Immune Mediators Profiles in the Aqueous Humor of Patients with Simple Diabetic Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
2.3. Analysis for the Interaction of Altered Immune Mediators
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zorena, K.; Raczynska, D.; Raczynska, K. Biomarkers in diabetic retinopathy and the therapeutic implications. Mediat. Inflamm. 2013, 2013, 193604. [Google Scholar] [CrossRef]
- Sato, Y.; Lee, Z.; Hayashi, Y. Subclassification of preproliferative diabetic retinopathy and glycemic control: Relationship between mean hemoglobin A1C value and development of proliferative diabetic retinopathy. Jpn. J. Ophthalmol. 2001, 45, 523–527. [Google Scholar] [CrossRef]
- Marques, I.P.; Madeira, M.H.; Messias, A.L.; Santos, T.; Martinho, A.C.-V.; Figueira, J.; Cunha-Vaz, J. Retinopathy Phenotypes in Type 2 Diabetes with Different Risks for Macular Edema and Proliferative Retinopathy. J. Clin. Med. 2020, 9, 1433. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.F.; Silva, P.S.; Sun, J.K. Genetics of diabetic retinopathy. Semin. Ophthalmol. 2013, 28, 337–346. [Google Scholar] [CrossRef]
- Abcouwer, S.F.; Gardner, T.W. Diabetic retinopathy: Loss of neuroretinal adaptation to the diabetic metabolic environment. Ann. N. Y. Acad. Sci. 2014, 1311, 174–190. [Google Scholar] [CrossRef] [PubMed]
- Boehm, M.R.; Oellers, P.; Thanos, S. Inflammation and immunology of the vitreoretinal compartment. Inflamm. Allergy Drug Targets 2011, 10, 283–309. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, D.; Wakabayashi, Y.; Usui, Y.; Okunuki, Y.; Kezuka, T.; Goto, H. Correlation of complement fragment C5a with inflammatory cytokines in the vitreous of patients with proliferative diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2013, 251, 15–17. [Google Scholar] [CrossRef]
- Wakabayashi, Y.; Usui, Y.; Shibauchi, Y.; Uchino, H.; Goto, H. Increased levels of 8-hydroxydeoxyguanosine in the vitreous of patients with diabetic retinopathy. Diabetes Res. Clin. Pract. 2010, 89, e59–e61. [Google Scholar] [CrossRef]
- Maier, R.; Weger, M.; Haller-Schober, E.M.; El-Shabrawi, Y.; Theisl, A.; Barth, A.; Aigner, R.; Haas, A. Application of multiplex cytometric bead array technology for the measurement of angiogenic factors in the vitreous. Mol. Vis. 2006, 12, 1143–1147. [Google Scholar]
- Song, Z.; Sun, M.; Zhou, F.; Huang, F.; Qu, J.; Chen, D. Increased intravitreous interleukin-18 correlated to vascular endothelial growth factor in patients with active proliferative diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1229–1234. [Google Scholar] [CrossRef]
- Funatsu, H.; Yamashita, H.; Noma, H.; Mimura, T.; Yamashita, T.; Hori, S. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am. J. Ophthalmol. 2002, 133, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Usui, Y.; Wakabayashi, Y.; Okunuki, Y.; Kimura, K.; Tajima, K.; Matsuda, R.; Ueda, S.; Ma, J.; Nagai, T.; Mori, H.; et al. Immune mediators in vitreous fluids from patients with vitreoretinal B-cell lymphoma. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5395–5402. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2022, 51, D638–D646. [Google Scholar] [CrossRef]
- Lee, W.J.; Kang, M.H.; Seong, M.; Cho, H.Y. Comparison of aqueous concentrations of angiogenic and inflammatory cytokines in diabetic macular oedema and macular oedema due to branch retinal vein occlusion. Br. J. Ophthalmol. 2012, 96, 1426–1430. [Google Scholar] [CrossRef]
- Forooghian, F.; Kertes, P.J.; Eng, K.T.; Agron, E.; Chew, E.Y. Alterations in the intraocular cytokine milieu after intravitreal bevacizumab. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2388–2392. [Google Scholar] [CrossRef] [PubMed]
- Qazi, Y.; Maddula, S.; Ambati, B.K. Mediators of ocular angiogenesis. J. Genet. 2009, 88, 495–515. [Google Scholar] [CrossRef]
- Mysona, B.A.; Shanab, A.Y.; Elshaer, S.L.; El-Remessy, A.B. Nerve growth factor in diabetic retinopathy: Beyond neurons. Expert Rev. Ophthalmol. 2014, 9, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, Y.; Usui, Y.; Okunuki, Y.; Kezuka, T.; Takeuchi, M.; Goto, H.; Iwasaki, T. Correlation of vascular endothelial growth factor with chemokines in the vitreous in diabetic retinopathy. Retina 2010, 30, 339–344. [Google Scholar] [CrossRef]
- Wakabayashi, Y.; Usui, Y.; Okunuki, Y.; Kezuka, T.; Takeuchi, M.; Iwasaki, T.; Ohno, A.; Goto, H. Increases of vitreous monocyte chemotactic protein 1 and interleukin 8 levels in patients with concurrent hypertension and diabetic retinopathy. Retina 2011, 31, 1951–1957. [Google Scholar] [CrossRef]
- Arfken, C.L.; Reno, P.L.; Santiago, J.V.; Klein, R. Development of proliferative diabetic retinopathy in African-Americans and whites with type 1 diabetes. Diabetes Care 1998, 21, 792–795. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Moss, S.E.; Cruickshanks, K.J. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology 1998, 105, 1801–1815. [Google Scholar] [CrossRef] [PubMed]
- Kase, S.; Saito, W.; Ohno, S.; Ishida, S. Proliferative diabetic retinopathy with lymphocyte-rich epiretinal membrane associated with poor visual prognosis. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5909–5912. [Google Scholar] [CrossRef] [PubMed]
- Umazume, K.; Usui, Y.; Wakabayashi, Y.; Okunuki, Y.; Kezuka, T.; Goto, H. Effects of soluble CD14 and cytokine levels on diabetic macular edema and visual acuity. Retina 2013, 33, 1020–1025. [Google Scholar] [CrossRef]
- Jonas, J.B.; Jonas, R.A.; Neumaier, M.; Findeisen, P. Cytokine concentration in aqueous humor of eyes with diabetic macular edema. Retina 2012, 32, 2150–2157. [Google Scholar] [CrossRef]
- Kakehashi, A.; Inoda, S.; Mameuda, C.; Kuroki, M.; Jono, T.; Nagai, R.; Horiuchi, S.; Kawakami, M.; Kanazawa, Y. Relationship among VEGF, VEGF receptor, AGEs, and macrophages in proliferative diabetic retinopathy. Diabetes Res. Clin. Pract. 2008, 79, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Esser, P.; Heimann, K.; Wiedemann, P. Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: Differentiation of subpopulations. Br. J. Ophthalmol. 1993, 77, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Crawford, T.N.; Alfaro, D.V., 3rd; Kerrison, J.B.; Jablon, E.P. Diabetic retinopathy and angiogenesis. Curr. Diabetes Rev. 2009, 5, 8–13. [Google Scholar] [CrossRef]
- Al-Kateb, H.; Mirea, L.; Xie, X.; Sun, L.; Liu, M.; Chen, H.; Bull, S.B.; Boright, A.P.; Paterson, A.D. Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: The DCCT/EDIC genetics study. Diabetes 2007, 56, 2161–2168. [Google Scholar] [CrossRef]
- Owen, L.A.; Hartnett, M.E. Soluble mediators of diabetic macular edema: The diagnostic role of aqueous VEGF and cytokine levels in diabetic macular edema. Curr. Diabetes Rep. 2013, 13, 476–480. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, T.; Chen, M.; Zhou, Y.; Yi, D.; Guo, R. The CD40/CD40L system: A new therapeutic target for disease. Immunol. Lett. 2013, 153, 58–61. [Google Scholar] [CrossRef]
- Elgueta, R.; Benson, M.J.; De Vries, V.C.; Wasiuk, A.; Guo, Y.; Noelle, R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef]
- Cipollone, F.; Chiarelli, F.; Davì, G.; Ferri, C.; Desideri, G.; Fazia, M.; Iezzi, A.; Santilli, F.; Pini, B.; Cuccurullo, C.; et al. Enhanced soluble CD40 ligand contributes to endothelial cell dysfunction in vitro and monocyte activation in patients with diabetes mellitus: Effect of improved metabolic control. Diabetologia 2005, 48, 1216–1224. [Google Scholar] [CrossRef]
- Linna, H.; Suija, K.; Rajala, U.; Herzig, K.H.; Karhu, T.; Jokelainen, J.; Keinänen-Kiukaanniemi, S.; Timonen, M. The association between impaired glucose tolerance and soluble CD40 ligand: A 15-year prospective cohort study. Aging Clin. Exp. Res. 2016, 28, 1243–1249. [Google Scholar] [CrossRef]
- Lamine, L.B.; Turki, A.; Al-Khateeb, G.; Sellami, N.; Amor, H.B.; Sarray, S.; Jailani, M.; Ghorbel, M.; Mahjoub, T.; Almawi, W.Y. Elevation in Circulating Soluble CD40 Ligand Concentrations in Type 2 Diabetic Retinopathy and Association with its Severity. Exp. Clin. Endocrinol. Diabetes 2020, 128, 319–324. [Google Scholar] [CrossRef]
- Berkkanoglu, M.; Guzeloglu-Kayisli, O.; Kayisli, U.A.; Selam, B.F.; Arici, A. Regulation of Fas ligand expression by vascular endothelial growth factor in endometrial stromal cells in vitro. Mol. Hum. Reprod. 2004, 10, 393–398. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, T.; Yang, Z.; Li, Q. CX3CR1 RNAi inhibits hypoxia-induced microglia activation via p38MAPK/PKC pathway. Int. J. Exp. Pathol. 2014, 95, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Gan, Y.; Liu, Q.; Yin, J.-X.; Liu, Q.; Shi, J.; Shi, F.D. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J. Neuroinflammation 2014, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xu, G.; Liu, W.; Ni, Y.; Zhou, W. Role of fractalkine/CX3CR1 interaction in light-induced photoreceptor degeneration through regulating retinal microglial activation and migration. PLoS ONE 2012, 7, e35446. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.A.; Jobling, A.I.; Dixon, M.A.; Bui, B.V.; Vessey, K.A.; Phipps, J.A.; Greferath, U.; Venables, G.; Wong, V.H.Y.; Wong, C.H.Y.; et al. Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proc. Natl. Acad. Sci. USA 2021, 118, e2112561118. [Google Scholar] [CrossRef] [PubMed]
Subject | Control | ||
---|---|---|---|
Number of eyes | 15 | 22 | |
Number of cases | 15 | 22 | |
Sex | Male | 11 | 9 |
Female | 4 | 13 | |
Age (years) | 65.8 ± 11.6 | 72.1 ± 8.8 | |
HbA1c (%) | 7.5 ± 1.42 | ― |
Simple DR | Controls | ||||
---|---|---|---|---|---|
(n = 15) | (n = 22) | ||||
Name | Median | Range | Median | Range | p Values |
Angiogenin (pg/mL) | 4468.9 | 1495–58426 | 5257 | 943–9489 | 0.614 |
bFGF (pg/mL) | 9 | 0–301 | 0 | 0–38 | 0.026 |
CD40 ligand (pg/mL) | 0 | 0–3.47 | 0 | 0–0 | 0.042 |
Fas ligand (pg/mL) | 0 | 0–0 | 0 | 0–13.5 | 0.036 |
Fractalkine (pg/mL) | 16.5 | 0–68 | 0 | 0–65 | 0.007 |
G-CSF (pg/mL) | 0 | 0–38 | 0 | 0–0 | 0.042 |
GM-CSF (pg/mL) | 0 | 0–4.86 | 0 | 0–4.8 | 0.819 |
Granzyme A (pg/mL) | 0 | 0–6.51 | 0 | 0–13.5 | 0.262 |
Granzyme B (pg/mL) | 0 | 0–133.44 | 0 | 0–13.5 | 0.725 |
IFN-γ (pg/mL) | 0.5 | 0–3.93 | 0 | 0–6.64 | 0.939 |
IL-1α (pg/mL) | 0 | 0–7.62 | 0 | 0–0 | 0.748 |
IL-2 (pg/mL) | 0 | 0–76.6 | 0 | 0–17.8 | 0.593 |
IL-3 (pg/mL) | 0 | 0–8.04 | 0 | 0–4.8 | 0.531 |
IL-4 (pg/mL) | 0 | 0–9.23 | 0 | 0–2 | 0.915 |
IL-5 (pg/mL) | 0 | 0–3.43 | 0 | 0–0 | 0.092 |
IL-6 (pg/mL) | 15.9 | 0–11230 | 4.3 | 0–15.03 | <0.001 |
IL-7 (pg/mL) | 0 | 0–112 | 0 | 0–0 | 0.181 |
IL-8 (pg/mL) | 13.47 | 0–153 | 3 | 0–15.99 | 0.01 |
IL-9 (pg/mL) | 0 | 0–0 | 0 | 0–0 | 1 |
IL-10 (pg/mL) | 0 | 0–18.6 | 0 | 0–3.7 | 0.135 |
IL-12p70 (pg/mL) | 0 | 0–96.8 | 0 | 0–13.5 | 0.075 |
IL-17A (pg/mL) | 0 | 0–26.2 | 0 | 0–4.68 | 0.065 |
IL-21 (pg/mL) | 0 | 0–181 | 0 | 0–17 | 0.829 |
IP-10 (pg/mL) | 89.2 | 0–873 | 84.5 | 0–417 | 0.843 |
MCP-1 (pg/mL) | 494.5 | 77–11859 | 327.8 | 72–780 | 0.152 |
Mig (pg/mL) | 32 | 8–187 | 18.4 | 0–174 | 0.237 |
MIP-1α (pg/mL) | 10.7 | 0–32.4 | 0 | 0–29 | 0.039 |
MIP-1β (pg/mL) | 24.7 | 12.3–94.9 | 10.8 | 0–42 | 0.005 |
RANTES (pg/mL) | 0.5 | 0–31.5 | 0 | 0–3.8 | 0.225 |
TNF-α (pg/mL) | 0 | 0–0.84 | 0 | 0–0 | 0.748 |
VEGF (pg/mL) | 34 | 0–159 | 11.9 | 0–69.3 | 0.033 |
ITAC (pg/mL) | 0 | 0–17 | 0 | 0–0 | 0.511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamakawa, N.; Komatsu, H.; Usui, Y.; Tsubota, K.; Wakabayashi, Y.; Goto, H. Immune Mediators Profiles in the Aqueous Humor of Patients with Simple Diabetic Retinopathy. J. Clin. Med. 2023, 12, 6931. https://doi.org/10.3390/jcm12216931
Yamakawa N, Komatsu H, Usui Y, Tsubota K, Wakabayashi Y, Goto H. Immune Mediators Profiles in the Aqueous Humor of Patients with Simple Diabetic Retinopathy. Journal of Clinical Medicine. 2023; 12(21):6931. https://doi.org/10.3390/jcm12216931
Chicago/Turabian StyleYamakawa, Naoyuki, Hiroyuki Komatsu, Yoshihiko Usui, Kinya Tsubota, Yoshihiro Wakabayashi, and Hiroshi Goto. 2023. "Immune Mediators Profiles in the Aqueous Humor of Patients with Simple Diabetic Retinopathy" Journal of Clinical Medicine 12, no. 21: 6931. https://doi.org/10.3390/jcm12216931