Examining the Validity of ChatGPT in Identifying Relevant Nephrology Literature: Findings and Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Criteria
2.2. Study Outcomes
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, S.; Hussain, Z.; Boyle, J.G. A beginner’s guide to the literature search in medical education. Scott. Med. J. 2017, 62, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Kuper, A. Literature and medicine: A problem of assessment. Acad. Med. 2006, 81, S128–S137. [Google Scholar] [CrossRef] [PubMed]
- Grewal, A.; Kataria, H.; Dhawan, I. Literature search for research planning and identification of research problem. Indian J. Anaesth. 2016, 60, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Lin, Y. The Benefits and Challenges of ChatGPT: An Overview. Front. Comput. Intell. Syst. 2022, 2, 81–83. [Google Scholar] [CrossRef]
- Van Dis, E.A.M.; Bollen, J.; Zuidema, W.; van Rooij, R.; Bockting, C.L. ChatGPT: Five priorities for research. Nature 2023, 614, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.S. Role of Chat GPT in Public Health. Ann. Biomed. Eng. 2023, 51, 868–869. [Google Scholar] [CrossRef] [PubMed]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; de Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef]
- Lund, B.D.; Wang, T. Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Libr. Hi Tech News 2023, 40, 26–29. [Google Scholar] [CrossRef]
- Kumar, A.H. Analysis of ChatGPT tool to assess the potential of its utility for academic writing in biomedical domain. Biol. Eng. Med. Sci. Rep. 2023, 9, 24–30. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef] [PubMed]
- Chavez, M.R.; Butler, T.S.; Rekawek, P.; Heo, H.; Kinzler, W.L. Chat Generative Pre-trained Transformer: Why we should embrace this technology. Am. J. Obstet. Gynecol. 2023, 228, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, M.; Taccone, F.S.; Gerli, A.G. Can artificial intelligence help for scientific writing? Crit. Care 2023, 27, 75. [Google Scholar] [CrossRef] [PubMed]
- Marchandot, B.; Matsushita, K.; Carmona, A.; Trimaille, A.; Morel, O. ChatGPT: The next frontier in academic writing for cardiologists or a pandora’s box of ethical dilemmas. Eur. Heart J. Open 2023, 3, oead007. [Google Scholar] [CrossRef] [PubMed]
- Lubowitz, J.H. ChatGPT, an artificial intelligence chatbot, is impacting medical literature. Arthroscopy 2023, 39, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.K. What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Educ. Sci. 2023, 13, 410. [Google Scholar] [CrossRef]
- Vaishya, R.; Misra, A.; Vaish, A. ChatGPT: Is this version good for healthcare and research? Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102744. [Google Scholar] [CrossRef]
- Mojadeddi, Z.M.; Rosenberg, J. The impact of AI and ChatGPT on research reporting. N. Z. Med. J. 2023, 136, 60–64. [Google Scholar]
- Miao, J.; Thongprayoon, C.; Cheungpasitporn, W. Assessing the Accuracy of ChatGPT on Core Questions in Glomerular Disease. Kidney Int. Rep. 2023, 8, 1657–1659. [Google Scholar] [CrossRef]
- Shen, Y.; Heacock, L.; Elias, J.; Hentel, K.D.; Reig, B.; Shih, G.; Moy, L. ChatGPT and Other Large Language Models Are Double-edged Swords. Radiology 2023, 307, e230163. [Google Scholar] [CrossRef] [PubMed]
- Alhasan, K.; Raina, R.; Jamal, A.; Temsah, M.H. Combining human and AI could predict nephrologies future, but should be handled with care. Acta Paediatr. 2023, 112, 1844–1848. [Google Scholar] [CrossRef] [PubMed]
- Connor, C.W. Artificial Intelligence and Machine Learning in Anesthesiology. Anesthesiology 2019, 131, 1346–1359. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.; Petracek, J.; Yalamanchili, P.; Aimer, O.; Kasthuril, D.; Dhingra, S.; Junaid, T.; Bostic, T. The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature. Pharm. Med. 2022, 36, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Niel, O.; Bastard, P. Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. Am. J. Kidney Dis. 2019, 74, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, H.; Qi, S.; Cheng, K. Artificial Intelligence in Intensive Care Medicine: Toward a ChatGPT/GPT-4 Way? Ann. Biomed. Eng. 2023, 51, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, T.A.; Sukhia, R.H.; Ghandhi, D. Artificial intelligence in dentistry, orthodontics and Orthognathic surgery: A literature review. J. Pak. Med. Assoc. 2022, 72 (Suppl. S1), S91–S96. [Google Scholar] [CrossRef]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. J. Med. Syst. 2023, 47, 33. [Google Scholar] [CrossRef]
- Alkaissi, H.; McFarlane, S.I. Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. Cureus 2023, 15, e35179. [Google Scholar] [CrossRef]
- Meskó, B.; Görög, M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 2020, 3, 126. [Google Scholar] [CrossRef]
- Au Yeung, J.; Kraljevic, Z.; Luintel, A.; Balston, A.; Idowu, E.; Dobson, R.J.; Teo, J.T. AI chatbots not yet ready for clinical use. Front. Digit. Health 2023, 5, 1161098. [Google Scholar] [CrossRef] [PubMed]
- Ruksakulpiwat, S.; Kumar, A.; Ajibade, A. Using ChatGPT in Medical Research: Current Status and Future Directions. J. Multidiscip. Healthc. 2023, 16, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Fatani, B. ChatGPT for Future Medical and Dental Research. Cureus 2023, 15, e37285. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Digital Health. ChatGPT: Friend or foe? Lancet Digit. Health 2023, 5, e102. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, M.; Kline, J.A.; Schneider, A.J.; Coates, W.C. ChatGPT and conversational artificial intelligence: Friend, foe, or future of research? Am. J. Emerg. Med. 2023, 70, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Athaluri, S.A.; Manthena, S.V.; Kesapragada, V.S.R.K.M.; Yarlagadda, V.; Dave, T.; Duddumpudi, R.T.S. Exploring the Boundaries of Reality: Investigating the Phenomenon of Artificial Intelligence Hallucination in Scientific Writing Through ChatGPT References. Cureus 2023, 15, e37432. [Google Scholar] [CrossRef]
- Masters, K. Medical Teacher’s first ChatGPT’s referencing hallucinations: Lessons for editors, reviewers, and teachers. Med. Teach. 2023, 45, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, M.; Miller, V.M.; Bhattacharyya, D.; Miller, L.E. High Rates of Fabricated and Inaccurate References in ChatGPT-Generated Medical Content. Cureus 2023, 15, e39238. [Google Scholar] [CrossRef]
- Alexandre Blanco-Gonzalez, A.C.; Seco-Gonzalez, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Pineiro, A.; Garcia-Fandino, R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. arXiv 2022, arXiv:2212.08104. [Google Scholar]
- ChatGPT GPT-4.0. Available online: https://openai.com/gpt-4 (accessed on 5 June 2023).
- Jamal, A.; Solaiman, M.; Alhasan, K.; Temsah, M.-H.; Sayed, G. Integrating ChatGPT in Medical Education: Adapting Curricula to Cultivate Competent Physicians for the AI Era. Cureus 2023, 15, e43036. [Google Scholar] [CrossRef]
- Temsah, O.; Khan, S.A.; Chaiah, Y.; Senjab, A.; Alhasan, K.; Jamal, A.; Aljamaan, F.; Malki, K.H.; Halwani, R.; Al-Tawfiq, J.A.; et al. Overview of Early ChatGPT’s Presence in Medical Literature: Insights from a Hybrid Literature Review by ChatGPT and Human Experts. Cureus 2023, 15, e37281. [Google Scholar] [CrossRef]
- Temsah, M.H.; Aljamaan, F.; Malki, K.H.; Alhasan, K.; Altamimi, I.; Aljarbou, R.; Bazuhair, F.; Alsubaihin, A.; Abdulmajeed, N.; Alshahrani, F.S.; et al. ChatGPT and the Future of Digital Health: A Study on Healthcare Workers’ Perceptions and Expectations. Healthcare 2023, 11, 1812. [Google Scholar] [CrossRef]
- Tustumi, F.; Andreollo, N.A.; Aguilar-Nascimento, J.E. Future of the language models in healthcare: The role of chatGPT. Arq. Bras. Cir. Dig. 2023, 36, e1727. [Google Scholar] [CrossRef]
- Models Overview. Available online: https://platform.openai.com/docs/models/overview (accessed on 18 August 2023).
Total | Incomplete Reference (%) | Complete Reference | |||
---|---|---|---|---|---|
Fabricated (%) | Existence with All Correct (%) | Existence with Partial Correct (%) | |||
Overall | 610 | 40 (7) | 192 (31) | 122 (20) | 256 (42) |
Subgroups | |||||
Acute kidney disease | 51 | 2 (4) | 2 (4) | 12 (24) | 35 (68) |
General Nephrology | 50 | 4 (8) | 2 (4) | 31 (62) | 13 (26) |
Glomerular disease | 50 | 1 (2) | 11 (22) | 5 (10) | 33 (66) |
Chronic kidney disease | 52 | 4 (8) | 4 (8) | 13 (25) | 31 (59) |
Hemodialysis | 51 | 4 (8) | 31 (60) | 2 (4) | 14 (28) |
Electrolyte disorders | 51 | 0 (0) | 35 (68) | 4 (8) | 12 (24) |
Acid-base disturbances | 50 | 8 (16) | 18 (36) | 8 (16) | 16 (32) |
End-stage kidney disease | 55 | 7 (13) | 20 (36) | 8 (15) | 20 (36) |
Hypertension | 50 | 5 (10) | 7 (14) | 22 (44) | 16 (32) |
Kidney Stone | 50 | 2 (4) | 33 (66) | 3 (6) | 12 (24) |
Kidney transplantation | 50 | 2 (4) | 11 (22) | 14 (28) | 23 (46) |
Peritoneal dialysis | 50 | 1 (2) | 18 (36) | 0 (0) | 31 (62) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suppadungsuk, S.; Thongprayoon, C.; Krisanapan, P.; Tangpanithandee, S.; Garcia Valencia, O.; Miao, J.; Mekraksakit, P.; Kashani, K.; Cheungpasitporn, W. Examining the Validity of ChatGPT in Identifying Relevant Nephrology Literature: Findings and Implications. J. Clin. Med. 2023, 12, 5550. https://doi.org/10.3390/jcm12175550
Suppadungsuk S, Thongprayoon C, Krisanapan P, Tangpanithandee S, Garcia Valencia O, Miao J, Mekraksakit P, Kashani K, Cheungpasitporn W. Examining the Validity of ChatGPT in Identifying Relevant Nephrology Literature: Findings and Implications. Journal of Clinical Medicine. 2023; 12(17):5550. https://doi.org/10.3390/jcm12175550
Chicago/Turabian StyleSuppadungsuk, Supawadee, Charat Thongprayoon, Pajaree Krisanapan, Supawit Tangpanithandee, Oscar Garcia Valencia, Jing Miao, Poemlarp Mekraksakit, Kianoush Kashani, and Wisit Cheungpasitporn. 2023. "Examining the Validity of ChatGPT in Identifying Relevant Nephrology Literature: Findings and Implications" Journal of Clinical Medicine 12, no. 17: 5550. https://doi.org/10.3390/jcm12175550