Sánchez-Vallejo C, Carreño-Durán L, Maldonado-Rodríguez R, Méndez-Tenorio A. In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization. Microarrays. 2015; 4(1):84-97. https://doi.org/10.3390/microarrays4010084
Chicago/Turabian StyleJaimes-Díaz, Hueman, Violeta Larios-Serrato, Teresa Lloret-Sánchez, Gabriela Olguín-Ruiz, Carlos Sánchez-Vallejo, Luis Carreño-Durán, Rogelio Maldonado-Rodríguez, and Alfonso Méndez-Tenorio. 2015. "In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization" Microarrays 4, no. 1: 84-97. https://doi.org/10.3390/microarrays4010084
APA StyleJaimes-Díaz, H., Larios-Serrato, V., Lloret-Sánchez, T., Olguín-Ruiz, G., Sánchez-Vallejo, C., Carreño-Durán, L., Maldonado-Rodríguez, R., & Méndez-Tenorio, A. (2015). In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization. Microarrays, 4(1), 84-97. https://doi.org/10.3390/microarrays4010084