Solute Clearance Evaluation and Filter Clotting Prediction in Continuous Renal Replacement Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Data Collection and Measurement
2.3. CHDF Procedure
2.4. Statistical Analysis
3. Results
3.1. Filter Clotting from 24 to 48 h after CHDF Initiation
3.2. Sub-Analysis for the First CHDF Treatment in Each Patient
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrantes, F.; Tian, J.; Vazquez, R.; Amoateng-Adjepong, Y.; Manthous, C.A. Acute kidney injury criteria predict outcomes of critically ill patients. Crit. Care Med. 2008, 36, 1397–1403. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Iwagami, M.; Aso, S.; Yasunaga, H.; Matsui, H.; Fushimi, K.; Hamasaki, Y.; Nangaku, M.; Doi, K. Temporal change in characteristics and outcomes of acute kidney injury on renal replacement therapy in intensive care units: Analysis of a nationwide administrative database in Japan, 2007–2016. Crit Care 2019, 23, 172. [Google Scholar] [CrossRef] [PubMed]
- Tolwani, A. Continuous renal-replacement therapy for acute kidney injury. N. Engl. J. Med. 2012, 367, 2505–2514. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Nishida, O.; Shigematsu, T.; Sadahiro, T.; Itami, N.; Iseki, K.; Yuzawa, Y.; Okada, H.; Koya, D.; Kiyomoto, H.; et al. The Japanese Clinical Practice Guideline for acute kidney injury 2016. J. Intensiv. Care 2018, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Crit. Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Iwagami, M.; Yasunaga, H.; Noiri, E.; Horiguchi, H.; Fushimi, K.; Matsubara, T.; Yahagi, N.; Nangaku, M.; Doi, K. Current state of continuous renal replacement therapy for acute kidney injury in Japanese intensive care units in 2011: Analysis of a national administrative database. Nephrol. Dial. Transplant. 2015, 30, 988–995. [Google Scholar] [CrossRef]
- Joannidis, M.; Oudemans-van Straaten, H.M. Clinical review: Patency of the circuit in continuous renal replacement therapy. Crit. Care 2007, 11, 218. [Google Scholar] [CrossRef]
- Cutts, M.W.; Thomas, A.N.; Kishen, R. Transfusion requirements during continuous veno-venous haemofiltration: -the importance of filter life. Intensive Care Med. 2000, 26, 1694–1697. [Google Scholar] [CrossRef]
- Claure-Del Granado, R.; Macedo, E.; Chertow, G.M.; Soroko, S.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Effluent volume in continuous renal replacement therapy overestimates the delivered dose of dialysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 467–475. [Google Scholar] [CrossRef]
- Legrand, M.; Darmon, M.; Joannidis, M.; Payen, D. Management of renal replacement therapy in ICU patients: An international survey. Intensive Care Med. 2013, 39, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Shiga, H.; Tatsumi, H.; Endo, Y.; Kikuchi, Y.; Suzuki, Y.; Doi, K.; Nakada, T.A.; Nagafuchi, H.; Hattori, N.; et al. Results of the 2018 Japan Society for Blood Purification in Critical Care survey: Current status and outcomes. Ren. Replace. Ther. 2022, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [Google Scholar] [CrossRef]
- del Castillo, J.; López-Herce, J.; Cidoncha, E.; Urbano, J.; Mencía, S.; Santiago, M.J.; Bellón, J.M. Circuit life span in critically ill children on continuous renal replacement treatment: A prospective observational evaluation study. Crit. Care 2008, 12, R93. [Google Scholar] [CrossRef] [PubMed]
- Brain, M.; Winson, E.; Roodenburg, O.; McNeil, J. Non anti-coagulant factors associated with filter life in continuous renal replacement therapy (CRRT): A systematic review and meta-analysis. BMC Nephrol. 2017, 18, 69. [Google Scholar] [CrossRef]
- Holt, A.W.; Bierer, P.; Bersten, A.D.; Bury, L.K.; Vedig, A.E. Continuous renal replacement therapy in critically ill patients: Monitoring circuit function. Anaesth. Intensive Care 1996, 24, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Kakajiwala, A.; Jemielita, T.; Hughes, J.Z.; Windt, K.; Denburg, M.; Goldstein, S.L.; Laskin, B. Membrane pressures predict clotting of pediatric continuous renal replacement therapy circuits. Pediatr. Nephrol. 2017, 32, 1251–1261. [Google Scholar] [CrossRef]
- Zhang, L.; Baldwin, I.; Zhu, G.; Tanaka, A.; Bellomo, R. Automated electronic monitoring of circuit pressures during continuous renal replacement therapy: A technical report. Crit. Care Resusc. 2015, 17, 51–54. [Google Scholar] [CrossRef]
- Zhang, L.; Tanaka, A.; Zhu, G.; Baldwin, I.; Eastwood, G.M.; Bellomo, R. Patterns and Mechanisms of Artificial Kidney Failure during Continuous Renal Replacement Therapy. Blood Purif. 2016, 41, 254–263. [Google Scholar] [CrossRef]
- Wu, M.Y.; Hsu, Y.H.; Bai, C.H.; Lin, Y.F.; Wu, C.H.; Tam, K.W. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: A meta-analysis of randomized controlled trials. Am. J. Kidney Dis. 2012, 59, 810–818. [Google Scholar] [CrossRef]
- Bai, M.; Zhou, M.; He, L.; Ma, F.; Li, Y.; Yu, Y.; Wang, P.; Li, L.; Jing, R.; Zhao, L.; et al. Citrate versus heparin anticoagulation for continuous renal replacement therapy: An updated meta-analysis of RCTs. Intensive Care Med. 2015, 41, 2098–2110. [Google Scholar] [CrossRef]
- Tsujimoto, H.; Tsujimoto, Y.; Nakata, Y.; Fujii, T.; Takahashi, S.; Akazawa, M.; Kataoka, Y. Pharmacological interventions for preventing clotting of extracorporeal circuits during continuous renal replacement therapy. Cochrane Database Syst. Rev. 2020, 12, CD012467. [Google Scholar] [CrossRef]
- Schetz, M.; Van Cromphaut, S.; Dubois, J.; Van den Berghe, G. Does the surface-treated AN69 membrane prolong filter survival in CRRT without anticoagulation? Intensive Care Med. 2012, 38, 1818–1825. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhao, C.; Hu, Z.; Wei, S.; Huo, Y. The effect of AN69 ST membrane on filter lifetime in continuous renal replacement therapy without anticoagulation in patients with high risk of bleeding. Zhonghua Wei Zhong Bing. Ji Jiu Yi Xue 2015, 27, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Helms, J.; Connors, J.M.; Levy, J.H. The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation. J. Intensive Care 2023, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Tolwani, A.J.; Wille, K.M. Anticoagulation for continuous renal replacement therapy. Semin. Dial. 2009, 22, 141–145. [Google Scholar] [CrossRef]
Clotting Group n = 127 | Non-Clotting Group n = 648 | p Value | ||
---|---|---|---|---|
CHDF prescription | QF (mL/h) | 534 ± 107 | 538 ± 154 | 0.7545 |
QD (mL/h) | 949 ± 270 | 905 ± 371 | 0.1189 | |
QB (mL/min) | 94 ± 40 | 93 ± 16 | 0.6892 | |
ACT (s) | 154 ± 29 | 163 ± 35 | 0.0017 | |
Anticoagulants | MN, n (%) | 112 (88%) | 545 (84%) | 0.4092 |
Heparin, n (%) | 2 (1.6%) | 34 (5.2%) | ||
MN and heparin, n (%) | 10 (7.9%) | 48 (7.4%) | ||
None, n (%) | 3 (2.4%) | 21 (3.2%) | ||
Anticoagulants dose | MN (mg/h) | 30.1 ± 12.6 | 24.5 ± 13.5 | 0.0120 |
Heparin (U/h) | 456.7 ± 356.2 | 362.0 ± 140.1 | 0.3814 | |
Filter | Polysurfone, n (%) | 80 (63%) | 347 (54%) | 0.1512 |
AN-69ST, n (%) | 44 (35%) | 284 (44%) | ||
Others, n (%) | 3 (2%) | 15 (2%) |
Clotting Group n = 127 | Non-Clotting Group n = 648 | AUROC (95% CI) | Cutoff | Sensitivity | Specificity | |
---|---|---|---|---|---|---|
Urea CL/F | 97.3 ± 8.4% * | 99.7 ± 5.1% | 0.56 (0.50–0.62) | 97.0% | 40.1% | 76.6% |
Mb CL/F | 73.9 ± 19.5% * | 82.5 ± 25.4% | 0.61 # (0.55–0.66) | 64.5% | 37.8% | 80.1% |
Clotting Group n = 39 | Non-Clotting Group n = 191 | p Value | ||
---|---|---|---|---|
Age | 74 (58–78) | 66 (52–74) | 0.1770 | |
Sex (male), n (%) | 30 (77%) | 134 (70%) | 0.3946 | |
Background diseases, n (%) | Cardiovascular | 31 (79%) | 107 (56%) | 0.0159953 |
Sepsis | 2 (5%) | 38 (20%) | ||
Others | 6 (15%) | 46 (24%) | ||
SOFA at CHDF initiation | 12 ± 4 | 12 ± 3 | 0.7640 | |
cardiovascular SOFA at CHDF initiation | 2.5 ± 1.7 | 2.8 ± 1.6 | 0.2326 | |
ACT at 24 h (s) | 150 ± 25 | 161 ± 31 | 0.043 | |
Type of membrane, n (%) | AN69ST | 12 (31%) | 97 (51%) | 0.0517 |
Polysurfone | 27 (69%) | 92 (48%) | ||
Others | 0 | 2 (1%) |
Clotting Group n = 39 | Non-Clotting Group n = 191 | AUROC (95% CI) | Cutoff | Sensitivity | Specificity | |
Urea CL/F | 94.3 ± 11.1% * | 100.0 ± 5.3% | 0.63 # (0.52–0.75) | 93.5% | 38.5% | 91.6% |
Mb CL/F | 70.4 ± 19.3% * | 79.4 ± 21.8% | 0.62 # (0.52–0.72) | 64.5% | 41.0% | 77.5% |
Variable | Odds Ratio (95% CI) | p Value |
---|---|---|
Urea CL/F < 94% and Mb CL/F < 64% | 7.70 (2.28–26.1) | 0.0010 |
Urea CL/F ≥ 94% or Mb CL/F ≥ 64% (reference) | 1.00 | |
Background diseases | ||
Cardiovascular | 2.00 (0.74–5.44) | 0.1731 |
Sepsis | 0.54 (0.10–2.94) | 0.4793 |
Others (reference) | 1.00 | |
ACT at 24 h | 0.99 (0.98–1.01) | 0.2267 |
Type of membrane | ||
AN69ST | 0.69 (0.31–1.54) | 0.3622 |
Others (reference) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimoto, K.; Matsuura, R.; Komaru, Y.; Yoshida, T.; Miyamoto, Y.; Hamasaki, Y.; Inokuchi, R.; Nangaku, M.; Doi, K. Solute Clearance Evaluation and Filter Clotting Prediction in Continuous Renal Replacement Therapy. J. Clin. Med. 2023, 12, 7703. https://doi.org/10.3390/jcm12247703
Yoshimoto K, Matsuura R, Komaru Y, Yoshida T, Miyamoto Y, Hamasaki Y, Inokuchi R, Nangaku M, Doi K. Solute Clearance Evaluation and Filter Clotting Prediction in Continuous Renal Replacement Therapy. Journal of Clinical Medicine. 2023; 12(24):7703. https://doi.org/10.3390/jcm12247703
Chicago/Turabian StyleYoshimoto, Kohei, Ryo Matsuura, Yohei Komaru, Teruhiko Yoshida, Yoshihisa Miyamoto, Yoshifumi Hamasaki, Ryota Inokuchi, Masaomi Nangaku, and Kent Doi. 2023. "Solute Clearance Evaluation and Filter Clotting Prediction in Continuous Renal Replacement Therapy" Journal of Clinical Medicine 12, no. 24: 7703. https://doi.org/10.3390/jcm12247703