Oxygen Extraction and Mortality in Patients Undergoing Chronic Haemodialysis Treatment: A Multicentre Study
Abstract
:1. Introduction
2. Methods
2.1. Ethical Standards
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodman, W.G.; London, G.; Amann, K.; Block, G.A.; Giachelli, C.; Hruska, K.A.; Ketteler, M.; Levin, A.; Massy, Z.; McCarron, D.A.; et al. Vascular calcification in chronic kidney disease. Am. J. Kidney Dis. 2004, 43, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Kooman, J.P.; Katzarski, K.; van der Sande, F.M.; Leunissen, K.M.; Kotanko, P. Hemodialysis: A model for extreme physiology in a vulnerable patient population. Semin. Dial. 2018, 31, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Kooman, J.P.; Selby, N.M.; Taal, M.W.; Francis, S.; Maierhofer, A.; Kopperschmidt, P.; Collins, A.; Kotanko, P. Dialysis-induced cardiovascular and multiorgan morbidity. Kidney Int. Rep. 2020, 5, 1856–1869. [Google Scholar] [CrossRef] [PubMed]
- Soliani, F.; Davoli, V.; Franco, V.; Lindner, G.; Lusenti, T.; Parisoli, A.; Brini, M.; Borgatti, P.P.; Mann, H.; Stiller, S.; et al. Intradialytic changes of the oxyhaemoglobin dissociation curve during acetate and bicarbonate haemodialysis. Possible interactions with haemodialysis-associated hypoxaemia. Nephrol. Dial. Transplant. 1990, 5, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Brugnara, C.; Betensky, R.A.; Waikar, S.S. Reductions in red blood cell 2,3-diphosphoglycerate concentration during continuous renal replacement therapy. Clin. J. Am. Soc. Nephrol. 2015, 10, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, C.W.; Burton, J.; Selby, N.; Leccisotti, L.; Korsheed, S.; Baker, C.S.; Camici, P.G. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin. J. Am. Soc. Nephrol. 2008, 3, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Eldehni, M.T.; Odudu, A.; McIntyre, C.W. Randomized clinical trial of dialysate cooling and effects on brain white matter. J. Am. Soc. Nephrol. 2015, 26, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Kooman, J.P.; Stenvinkel, P.; Shiels, P.G.; Feelisch, M.; Canaud, B.; Kotanko, P. The oxygen cascade in patients treated with hemodialysis and native high-altitude dwellers: Lessons from extreme physiology to benefit patients with end-stage renal disease. Am. J. Physiol. Renal Physiol. 2021, 320, F249–F261. [Google Scholar] [CrossRef]
- Arhuidese, I.J.; Orandi, B.J.; Nejim, B.; Malas, M. Utilization, patency, and complications associated with vascular access for hemodialysis in the United States. J. Vasc. Surg. 2018, 68, 1166–1174. [Google Scholar] [CrossRef]
- Rotondi, S.; Tartaglione, L.; De Martini, N.; Bagordo, D.; Caissutti, S.; Pasquali, M.; Muci, M.L.; Mazzaferro, S. Oxygen extraction ratio to identify patients at increased risk of intradialytic hypotension. Sci. Rep. 2021, 11, 4801. [Google Scholar] [CrossRef]
- Rotondi, S.; Tartaglione, L.; Muci, M.L.; Farcomeni, A.; Pasquali, M.; Mazzaferro, S. Oxygen extraction ratio (OER) as a measurement of hemodialysis (HD) induced tissue hypoxia: A pilot study. Sci. Rep. 2018, 8, 5655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyring-Wösten, A.; Zhang, H.; Ye, X.; Fuertinger, D.; Chan, L.; Kappel, F.; Artemyev, M.; Ginsberg, N.; Wang, Y.; Thijssen, S.; et al. Intradialytic hypoxemia and clinical outcomes in patients on hemodialysis. Clin. J. Am. Soc. Nephrol. 2016, 11, 616–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, L.E.; Selby, N.M.; McIntyre, C.W. Central venous oxygen saturation: A potential new marker for circulatory stress in haemodialysis patients. Nephron Clin. Pract. 2014, 128, 57–60. [Google Scholar] [CrossRef]
- Zhang, H.; Chan, L.; Meyring-Wösten, A.; Campos, I.; Preciado, P.; Kooman, J.P.; van der Sande, F.M.; Fuertinger, D.; Thijssen, S.; Kotanko, P. Association between intradialytic central venous oxygen saturation and ultrafiltration volume in chronic hemodialysis patients. Nephrol. Dial. Transplant. 2018, 33, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Roca-Tey, R.; Arcos, E.; Comas, J.; Cao, H.; Tort, J. Starting hemodialysis with catheter and mortality risk: Persistent association in a competing risk analysis. J. Vasc. Access 2016, 17, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.; Zhang, H.; Meyring-Wösten, A.; Campos, I.; Fuertinger, D.; Thijssen, S.; Kotanko, P. Intradialytic central venous oxygen saturation is associated with clinical outcomes in hemodialysis patients. Sci. Rep. 2017, 7, 8581. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Campos, I.; Chan, L.; Meyring-Wösten, A.; Silva, L.M.T.; Fuentes, L.R.; Preciado, P.; Thijssen, S.; Kooman, J.P.; van der Sande, F.M.; et al. Association of central venous oxygen saturation variability and mortality in hemodialysis patients. Blood Purif. 2019, 47, 246–253. [Google Scholar] [CrossRef]
- Amann, K.; Breitbach, M.; Ritz, E.; Mall, G. Myocyte/capillary mismatch in the heart of uremic patients. J. Am. Soc. Nephrol. 1998, 9, 1018–1022. [Google Scholar] [CrossRef]
- Burkhardt, D.; Bartosova, M.; Schaefer, B.; Grabe, N.; Lahrmann, B.; Nasser, H.; Freise, C.; Schneider, A.; Lingnau, A.; Degenhardt, P.; et al. Reduced microvascular density in omental biopsies of children with chronic kidney disease. PLoS ONE 2016, 11, e0166050. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kang, H.; Kim, I.; Yeo, C.; Kim, S.; Ban, W. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci. Rep. 2020, 10, 1854. [Google Scholar] [CrossRef]
- Maisonneuve, P.; Agodoa, L.; Gellert, R.; Stewart, J.H.; Buccianti, G.; Lowenfels, A.B.; Wolfe, R.A.; Jones, E.; Disney, A.P.; Briggs, D.; et al. Cancer in patients on dialysis for end-stage renal disease: An international collaborative study. Lancet 1999, 354, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-M.; Huang, Y.-T.; Chen, I.-L.; Yang, C.-L.; Leu, S.-C.; Su, H.-L.; Kao, J.-L.; Tsai, S.-C.; Jhen, R.-N.; Shiao, C.-C. Heart rate variability as an independent predictor for 8-year mortality among chronic hemodialysis patients. Sci. Rep. 2020, 10, 881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaysen, G.A.; Rathore, V.; Shearer, G.C.; Depner, T.A. Mechanisms of hypoalbuminemia in hemodialysis patients. Kidney Int. 1995, 48, 510–516. [Google Scholar] [CrossRef] [PubMed]
Enrolled Population (n = 101) | ΔOER ≥ 40% (n = 45) | ΔOER < 40% (n = 56) | p Value | |
---|---|---|---|---|
Male/female, n (%) | 61 (60%)/40 (40%) | 28 (62)/17 (38) | 33 (58)/23 (42) | 0.535 * |
Age, years | 72.9 ± 13.6 | 70.6 ± 12.5 | 74.7 ± 14.3 | 0.240 |
Vintage HD, years | 9.6 ± 16.7 | 8.2 ± 15.4 | 10.7 ± 18.0 | 0.490 |
BMI (kg/m2) | 23.1 ± 2.5 | 24.9 ± 2.1 | 25.6 ± 4.1 | 0.630 |
Diabetes mellitus, n (%) | 32 (32) | 15 (33) | 17 (30) | 0.525 * |
HT, n (%) | 70 (70) | 33 (70) | 37 (66) | 0.545 * |
Vascular comorbidities °, n (%) | 44 (44) | 20 (44) | 24 (43) | 0.830 * |
IV Erythropoietin therapy, n (%) | 94 (93) | 42 (92) | 52 (93) | 0.935 * |
IV iron therapy, n (%) | 94 (93) | 42 (92) | 52 (93) | 0.935 * |
Pre-HD systolic BP, mmHg | 131.4 ± 23.1 | 131.7 ± 27.6 | 131.1 ± 19.0 | 0.930 |
Pre-HD diastolic BP, mmHg | 69.6 ± 11.8 | 71.4 ± 12.2 | 68.2 ± 11.5 | 0.275 |
Post-HD systolic BP, mmHg | 133.2 ± 19.7 | 131.9 ± 18.7 | 134.3 ± 20.6 | 0.645 |
Post-HD diastolic BP, mmHg | 71.1 ± 11.3 | 72.6 ± 10.5 | 69.9 ± 11.9 | 0.230 |
Pre-HD HR, bpm | 69.9 ± 10.8 | 71.6 ± 11.1 | 68.6 ± 10.5 | 0.240 |
Post-HD HR, bpm | 71.2 ± 10.4 | 72.7 ± 10.1 | 69.9 ± 10.7 | 0.250 |
Hb, g/dL | 10.6 ± 1.3 | 10.6 ± 1.5 | 10.5 ± 1.3 | 0.730 |
CRP, mg/dL | 1.5 ± 2.0 | 1.4 ± 2.2 | 1.8 ± 1.5 | 0.240 |
Ferritin, mcg/L | 316.9 ± 200.1 | 320.3 ± 200.5 | 300.2 ± 150.5 | 0.155 |
Albumin, g/dL | 3.4 ± 0.4 | 3.3 ± 0.5 | 3.4 ± 0.3 | 0.340 |
Ca, mg/dL | 8.7 ± 0.7 | 8.7 ± 0.6 | 8.7 ± 0.7 | 0.985 |
P, mg/dL | 5.1 ± 1.4 | 5.3 ± 1.4 | 5.1 ± 1.4 | 0.530 |
PTH, pg/mL | 347.9 ± 247.8 | 360.4 ± 287.6 | 337.6 ± 212.4 | 0.740 |
KT/V | 1.3 ± 0.2 | 1.3 ± 0.2 | 1.3 ± 0.2 | 1.000 |
Total UF, mL | 607.1 ± 193.2 | 632.5 ± 197.4 | 586.3 ± 188.5 | 0.435 |
UF, mL/h/kg | 8.3 ± 3.3 | 8.1 ± 3.2 | 8.4 ± 3.4 | 0.650 |
ScvO2 pre-HD, % | 67.1 ± 9.5 | 69.3 ±11.3 | 65.4 ± 9.5 | 0.001 |
ScvO2 post-HD, % | 55.2 ± 11.3 | 50.5 ± 10.5 | 60.3 ± 10.5 | <0.001 |
SaO2 pre-HD, % | 98.1 ± 3.5 | 98.5 ± 3.1 | 98.2 ± 2.1 | 0.930 |
SaO2 post HD, % | 97.2 ± 3.1 | 97.0 ± 3.0 | 97.0 ± 2.0 | 0.945 |
OER pre-HD | 30.8 ± 8.1 | 27.1 ± 5.6 | 33.8 ± 8.6 | <0.001 |
OER post-HD | 42.3 ± 13.8 | 46.1 ± 9.7 | 39.8 ± 10.1 | <0.001 |
∆OER, % | 42.3 ± 34.8 | 70.4 ± 25.3 | 19.7 ± 11.6 | <0.001 |
Follow-up, months | 11.6 ± 7.5 | 11.1 ± 6.6 | 12.1 ± 8.1 | 0.505 |
Death, n (%) | 44 (44) | 27 (60) | 17 (30) | 0.005 * |
Annual mortality rate, % | 20 | 30 | 15 | 0.005 * |
Causes of death | ||||
Cardiovascular, n (%) | 20 (45) | 10 (37) | 10 (59) | 0.135 |
Cancer, n (%) | 12 (27) | 11 (41) | 1 (5) | 0.040 |
Infection, n (%) | 12 (27) | 6 (22) | 6 (35) | 0.430 |
Univariate Survival Analyses | ||||
Variable | HR | C.I.low | C.I.up | p |
Age, years | 1.01 | 0.99 | 1.04 | 0.360 |
Vintage HD, years | 0.97 | 0.92 | 1.02 | 0.255 |
OER pre-HD | 0.97 | 0.93 | 1.01 | 0.165 |
OER post-HD | 1.02 | 0.98 | 1.05 | 0.295 |
Delta OER % | 1.01 | 1.00 | 1.02 | 0.100 |
Delta OER % ≥40% | 2.76 | 1.46 | 5.22 | <0.001 |
Pre-HD systolic BP, mmHg | 1.00 | 0.99 | 1.01 | 0.745 |
Pre-HD diastolic BP, mmHg | 1.00 | 0.97 | 1.02 | 0.940 |
Pre-HD HR, bpm | 1.03 | 1.00 | 1.06 | 0.030 |
Post-HD systolic BP, mmHg | 0.99 | 0.98 | 1.01 | 0.475 |
Post-HD diastolic BP, mmHg | 1.00 | 0.97 | 1.03 | 0.930 |
Post-HD HR, bpm | 1.05 | 1.01 | 1.08 | 0.001 |
Uf h, mL | 0.99 | 0.99 | 0.99 | 0.010 |
Uf mL/min/Kg | 0.88 | 0.80 | 0.98 | 0.020 |
Hb g/dL | 0.90 | 0.71 | 1.15 | 0.410 |
Ca mg/dL | 0.86 | 0.52 | 1.40 | 0.540 |
P mg/dL | 0.94 | 0.74 | 1.20 | 0.635 |
PTH ng/mL | 1.00 | 1.00 | 1.00 | 0.490 |
Diabetes (no-yes) | 1.23 | 0.66 | 2.31 | 0.510 |
CVC (no-Yes) | 1.00 | 0.53 | 1.89 | 0.990 |
CRP | 1.00 | 0.98 | 1.01 | 0.990 |
Albuminemia | 1.03 | 0.99 | 1.08 | 0.155 |
KT/V | 0.21 | 0.04 | 1.03 | 0.060 |
Multivariate Survival Analyses | ||||
Variable | HR | C.I.low | C.I.up | p |
Delta OER % ≥40% | 2.76 | 1.46 | 5.22 | <0.001 |
Post-HD HR, bpm | 1.05 | 1.01 | 1.08 | 0.001 |
Survivors (n = 57) | Non-Survivors (n = 44) | p-Value | |
---|---|---|---|
Male/female, n (%) | 33 (57)/24 (43) | 28 (63)/16 (37) | 0.535 * |
Age, years | 70.4 ± 14.9 | 75.5 ± 11.8 | 0.110 |
Vintage HD, years | 14.7 ± 21.1 | 4.5 ± 8.1 | 0.010 |
BMI (kg/m2) | 25.2 ± 3.1 | 24.2 ± 2.1 | 0.835 |
Diabetes mellitus, n (%) | 15 (26) | 17 (38) | 0.535 * |
HT, n (%) | 40 (70) | 30 (68) | 0.520 * |
Vascular comorbidities °, n (%) | 29 (51) | 15 (34) | 0.545 * |
Pre-HD systolic BP, mmHg | 132.3 ± 26.4 | 130.1 ± 18.1 | 0.640 |
Pre-HD diastolic BP, mmHg | 70.1 ± 11.6 | 69.0 ± 12.4 | 0.661 |
Post-HD systolic BP, mmHg | 135.4 ± 21.4 | 130.4 ± 17.2 | 0.210 |
Post-HD diastolic BP, mmHg | 71.0 ± 11.8 | 71.2 ± 10.7 | 0.985 |
Pre-HD HR, bpm | 67.9 ± 11.1 | 72.7 ± 9.8 | 0.030 |
Post-HD HR, bpm | 68.9 ± 10.2 | 75.4 ± 9.2 | 0.003 |
Hb, g/dL | 10.8 ± 1.4 | 10.2 ± 14.4 | 0.061 |
CRP, mg/dL | 1.6 ± 1.5 | 1.6 ± 2.2 | 0.991 |
Ferritin, mcg/L | 310.2 ± 150.5 | 310.3 ± 200.5 | 0.990 |
Albumin, g/dL | 3.5 ± 0.3 | 3.2 ± 0.4 | 0.001 |
Ca, mg/dL | 8.8 ± 0.7 | 8.5 ± 0.6 | 0.060 |
P, mg/dL | 5.2 ± 1.4 | 5.1 ± 1.3 | 0.630 |
PTH, pg/mL | 363.1 ± 294.3 | 330.5 ± 187.4 | 0.575 |
KT/V | 1.35 ± 0.2 | 1.32 ± 0.2 | 0.230 |
UF, mL/h | 650.1 ± 189.1 | 551.3 ± 202.0 | 0.080 |
UF, mL/h/kg | 9.4 ± 2.9 | 7.2 ± 3.4 | 0.095 |
ScvO2 pre-HD, % | 68.3 ± 8.5 | 67.3 ± 10.3 | 0.835 |
ScvO2 post-HD, % | 58.4 ± 10.2 | 52.3 ± 11.2 | 0.010 |
SaO2 pre-HD, % | 98.4 ± 1.8 | 98.2 ± 2.2 | 0.990 |
SaO2 post HD, % | 97.5 ± 2.0 | 97.3 ± 1.8 | 0.995 |
OER pre-HD | 30.2 ± 8.4 | 31.6 ± 7.7 | 0.370 |
OER post-HD | 39.9 ± 10.4 | 45.5 ± 9.8 | 0.015 |
∆OER, % | 40.0 ± 36.0 | 45.3 ± 25.7 | 0.040 |
Follow-up, months | 12.3 ± 7.5 | 10.7 ± 7.4 | 0.275 |
Causes of death | |||
Cardiovascular, n (%) | 20 (45) | ||
Cancer, n (%) | 12 (27) | ||
Infection, n (%) | 12 (27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotondi, S.; Tartaglione, L.; Muci, M.L.; Pasquali, M.; Panocchia, N.; Aucella, F.; Gesuete, A.; Papalia, T.; Solmi, L.; Farcomeni, A.; et al. Oxygen Extraction and Mortality in Patients Undergoing Chronic Haemodialysis Treatment: A Multicentre Study. J. Clin. Med. 2023, 12, 138. https://doi.org/10.3390/jcm12010138
Rotondi S, Tartaglione L, Muci ML, Pasquali M, Panocchia N, Aucella F, Gesuete A, Papalia T, Solmi L, Farcomeni A, et al. Oxygen Extraction and Mortality in Patients Undergoing Chronic Haemodialysis Treatment: A Multicentre Study. Journal of Clinical Medicine. 2023; 12(1):138. https://doi.org/10.3390/jcm12010138
Chicago/Turabian StyleRotondi, Silverio, Lida Tartaglione, Maria Luisa Muci, Marzia Pasquali, Nicola Panocchia, Filippo Aucella, Antonio Gesuete, Teresa Papalia, Luigi Solmi, Alessio Farcomeni, and et al. 2023. "Oxygen Extraction and Mortality in Patients Undergoing Chronic Haemodialysis Treatment: A Multicentre Study" Journal of Clinical Medicine 12, no. 1: 138. https://doi.org/10.3390/jcm12010138