Narrative Review: Low-Dose Ketamine for Pain Management
Abstract
:1. Introduction
2. Materials and Methods
3. Drug Characteristics
- −
- Pharmacokinetics
- −
- Mechanism of action
- −
- Ketamine’s antidepressant action and its effect on chronic pain
- −
- Synergistic effects of ketamine and magnesium
- −
- Relationship between ketamine and the opioid system
- −
- Ketamine and its anti-inflammatory properties
4. Clinical Settings
- isolated, repeatable administration for the treatment of acute pain [53]
- continuous administration as an infusion, typically over less than 100 h, for the treatment of chronic, neuropathic, or certain forms of acute pain [53].
- −
- Post-operative pain
- −
- Chronic and neuropathic pain
- −
- Cancer-related pain
- −
- Headache
- −
- Ketamine as a local anaesthetic
5. Adverse Events
6. Management of Adverse Events of Low-Dose Ketamine
7. Monitoring the Patient Treated with Low-Dose Ketamine
8. Risk of Abuse
9. Contraindications
10. Conclusions
11. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohtala, S. Ketamine-50 years in use: From anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol. Rep. 2021, 73, 323–345. [Google Scholar] [CrossRef]
- Persson, J. Ketamine in pain management. CNS Neurosci. Ther. 2013, 19, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Haroutounian, S.; Palanca, B.J.A.; Lenze, E.J. Ketamine as a therapeutic agent for depression and pain: Mechanisms and evidence. J. Neurol. Sci. 2022, 434, 120152. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Liao, W.; Gupta, A.; Plunkett, A. Ketamine in pain management. Adv. Psychosom. Med. 2011, 30, 139–161. [Google Scholar] [CrossRef] [PubMed]
- Corssen, G.; Domino, E.F. Dissociative anesthesia: Further pharmacologic studies and first clinical experience with the phencyclidine derivative CI-581. Anesth. Analg. 1966, 45, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Peltoniemi, M.A.; Hagelberg, N.M.; Olkkola, K.T.; Saari, T.I. Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy. Clin. Pharmacokinet. 2016, 55, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Oye, I. Ketamine analgesia, NMDA receptors and the gates of perception. Acta Anaesthesiol. Scand. 1998, 42, 747–749. [Google Scholar] [CrossRef] [PubMed]
- Bovill, J.G.; Dundee, J.W. Alterations in response to somatic pain associated with anaesthesia. XX. Ketamine. Br. J Anaesth. 1971, 43, 496–499. [Google Scholar] [CrossRef]
- Sadove, M.S.; Shulman, M.; Hatano, S.; Fevold, N. Analgesic effects of ketamine administered in subdissociative doses. Anesth. Analg. 1971, 50, 452–457. [Google Scholar] [CrossRef]
- Ito, Y.; Ichiyanagi, K. Post-operative pain relief with ketamine infusion. Anaesthesia 1974, 29, 222–226. [Google Scholar] [CrossRef]
- Sinner, B.; Graf, B.M. Ketamine; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 313–333. [Google Scholar] [CrossRef]
- Domino, E.F. Taming the ketamine tiger. 1965. Anesthesiology 2010, 113, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Rejaei, D.; Liu, H. Ketamine use in current clinical practice. Acta Pharmacol. Sin. 2016, 37, 865–872. [Google Scholar] [CrossRef]
- Fujikawa, D.G. Neuroprotective effect of ketamine administered after status epilepticus onset. Epilepsia 1995, 36, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Erstad, B.L.; Patanwala, A.E. Ketamine for analgosedation in critically ill patients. J. Crit. Care 2016, 35, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Eidy, M.; Golzari, S.E.; Vasebi, M. Hemodynamic Stability during Induction of Anesthesia in ElderlyPatients: Propofol + Ketamine versus Propofol + Etomidate. J. Cardiovasc. Thorac. Res. 2013, 5, 51–54. [Google Scholar] [CrossRef]
- Cohen, S.P.; Bhatia, A.; Buvanendran, A.; Schwenk, E.S.; Wasan, A.D.; Hurley, R.W.; Viscusi, E.R.; Narouze, S.; Davis, F.N.; Ritchie, E.C.; et al. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Chronic Pain from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 521–546. [Google Scholar] [CrossRef] [PubMed]
- Barrett, W.; Buxhoeveden, M.; Dhillon, S. Ketamine: A versatile tool for anesthesia and analgesia. Curr. Opin. Anaesthesiol. 2020, 33, 633–638. [Google Scholar] [CrossRef]
- Jelen, L.A.; Young, A.H.; Stone, J.M. Ketamine: A tale of two enantiomers. J. Psychopharmacol. 2021, 35, 109–123. [Google Scholar] [CrossRef]
- Hartvig, P.; Valtysson, J.; Antoni, G.; Westerberg, G.; Långström, B.; Ratti Moberg, E.; Oye, I. Brain kinetics of (R)- and (S)-[N-methyl-11C]ketamine in the rhesus monkey studied by positron emission tomography (PET). Nucl. Med. Biol. 1994, 21, 927–934. [Google Scholar] [CrossRef]
- White, P.F.; Ham, J.; Way, W.L.; Trevor, A.J. Pharmacology of ketamine isomers in surgical patients. Anesthesiology 1980, 52, 231–239. [Google Scholar] [CrossRef]
- Han, Y.; Li, P.; Miao, M.; Tao, Y.; Kang, X.; Zhang, J. S-ketamine as an adjuvant in patient-controlled intravenous analgesia for preventing postpartum depression: A randomized controlled trial. BMC Anesthesiol. 2022, 22, 49. [Google Scholar] [CrossRef]
- Doan, L.V.; Wang, J. An Update on the Basic and Clinical Science of Ketamine Analgesia. Clin. J. Pain 2018, 34, 1077–1088. [Google Scholar] [CrossRef]
- Pourmand, A.; Mazer-Amirshahi, M.; Royall, C.; Alhawas, R.; Shesser, R. Low dose ketamine use in the emergency department, a new direction in pain management. Am. J. Emerg. Med. 2017, 35, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Crumb, M.W.; Bryant, C.; Atkinson, T.J. Emerging Trends in Pain Medication Management: Back to the Future: A Focus on Ketamine. Am. J. Med. 2018, 131, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Balzer, N.; McLeod, S.L.; Walsh, C.; Grewal, K. Low-dose Ketamine for Acute Pain Control in the Emergency Department: A Systematic Review and Meta-analysis. Acad. Emerg. Med. 2021, 28, 444–454. [Google Scholar] [CrossRef]
- Marchetti, F.; Coutaux, A.; Bellanger, A.; Magneux, C.; Bourgeois, P.; Mion, G. Efficacy and safety of oral ketamine for the relief of intractable chronic pain: A retrospective 5-year study of 51 patients. Eur. J. Pain 2015, 19, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, S.; Hendry, P. The Expanding Role of Ketamine in the Emergency Department. Drugs 2018, 78, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Visser, E.; Schug, S.A. The role of ketamine in pain management. Biomed. Pharmacother. 2006, 60, 341–348. [Google Scholar] [CrossRef]
- Paul, R.K.; Singh, N.S.; Khadeer, M.; Moaddel, R.; Sanghvi, M.; Green, C.E.; O’Loughlin, K.; Torjman, M.C.; Bernier, M.; Wainer, I.W. (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology 2014, 121, 149–159. [Google Scholar] [CrossRef]
- Kroin, J.S.; Das, V.; Moric, M.; Buvanendran, A. Efficacy of the ketamine metabolite (2R,6R)-hydroxynorketamine in mice models of pain. Reg. Anesth. Pain Med. 2019, 44, 111–117. [Google Scholar] [CrossRef]
- Olofsen, E.; Noppers, I.; Niesters, M.; Kharasch, E.; Aarts, L.; Sarton, E.; Dahan, A. Estimation of the contribution of norketamine to ketamine-induced acute pain relief and neurocognitive impairment in healthy volunteers. Anesthesiology 2012, 117, 353–364. [Google Scholar] [CrossRef]
- Fanta, S.; Kinnunen, M.; Backman, J.T.; Kalso, E. Population pharmacokinetics of S-ketamine and norketamine in healthy volunteers after intravenous and oral dosing. Eur. J. Clin. Pharmacol. 2015, 71, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Niesters, M.; Martini, C.; Dahan, A. Ketamine for chronic pain: Risks and benefits. Br. J. Clin. Pharmacol. 2014, 77, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Lilius, T.O.; Viisanen, H.; Jokinen, V.; Niemi, M.; Kalso, E.A.; Rauhala, P.V. Interactions of (2S,6S;2R,6R)-Hydroxynorketamine, a Secondary Metabolite of (R,S)-Ketamine, with Morphine. Basic. Clin. Pharmacol. Toxicol. 2018, 122, 481–488. [Google Scholar] [CrossRef]
- Schwenk, E.S.; Pradhan, B.; Nalamasu, R.; Stolle, L.; Wainer, I.W.; Cirullo, M.; Olson, A.; Pergolizzi, J.V.; Torjman, M.C.; Viscusi, E.R. Ketamine in the Past, Present, and Future: Mechanisms, Metabolites, and Toxicity. Curr. Pain Headache Rep. 2021, 25, 57, Erratum in Curr. Pain Headache Rep. 2021, 25, 62. [Google Scholar] [CrossRef]
- Hawk, K.; D’Onofrio, G. Emergency department screening and interventions for substance use disorders. Addict. Sci. Clin. Pract. 2019, 13, 18, Erratum in Addict. Sci. Clin. Pract. 2019, 14, 26.. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.P.; Schauer, S.G.; Ganem, V.J.; Bebarta, V.S. Low-dose ketamine vs morphine for acute pain in the ED: A randomized controlled trial. Am. J. Emerg. Med. 2015, 33, 402–408. [Google Scholar] [CrossRef]
- Davis, W.D.; Davis, K.A.; Hooper, K. The Use of Ketamine for the Management of Acute Pain in the Emergency Department. Adv. Emerg. Nurs. J. 2019, 41, 111–121. [Google Scholar] [CrossRef]
- Schwenk, E.S.; Viscusi, E.R.; Buvanendran, A.; Hurley, R.W.; Wasan, A.D.; Narouze, S.; Bhatia, A.; Davis, F.N.; Hooten, W.M.; Cohen, S.P. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Acute Pain Management from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 456–466. [Google Scholar] [CrossRef]
- Orhurhu, V.; Orhurhu, M.S.; Bhatia, A.; Cohen, S.P. Ketamine Infusions for Chronic Pain: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Anesth. Analg. 2019, 129, 241–254. [Google Scholar] [CrossRef]
- Morgan, C.J.; Curran, H.V.; Independent Scientific Committee on Drugs. Ketamine use: A review. Addiction 2012, 107, 27–38. [Google Scholar] [CrossRef]
- Di Mascio, A.; Bossini, B.; Barbi, E.; Benini, F.; Cozzi, G. Use of ketamine by paediatricians in Italian paediatric emergency departments: A missed opportunity? Eur. J. Pediatr. 2019, 178, 587–591. [Google Scholar] [CrossRef]
- De Iaco, F.; Gandolfo, E.; Guarino, M.; Riccardi, A.; Saggese, M.P.; Serra, S. Terapia Del Dolore in Urgenza E Sedazione Procedurale: Manuale SAU; Independently Published: Traverse, MI, USA, 2022; ISBN 979-8819663554. [Google Scholar]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.F.R.; Albuquerque, E.X.; Thomas, C.J.; Zarate, C.A., Jr.; et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol. Rev. 2018, 70, 621–660, Erratum in Pharmacol. Rev. 2018, 70, 879. [Google Scholar] [CrossRef]
- Shaffer, C.L.; Dutra, J.K.; Tseng, W.C.; Weber, M.L.; Bogart, L.J.; Hales, K.; Pang, J.; Volfson, D.; Am Ende, C.W.; Green, M.E.; et al. Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine. Neuropharmacology 2019, 153, 73–81. [Google Scholar] [CrossRef]
- Nowacka, A.; Borczyk, M. Ketamine applications beyond anesthesia—A literature review. Eur. J. Pharmacol. 2019, 860, 172547. [Google Scholar] [CrossRef] [PubMed]
- Malinovsky, J.M.; Servin, F.; Cozian, A.; Lepage, J.Y.; Pinaud, M. Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children. Br. J. Anaesth. 1996, 77, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Kruit, N.; Heldreich, C.; Ware, S.; Habig, K.; Reid, C.; Burns, B. Hemodynamic response after rapid sequence induction with ketamine in out-of-hospital patients at risk of shock as defined by the shock index. Ann. Emerg. Med. 2016, 68, 181–188. [Google Scholar] [CrossRef]
- Nielsen, B.N.; Friis, S.M.; Rømsing, J.; Schmiegelow, K.; Anderson, B.J.; Ferreirós, N.; Labocha, S.; Henneberg, S. Intranasal sufentanil/ketamine analgesia in children. Paediatr. Anaesth. 2014, 24, 170–180. [Google Scholar] [CrossRef]
- Huge, V.; Lauchart, M.; Magerl, W.; Schelling, G.; Beyer, A.; Thieme, D.; Azad, S.C. Effects of low-dose intranasal (S)-ketamine in patients with neuropathic pain. Eur. J. Pain 2010, 14, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.B.; Goudas, L.C.; Denman, W.T.; Brookoff, D.; Staats, P.S.; Brennen, L.; Green, G.; Albin, R.; Hamilton, D.; Rogers, M.C.; et al. Safety and efficacy of intranasal ketamine for the treatment of breakthrough pain in patients with chronic pain: A randomized, double-blind, placebo-controlled, crossover study. Pain 2004, 108, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Ahern, T.L.; Herring, A.A.; Miller, S.; Frazee, B.W. Low-Dose Ketamine Infusion for Emergency Department Patients with Severe Pain. Pain Med. 2015, 16, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.J.; Bruchas, M.R. Where ketamine and dopamine collide. eLife 2021, 10, e70148. [Google Scholar] [CrossRef] [PubMed]
- Kapur, S.; Seeman, P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol. Psychiatry. 2002, 7, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Seeman, P.; Guan, H.C.; Hirbec, H. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil. Synapse 2009, 63, 698–704. [Google Scholar] [CrossRef]
- Thurston, T.A.; Mathew, B.P. In vitro myocardial depression by ketamine or thiopental is dependent on the underlying beta-adrenergic tone. Acta Anaesthesiol. Scand. 1996, 40, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Devi, L.A.; Gomes, I. Potentiation of μ-opioid receptor-mediated signaling by ketamine. J. Neurochem. 2011, 119, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, L.R.; Phillips, A.G. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol. Sci. 2021, 42, 929–942. [Google Scholar] [CrossRef]
- Lee, E.N.; Lee, J.H. The Effects of Low-Dose Ketamine on Acute Pain in an Emergency Setting: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0165461. [Google Scholar] [CrossRef]
- Durieux, M.E. Inhibition by ketamine of muscarinic acetylcholine receptor function. Anesth. Analg. 1995, 81, 57–62. [Google Scholar] [CrossRef]
- Gerhard, D.M.; Pothula, S.; Liu, R.J.; Wu, M.; Li, X.Y.; Girgenti, M.J.; Taylor, S.R.; Duman, C.H.; Delpire, E.; Picciotto, M.; et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J. Clin. Investig. 2020, 130, 1336–1349. [Google Scholar] [CrossRef]
- Subramaniam, K.; Subramaniam, B.; Steinbrook, R.A. Ketamine as adjuvant analgesic to opioids: A quantitative and qualitative systematic review. Anesth. Analg. 2004, 99, 482–495. [Google Scholar] [CrossRef]
- Matveychuk, D.; Thomas, R.K.; Swainson, J.; Khullar, A.; MacKay, M.A.; Baker, G.B.; Dursun, S.M. Ketamine as an antidepressant: Overview of its mechanisms of action and potential predictive biomarkers. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320916657. [Google Scholar] [CrossRef]
- Singh, N.S.; Zarate, C.A., Jr.; Moaddel, R.; Bernier, M.; Wainer, I.W. What is hydroxynorketamine and what can it bring to neurotherapeutics? Expert Rev. Neurother. 2014, 14, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Miller, O.H.; Moran, J.T.; Hall, B.J. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology 2016, 100, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016, 533, 481–486. [Google Scholar] [CrossRef]
- Highland, J.N.; Zanos, P.; Riggs, L.M.; Georgiou, P.; Clark, S.M.; Morris, P.J.; Moaddel, R.; Thomas, C.J.; Zarate, C.A., Jr.; Pereira, E.F.R.; et al. Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacol. Rev. 2021, 73, 763–791. [Google Scholar] [CrossRef]
- Shaked, G.; Czeiger, D.; Dukhno, O.; Levy, I.; Artru, A.A.; Shapira, Y.; Douvdevani, A. Ketamine improves survival and suppresses IL-6 and TNFalpha production in a model of Gram-negative bacterial sepsis in rats. Resuscitation 2004, 62, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Kokkinou, M.; Irvine, E.E.; Bonsall, D.R.; Natesan, S.; Wells, L.A.; Smith, M.; Glegola, J.; Paul, E.J.; Tossell, K.; Veronese, M.; et al. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: A translational imaging study with ketamine. Mol. Psychiatry. 2021, 26, 2562–2576. [Google Scholar] [CrossRef]
- Kokkinou, M.; Ashok, A.H.; Howes, O.D. The effects of ketamine on dopaminergic function: Meta-analysis and review of the implications for neuropsychiatric disorders. Mol. Psychiatry. 2018, 23, 59–69. [Google Scholar] [CrossRef]
- Crisp, T.; Perrotti, J.M.; Smith, D.L.; Stafinsky, J.L.; Smith, D.J. The local monoaminergic dependency of spinal ketamine. Eur. J. Pharmacol. 1991, 194, 167–172. [Google Scholar] [CrossRef]
- Takasu, K.; Ono, H.; Tanabe, M. Spinal hyperpolarization-activated cyclic nucleotide-gated cation channels at primary afferent terminals contribute to chronic pain. Pain 2010, 151, 87–96. [Google Scholar] [CrossRef]
- Zhang, S.; You, Z.; Wang, S.; Yang, J.; Yang, L.; Sun, Y.; Mi, W.; Yang, L.; McCabe, M.F.; Shen, S.; et al. Neuropeptide S modulates the amygdaloidal HCN activities (Ih) in rats: Implication in chronic pain. Neuropharmacology 2016, 105, 420–433. [Google Scholar] [CrossRef]
- Du, L.; Wang, S.J.; Cui, J.; He, W.J.; Ruan, H.Z. The role of HCN channels within the periaqueductal gray in neuropathic pain. Brain Res. 2013, 1500, 36–44. [Google Scholar] [CrossRef]
- Du, L.; Wang, S.J.; Cui, J.; He, W.J.; Ruan, H.Z. Inhibition of HCN channels within the periaqueductal gray attenuates neuropathic pain in rats. Behav. Neurosci. 2013, 127, 325–329. [Google Scholar] [CrossRef]
- Mikkelsen, S.; Ilkjaer, S.; Brennum, J.; Borgbjerg, F.M.; Dahl, J.B. The effect of naloxone on ketamine-induced effects on hyperalgesia and ketamine-induced side effects in humans. Anesthesiology 1999, 90, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Olney, J.W.; Labruyere, J.; Price, M.T. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1989, 244, 1360–1362. [Google Scholar] [CrossRef] [PubMed]
- Olney, J.W.; Labruyere, J.; Wang, G.; Wozniak, D.F.; Price, M.T.; Sesma, M.A. NMDA antagonist neurotoxicity: Mechanism and prevention. Science 1991, 254, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, Y.R.; Zhang, Y.; Lu, Y.; Jiang, H. Repeated exposure to anesthetic ketamine can negatively impact neurodevelopment in infants: A prospective preliminary clinical study. J. Child Neurol. 2014, 29, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Church, J.; Zeman, S.; Lodge, D. The neuroprotective action of ketamine and MK-801 after transient cerebral ischemia in rats. Anesthesiology 1988, 69, 702–709. [Google Scholar] [CrossRef]
- Spandou, E.; Karkavelas, G.; Soubasi, V.; Avgovstides-Savvopoulou, P.; Loizidis, T.; Guiba-Tziampiri, O. Effect of ketamine on hypoxic-ischemic brain damage in newborn rats. Brain Res. 1999, 819, 1–7. [Google Scholar] [CrossRef]
- Wang, L.; Deng, B.; Yan, P.; Wu, H.; Li, C.; Zhu, H.; Du, J.; Hou, L. Neuroprotective effect of ketamine against TNF-α-induced necroptosis in hippocampal neurons. J. Cell. Mol. Med. 2021, 25, 3449–3459. [Google Scholar] [CrossRef] [PubMed]
- Monfort, P.; Kosenko, E.; Erceg, S.; Canales, J.J.; Felipo, V. Molecular mechanism of acute ammonia toxicity: Role of NMDA receptors. Neurochem. Int. 2002, 41, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.H.; Chu, L. Ketamine protects cultured astrocytes from glutamate-induced swelling. Brain Res. 1989, 487, 380–383. [Google Scholar] [CrossRef]
- Rodrigo, R.; Cauli, O.; Boix, J.; ElMlili, N.; Agusti, A.; Felipo, V. Role of NMDA receptors in acute liver failure and ammonia toxicity: Therapeutical implications. Neurochem. Int. 2009, 55, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Cauli, O.; Rodrigo, R.; Boix, J.; Piedrafita, B.; Agusti, A.; Felipo, V. Acute liver failure-induced death of rats is delayed or prevented by blocking NMDA receptors in brain. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G503–G511. [Google Scholar] [CrossRef]
- Boscán, P.L.; Piña-Crespo, J.C.; Daló, N.L. Ketamine reduces lethality on the acute ammonia intoxication in mice. Investig. Clin. 1996, 37, 129–135. [Google Scholar]
- Romero, T.R.; Galdino, G.S.; Silva, G.C.; Resende, L.C.; Perez, A.C.; Côrtes, S.F.; Duarte, I.D. Ketamine activates the L-arginine/Nitric oxide/cyclic guanosine monophosphate pathway to induce peripheral antinociception in rats. Anesth. Analg. 2011, 113, 1254–1259. [Google Scholar] [CrossRef]
- Kamp, J.; Van Velzen, M.; Olofsen, E.; Boon, M.; Dahan, A.; Niesters, M. Pharmacokinetic and pharmacodynamic considerations for NMDA-receptor antagonist ketamine in the treatment of chronic neuropathic pain: An update of the most recent literature. Expert Opin. Drug Metab. Toxicol. 2019, 15, 1033–1041. [Google Scholar] [CrossRef]
- Hlavaty, L.; Hansma, P.; Sung, L. Contribution of opiates in sudden asthma deaths. Am. J. Forensic Med. Pathol. 2015, 36, 49–52. [Google Scholar] [CrossRef]
- Kurdi, M.S.; Theerth, K.A.; Deva, R.S. Ketamine: Current applications in anesthesia, pain, and critical care. Anesth. Essays Res. 2014, 8, 283–290. [Google Scholar] [CrossRef]
- Rehder, K.J. Adjunct Therapies for Refractory Status Asthmaticus in Children. Respir. Care. 2017, 62, 849–865. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.; Wise, R.G.; Painter, D.J.; Longe, S.E.; Tracey, I. An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology 2004, 100, 292–301. [Google Scholar] [CrossRef]
- Sprenger, T.; Valet, M.; Woltmann, R.; Zimmer, C.; Freynhagen, R.; Kochs, E.F.; Tölle, T.R.; Wagner, K.J. Imaging pain modulation by subanesthetic S-(+)-ketamine. Anesth. Analg. 2006, 103, 729–737. [Google Scholar] [CrossRef]
- Iacobucci, G.J.; Visnjevac, O.; Pourafkari, L.; Nader, N.D. Ketamine: An Update on Cellular and Subcellular Mechanisms with Implications for Clinical Practice. Pain Physician 2017, 20, E285–E301. [Google Scholar] [PubMed]
- Abbadie, C.; Brown, J.L.; Mantyh, P.W.; Basbaum, A.I. Spinal cord substance P receptor immunoreactivity increases in both inflammatory and nerve injury models of persistent pain. Neuroscience 1996, 70, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Minami, K.; Uezono, Y.; Ogata, J.; Shiraishi, M.; Shigematsu, A.; Ueta, Y. The inhibitory effects of ketamine and pentobarbital on substance p receptors expressed in Xenopus oocytes. Anesth. Analg. 2003, 97, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Bartolini, A.; Ghelardini, C.; Fantetti, L.; Malcangio, M.; Malmberg-Aiello, P.; Giotti, A. Role of muscarinic receptor subtypes in central antinociception. Br. J. Pharmacol. 1992, 105, 77–82. [Google Scholar] [CrossRef]
- Culp, C.; Kim, H.K.; Abdi, S. Ketamine Use for Cancer and Chronic Pain Management. Front. Pharmacol. 2021, 11, 599721. [Google Scholar] [CrossRef] [PubMed]
- Mika, J.; Osikowicz, M.; Rojewska, E.; Korostynski, M.; Wawrzczak-Bargiela, A.; Przewlocki, R.; Przewlocka, B. Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. Eur. J. Pharmacol. 2009, 623, 65–72. [Google Scholar] [CrossRef]
- Sigtermans, M.J.; van Hilten, J.J.; Bauer, M.C.R.; Arbous, S.M.; Marinus, J.; Sarton, E.Y.; Dahan, A. Ketamine produces effective and long-term pain relief in patients with Complex Regional Pain Syndrome Type 1. Pain 2009, 145, 304–311. [Google Scholar] [CrossRef]
- Sigtermans, M.; Dahan, A.; Mooren, R.; Bauer, M.; Kest, B.; Sarton, E.; Olofsen, E. S(+)-ketamine effect on experimental pain and cardiac output: A population pharmacokinetic-pharmacodynamic modeling study in healthy volunteers. Anesthesiology 2009, 111, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, Y.; Amadio, A.; Vincent, P.; Descheemaeker, A.; Oliet, S.H.; Dallel, R.; Voisin, D.L. Neuropathic pain depends upon D-serine co-activation of spinal NMDA receptors in rats. Neurosci. Lett. 2015, 603, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.R.; Roh, D.H.; Yoon, S.Y.; Choi, H.S.; Kang, S.Y.; Han, H.J.; Beitz, A.J.; Lee, J.H. Astrocyte D-serine modulates the activation of neuronal NOS leading to the development of mechanical allodynia in peripheral neuropathy. Mol. Pain 2019, 15, 1744806919843046. [Google Scholar] [CrossRef]
- Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural. Plast. 2017, 2017, 9724371. [Google Scholar] [CrossRef]
- Nicholas, M.K.; Coulston, C.M.; Asghari, A.; Malhi, G.S. Depressive symptoms in patients with chronic pain. Med. J. Aust. 2009, 190, S66–S70. [Google Scholar] [CrossRef]
- Lerman, S.F.; Rudich, Z.; Brill, S.; Shalev, H.; Shahar, G. Longitudinal associations between depression, anxiety, pain, and pain-related disability in chronic pain patients. Psychosom. Med. 2015, 77, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Goffer, Y.; Xu, D.; Tukey, D.S.; Shamir, D.B.; Eberle, S.E.; Zou, A.H.; Blanck, T.J.; Ziff, E.B. A single subanesthetic dose of ketamine relieves depression-like behaviors induced by neuropathic pain in rats. Anesthesiology 2011, 115, 812–821. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Lan, X.; Li, H.; Chao, Z.; Ning, Y. Plasma inflammatory cytokines and treatment-resistant depression with comorbid pain: Improvement by ketamine. J. Neuroinflammation 2021, 18, 200. [Google Scholar] [CrossRef] [PubMed]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef]
- Scheuing, L.; Chiu, C.T.; Liao, H.M.; Chuang, D.M. Antidepressant mechanism of ketamine: Perspective from preclinical studies. Front. Neurosci. 2015, 9, 249. [Google Scholar] [CrossRef]
- Weisman, H. Anesthesia for pediatric ophthalmology. Ann. Ophthalmol. 1971, 3, 229–232. [Google Scholar] [PubMed]
- Kotermanski, S.E.; Johnson, J.W. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J. Neurosci. 2009, 29, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Hollmann, M.W.; Liu, W.H.; Hoenemann, C.W.; Durieux, M.E. Modulation of NMDA receptor function by ketamine and magnesium: Part I. Anesth. Analg. 2001, 92, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, M.W.; Liu, H.T.; Hoenemann, C.W.; Liu, W.H.; Durieux, M.E. Modulation of NMDA receptor function by ketamine and magnesium. Part II: Interactions with volatile anesthetics. Anesth. Analg. 2001, 92, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Savic Vujovic, K.R.; Vuckovic, S.; Srebro, D.; Medic, B.; Stojanovic, R.; Vucetic, C.; Prostran, M. A synergistic interaction between magnesium sulphate and ketamine on the inhibition of acute nociception in rats. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2503–2509. [Google Scholar]
- Varas, V.; Bertinelli, P.; Carrasco, P.; Souper, N.; Álvarez, P.; Danilla, S.; Egaña, J.I.; Penna, A.; Sepúlveda, S.; Arancibia, V.; et al. Intraoperative Ketamine and Magnesium Therapy to Control Postoperative Pain After Abdominoplasty and/or Liposuction: A Clinical Randomized Trial. J. Pain Res. 2020, 13, 2937–2946. [Google Scholar] [CrossRef]
- Crosby, V.; Wilcock, A.; Corcoran, R. The safety and efficacy of a single dose (500 mg or 1 g) of intravenous magnesium sulfate in neuropathic pain poorly responsive to strong opioid analgesics in patients with cancer. J. Pain Symptom Manag. 2000, 19, 35–39. [Google Scholar] [CrossRef]
- Begon, S.; Pickering, G.; Eschalier, A.; Dubray, C. Magnesium and MK-801 have a similar effect in two experimental models of neuropathic pain. Brain Res. 2000, 887, 436–439. [Google Scholar] [CrossRef]
- Delage, N.; Morel, V.; Picard, P.; Marcaillou, F.; Pereira, B.; Pickering, G. Effect of ketamine combined with magnesium sulfate in neuropathic pain patients (KETAPAIN): Study protocol for a randomized controlled trial. Trials 2017, 18, 517. [Google Scholar] [CrossRef]
- Forget, P.; Cata, J. Stable anesthesia with alternative to opioids: Are ketamine and magnesium helpful in stabilizing hemodynamics during surgery? A systematic review and meta-analyses of randomized controlled trials. Best Pr. Res. Clin. Anaesthesiol. 2017, 31, 523–531. [Google Scholar] [CrossRef]
- Mak, P.; Broadbear, J.H.; Kolosov, A.; Goodchild, C.S. Long-Term Antihyperalgesic and Opioid-Sparing Effects of 5-Day Ketamine and Morphine Infusion (“Burst Ketamine”) in Diabetic Neuropathic Rats. Pain Med. 2015, 16, 1781–1793. [Google Scholar] [CrossRef] [PubMed]
- Lilius, T.O.; Jokinen, V.; Neuvonen, M.S.; Niemi, M.; Kalso, E.A.; Rauhala, P.V. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat. Br. J. Pharmacol. 2015, 172, 2799–2813. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Magerl, W.; Nickel, U.; Hopf, H.C.; Sandkühler, J.; Treede, R.D. Effects of the NMDA-receptor antagonist ketamine on perceptual correlates of long-term potentiation within the nociceptive system. Neuropharmacology 2007, 52, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Price, D.D.; Mayer, D.J. Mechanisms of hyperalgesia and morphine tolerance: A current view of their possible interactions. Pain 1995, 62, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Dickenson, A.H. NMDA receptor antagonists: Interactions with opioids. Acta Anaesthesiol. Scand. 1997, 41 Pt 2, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Laulin, J.P.; Maurette, P.; Corcuff, J.B.; Rivat, C.; Chauvin, M.; Simonnet, G. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance. Anesth. Analg. 2002, 94, 1263–1269. [Google Scholar] [CrossRef]
- Trujillo, K.A.; Akil, H. Inhibition of opiate tolerance by non-competitive N-methyl-D-aspartate receptor antagonists. Brain Res. 1994, 633, 178–188. [Google Scholar] [CrossRef]
- Riddell, J.M.; Trummel, J.M.; Onakpoya, I.J. Low-dose ketamine in painful orthopaedic surgery: A systematic review and meta-analysis. Br. J. Anaesth. 2019, 123, 325–334. [Google Scholar] [CrossRef]
- Bi, Y.; Ye, Y.; Zhu, Y.; Ma, J.; Zhang, X.; Liu, B. The Effect of Ketamine on Acute and Chronic Wound Pain in Patients Undergoing Breast Surgery: A Meta-Analysis and Systematic Review. Pain Pract. 2021, 21, 316–332. [Google Scholar] [CrossRef]
- Wang, L.; Johnston, B.; Kaushal, A.; Cheng, D.; Zhu, F.; Martin, J. Ketamine added to morphine or hydromorphone patient-controlled analgesia for acute postoperative pain in adults: A systematic review and meta-analysis of randomized trials. Can. J. Anaesth. 2016, 63, 311–325. [Google Scholar] [CrossRef]
- Brinck, E.C.; Tiippana, E.; Heesen, M.; Bell, R.F.; Straube, S.; Moore, R.A.; Kontinen, V. Perioperative intravenous ketamine for acute postoperative pain in adults. Cochrane Database Syst. Rev. 2018, 12, CD012033. [Google Scholar] [CrossRef] [PubMed]
- Gorlin, A.W.; Rosenfeld, D.M.; Ramakrishna, H. Intravenous sub-anesthetic ketamine for perioperative analgesia. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 160–167. [Google Scholar] [CrossRef]
- Radvansky, B.M.; Shah, K.; Parikh, A.; Sifonios, A.N.; Le, V.; Eloy, J.D. Role of ketamine in acute postoperative pain management: A narrative review. Biomed Res. Int. 2015, 2015, 749837. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Shao, D.; Yang, R.; Feng, X.; Zhu, S.; Xu, J. Effects of ketamine on pulmonary inflammatory responses and survival in rats exposed to polymicrobial sepsis. J. Pharm. Pharm. Sci. 2007, 10, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Kawaji, K.; Sun, L.; Zhang, X.; Koyano, K.; Yokoyama, T.; Kohsaka, S.; Inoue, K.; Nakanishi, H. Microglial Ca(2+)-activated K(+) channels are possible molecular targets for the analgesic effects of S-ketamine on neuropathic pain. J. Neurosci. 2011, 31, 17370–17382. [Google Scholar] [CrossRef]
- Watkins, L.R.; Milligan, E.D.; Maier, S.F. Glial activation: A driving force for pathological pain. Trends Neurosci. 2001, 24, 450–455. [Google Scholar] [CrossRef]
- Laskowski, K.; Stirling, A.; McKay, W.P.; Lim, H.J. A systematic review of intravenous ketamine for postoperative analgesia. Can. J. Anaesth. 2011, 58, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Niesters, M.; Khalili-Mahani, N.; Martini, C.; Aarts, L.; van Gerven, J.; van Buchem, M.A.; Dahan, A.; Rombouts, S. Effect of subanesthetic ketamine on intrinsic functional brain connectivity: A placebo-controlled functional magnetic resonance imaging study in healthy male volunteers. Anesthesiology 2012, 117, 868–877. [Google Scholar] [CrossRef]
- Weinbroum, A.A. A single small dose of postoperative ketamine provides rapid and sustained improvement in morphine analgesia in the presence of morphine-resistant pain. Anesth. Analg. 2003, 96, 789–795. [Google Scholar] [CrossRef]
- Nesher, N.; Serovian, I.; Marouani, N.; Chazan, S.; Weinbroum, A.A. Ketamine spares morphine consumption after transthoracic lung and heart surgery without adverse hemodynamic effects. Pharmacol. Res. 2008, 58, 38–44. [Google Scholar] [CrossRef]
- Hartvig, P.; Larsson, E.; Joachimsson, P.O. Postoperative analgesia and sedation following pediatric cardiac surgery using a constant infusion of ketamine. J. Cardiothorac. Vasc. Anesth. 1993, 7, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Lauretti, G.R.; Lima, I.C.; Reis, M.P.; Prado, W.A.; Pereira, N.L. Oral ketamine and transdermal nitroglycerin as analgesic adjuvants to oral morphine therapy for cancer pain management. Anesthesiology 1999, 90, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Velzen, M.V.; Dahan, J.D.C.; van Dorp, E.L.A.; Mogil, J.S.; Hooijmans, C.R.; Dahan, A. Efficacy of ketamine in relieving neuropathic pain: A systematic review and meta-analysis of animal studies. Pain 2021, 162, 2320–2330. [Google Scholar] [CrossRef] [PubMed]
- Backonja, M.; Arndt, G.; Gombar, K.A.; Check, B.; Zimmermann, M. Response of chronic neuropathic pain syndromes to ketamine: A preliminary study. Pain 1994, 56, 51–57, Erratum in Pain 1994, 58, 433. [Google Scholar] [CrossRef] [PubMed]
- Livingston, A.; Waterman, A.E. The development of tolerance to ketamine in rats and the significance of hepatic metabolism. Br. J. Pharmacol. 1978, 64, 63–69. [Google Scholar] [CrossRef]
- Shimonovich, S.; Gigi, R.; Shapira, A.; Sarig-Meth, T.; Nadav, D.; Rozenek, M.; West, D.; Halpern, P. Intranasal ketamine for acute traumatic pain in the Emergency Department: A prospective, randomized clinical trial of efficacy and safety. BMC Emerg. Med. 2016, 16, 43. [Google Scholar] [CrossRef] [PubMed]
- Holdgate, A.; Cao, A.; Lo, K.M. The implementation of intranasal fentanyl for children in a mixed adult and pediatric emergency department reduces time to analgesic administration. Acad. Emerg. Med. 2010, 17, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.M.; Baum, R.A.; Horn, K.; Lewis, T.; Morizio, K.; Schultz, A.; Weant, K.; Justice, S.N. Review of Intranasally Administered Medications for Use in the Emergency Department. J. Emerg. Med. 2017, 53, 38–48. [Google Scholar] [CrossRef]
- Del Pizzo, J.; Callahan, J.M. Intranasal medications in pediatric emergency medicine. Pediatr. Emerg. Care 2014, 30, 496–501; quiz 502–504. [Google Scholar] [CrossRef]
- Li, X.; Hua, G.C.; Peng, F. Efficacy of intranasal ketamine for acute pain management in adults: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3286–3295. [Google Scholar] [CrossRef]
- Poonai, N.; Canton, K.; Ali, S.; Hendrikx, S.; Shah, A.; Miller, M.; Joubert, G.; Rieder, M.; Hartling, L. Intranasal ketamine for procedural sedation and analgesia in children: A systematic review. PLoS ONE 2017, 12, e0173253. [Google Scholar] [CrossRef]
- Whitley, G.A.; Pilbery, R. Pre-hospital intranasal analgesia for children suffering pain: A rapid evidence review. Br. Paramed. J. 2019, 4, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.E.; Silva, L.; Lee, J.Y.; Bellolio, F.; Homme, J.L.; Anderson, J.L. Intranasal ketamine for acute pain management in children: A systematic review and meta-analysis. Am. J. Emerg. Med. 2020, 38, 1860–1866. [Google Scholar] [CrossRef]
- Frey, T.M.; Florin, T.A.; Caruso, M.; Zhang, N.; Zhang, Y.; Mittiga, M.R. Effect of Intranasal Ketamine vs Fentanyl on Pain Reduction for Extremity Injuries in Children: The PRIME Randomized Clinical Trial. JAMA Pediatr. 2019, 173, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Rocchio, R.J.; Ward, K.E. Intranasal Ketamine for Acute Pain. Clin. J. Pain 2021, 37, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.L.; Beckett, R.D. Intranasal Ketamine for Treatment of Acute Pain in Pediatrics: A Systematic Review. Pediatr. Emerg. Care 2020, 36, e476–e481. [Google Scholar] [CrossRef] [PubMed]
- Andolfatto, G.; Willman, E.; Joo, D.; Miller, P.; Wong, W.B.; Koehn, M.; Dobson, R.; Angus, E.; Moadebi, S. Intranasal ketamine for analgesia in the emergency department: A prospective observational series. Acad. Emerg. Med. 2013, 20, 1050–1054. [Google Scholar] [CrossRef]
- Reynolds, S.L.; Bryant, K.K.; Studnek, J.R.; Hogg, M.; Dunn, C.; Templin, M.A.; Moore, C.G.; Young, J.R.; Walker, K.R.; Runyon, M.S. Randomized Controlled Feasibility Trial of Intranasal Ketamine Compared to Intranasal Fentanyl for Analgesia in Children with Suspected Extremity Fractures. Acad. Emerg. Med. 2017, 24, 1430–1440. [Google Scholar] [CrossRef]
- Beaudoin, F.L.; Lin, C.; Guan, W.; Merchant, R.C. Low-dose ketamine improves pain relief in patients receiving intravenous opioids for acute pain in the emergency department: Results of a randomized, double-blind, clinical trial. Acad. Emerg. Med. 2014, 21, 1193–1202. [Google Scholar] [CrossRef]
- Motov, S.; Rosenbaum, S.; Vilke, G.M.; Nakajima, Y. Is There a Role for Intravenous Subdissociative-Dose Ketamine Administered as an Adjunct to Opioids or as a Single Agent for Acute Pain Management in the Emergency Department? J. Emerg. Med. 2016, 51, 752–757. [Google Scholar] [CrossRef]
- Duhaime, M.J.; Wolfson, A.B. Ketamine Versus Opioids for Acute Pain in the Emergency Department. Acad. Emerg. Med. 2020, 27, 781–782. [Google Scholar] [CrossRef]
- Karlow, N.; Schlaepfer, C.H.; Stoll, C.R.T.; Doering, M.; Carpenter, C.R.; Colditz, G.A.; Motov, S.; Miller, J.; Schwarz, E.S. A Systematic Review and Meta-analysis of Ketamine as an Alternative to Opioids for Acute Pain in the Emergency Department. Acad. Emerg. Med. 2018, 25, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Ghate, G.; Clark, E.; Vaillancourt, C. Systematic review of the use of low-dose ketamine for analgesia in the emergency department. Can. J. Emerg. Med. 2018, 20, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Sin, B.; Ternas, T.; Motov, S.M. The use of subdissociative-dose ketamine for acute pain in the emergency department. Acad. Emerg. Med. 2015, 22, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Gurnani, A.; Sharma, P.K.; Rautela, R.S.; Bhattacharya, A. Analgesia for acute musculoskeletal trauma: Low-dose subcutaneous infusion of ketamine. Anaesth. Intensive Care. 1996, 24, 32–36. [Google Scholar] [CrossRef]
- Jennings, P.A.; Cameron, P.; Bernard, S. Ketamine as an analgesic in the pre-hospital setting: A systematic review. Acta Anaesthesiol. Scand. 2011, 55, 638–643. [Google Scholar] [CrossRef]
- Bansal, A.; Miller, M.; Ferguson, I.; Burns, B. Ketamine as a Prehospital Analgesic: A Systematic Review. Prehosp. Disaster Med. 2020, 35, 314–321. [Google Scholar] [CrossRef]
- Sandberg, M.; Hyldmo, P.K.; Kongstad, P.; Dahl Friesgaard, K.; Raatiniemi, L.; Larsen, R.; Magnusson, V.; Rognås, L.; Kurola, J.; Rehn, M.; et al. Ketamine for the treatment of prehospital acute pain: A systematic review of benefit and harm. BMJ Open 2020, 10, e038134. [Google Scholar] [CrossRef]
- Bredmose, P.P.; Grier, G.; Davies, G.E.; Lockey, D.J. Pre-hospital use of ketamine in paediatric trauma. Acta Anaesthesiol. Scand. 2009, 53, 543–545. [Google Scholar] [CrossRef]
- Yousefifard, M.; Askarian-Amiri, S.; Rafiei Alavi, S.N.; Sadeghi, M.; Saberian, P.; Baratloo, A.; Talebian, M.T. The Efficacy of Ketamine Administration in Prehospital Pain Management of Trauma Patients; a Systematic Review and Meta-Analysis. Arch. Acad. Emerg. Med. 2019, 8, e1. [Google Scholar]
- Tran, K.P.; Nguyen, Q.; Truong, X.N.; Le, V.; Le, V.P.; Mai, N.; Husum, H.; Losvik, O.K. A comparison of ketamine and morphine analgesia in prehospital trauma care: A cluster randomized clinical trial in rural Quang Tri province, Vietnam. Prehosp. Emerg. Care 2014, 18, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Husum, H. Effects of early prehospital life support to war injured: The battle of Jalalabad, Afghanistan. Prehosp. Disaster. Med. 1999, 14, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Husum, H.; Gilbert, M.; Wisborg, T.; Van Heng, Y.; Murad, M. Rural prehospital trauma systems improve trauma outcome in low-income countries: A prospective study from North Iraq and Cambodia. J. Trauma. 2003, 54, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, A.; Albanèse, J.; Léone, M.; Sampol-Manos, E.; Viviand, X.; Martin, C. Effects of sufentanil or ketamine administered in target-controlled infusion on the cerebral hemodynamics of severely brain-injured patients. Crit. Care Med. 2005, 33, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, A.; Albanèse, J.; Wereszczynski, N.; Charbit, M.; Vialet, R.; Martin, C. Safety of sedation with ketamine in severe head injury patients: Comparison with sufentanil. Crit. Care Med. 2003, 31, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Albanèse, J.; Arnaud, S.; Rey, M.; Thomachot, L.; Alliez, B.; Martin, C. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology 1997, 87, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Green, S.M.; Andolfatto, G.; Krauss, B.S. Ketamine and intracranial pressure: No contraindication except hydrocephalus. Ann. Emerg. Med. 2015, 65, 52–54. [Google Scholar] [CrossRef]
- Loflin, R.; Koyfman, A. When used for sedation, does ketamine increase intracranial pressure more than fentanyl or sufentanil? Ann. Emerg. Med. 2015, 65, 55–56. [Google Scholar] [CrossRef]
- Zeiler, F.A.; Teitelbaum, J.; West, M.; Gillman, L.M. The ketamine effect on intracranial pressure in nontraumatic neurological illness. J. Crit. Care. 2014, 29, 1096–1106. [Google Scholar] [CrossRef]
- Zeiler, F.A.; Teitelbaum, J.; West, M.; Gillman, L.M. The ketamine effect on ICP in traumatic brain injury. Neurocrit. Care 2014, 21, 163–173. [Google Scholar] [CrossRef]
- Naghipour, B.; Pouraghaei, M.; Tabatabaey, A.; Arjmand, A.; Faridaalaee, G. Comparison of Ketamine and Tramadol in Management of Acute Pain; a Systematic Review. Arch. Acad. Emerg. Med. 2020, 8, e68. [Google Scholar]
- Moradi, M.M.; Moradi, M.M.; Safaie, A.; Baratloo, A.; Payandemehr, P. Sub dissociative dose of ketamine with haloperidol versus fentanyl on pain reduction in patients with acute pain in the emergency department; a randomized clinical trial. Am. J. Emerg. Med. 2022, 54, 165–171. [Google Scholar] [CrossRef]
- Snijdelaar, D.G.; Cornelisse, H.B.; Schmid, R.L.; Katz, J. A randomised, controlled study of peri-operative low dose s(+)-ketamine in combination with postoperative patient-controlled s(+)-ketamine and morphine after radical prostatectomy. Anaesthesia 2004, 59, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Turturro, M.A. Pain, priorities, and prehospital care. Prehosp. Emerg. Care 2002, 6, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Niesters, M.; Aarts, L.; Sarton, E.; Dahan, A. Influence of ketamine and morphine on descending pain modulation in chronic pain patients: A randomized placebo-controlled cross-over proof-of-concept study. Br. J. Anaesth. 2013, 110, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Davison, S.N. Clinical Pharmacology Considerations in Pain Management in Patients with Advanced Kidney Failure. Clin. J. Am. Soc. Nephrol. 2019, 14, 917–931. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.L.; Sandler, A.N.; Katz, J. Use and efficacy of low-dose ketamine in the management of acute postoperative pain: A review of current techniques and outcomes. Pain 1999, 82, 111–125. [Google Scholar] [CrossRef]
- Moyse, D.W.; Kaye, A.D.; Diaz, J.H.; Qadri, M.Y.; Lindsay, D.; Pyati, S. Perioperative Ketamine Administration for Thoracotomy Pain. Pain Physician 2017, 20, 173–184. [Google Scholar] [PubMed]
- Wang, X.; Lin, C.; Lan, L.; Liu, J. Perioperative intravenous S-ketamine for acute postoperative pain in adults: A systematic review and meta-analysis. J. Clin. Anesth. 2021, 68, 110071. [Google Scholar] [CrossRef]
- Chumbley, G.M.; Thompson, L.; Swatman, J.E.; Urch, C. Ketamine infusion for 96 h after thoracotomy: Effects on acute and persistent pain. Eur. J. Pain 2019, 23, 985–993. [Google Scholar] [CrossRef]
- Bornemann-Cimenti, H.; Wejbora, M.; Michaeli, K.; Edler, A.; Sandner-Kiesling, A. The effects of minimal-dose versus low-dose S-ketamine on opioid consumption, hyperalgesia, and postoperative delirium: A triple-blinded, randomized, active- and placebo-controlled clinical trial. Minerva Anestesiol. 2016, 82, 1069–1076. [Google Scholar]
- Pendi, A.; Field, R.; Farhan, S.D.; Eichler, M.; Bederman, S.S. Perioperative Ketamine for Analgesia in Spine Surgery: A Meta-analysis of Randomized Controlled Trials. Spine 2018, 43, E299–E307. [Google Scholar] [CrossRef]
- Bell, R.F.; Dahl, J.B.; Moore, R.A.; Kalso, E. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst. Rev. 2006, 7, CD004603, Update in Cochrane Database Syst. Rev. 2015, 7, CD004603. [Google Scholar] [CrossRef]
- Zakine, J.; Samarcq, D.; Lorne, E.; Moubarak, M.; Montravers, P.; Beloucif, S.; Dupont, H. Postoperative ketamine administration decreases morphine consumption in major abdominal surgery: A prospective, randomized, double-blind, controlled study. Anesth. Analg. 2008, 106, 1856–1861. [Google Scholar] [CrossRef]
- Jouguelet-Lacoste, J.; La Colla, L.; Schilling, D.; Chelly, J.E. The use of intravenous infusion or single dose of low-dose ketamine for postoperative analgesia: A review of the current literature. Pain Med. 2015, 16, 383–403. [Google Scholar] [CrossRef]
- Schug, S.A.; Peyton, P. Does perioperative ketamine have a role in the prevention of chronic postsurgical pain: The ROCKet trial. Br. J. Pain 2017, 11, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Correll, D. Chronic postoperative pain: Recent findings in understanding and management. F1000Research 2017, 6, 1054. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.D. Ketamine for Chronic Pain: Old Drug New Trick? Anesthesiology 2020, 133, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, A.B.; Yamakura, T.; Baba, H.; Shimoji, K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: A review. Anesth. Analg. 2003, 97, 1108–1116. [Google Scholar] [CrossRef]
- Noppers, I.; Niesters, M.; Aarts, L.; Smith, T.; Sarton, E.; Dahan, A. Ketamine for the treatment of chronic non-cancer pain. Expert Opin. Pharmacother. 2010, 11, 2417–2429. [Google Scholar] [CrossRef]
- Schwartzman, R.J.; Alexander, G.M.; Grothusen, J.R.; Paylor, T.; Reichenberger, E.; Perreault, M. Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: A double-blind placebo controlled study. Pain 2009, 147, 107–115. [Google Scholar] [CrossRef]
- Israel, J.E.; St Pierre, S.; Ellis, E.; Hanukaai, J.S.; Noor, N.; Varrassi, G.; Wells, M.; Kaye, A.D. Ketamine for the Treatment of Chronic Pain: A Comprehensive Review. Health Psychol. Res. 2021, 9, 25535. [Google Scholar] [CrossRef]
- Maher, D.P.; Chen, L.; Mao, J. Intravenous Ketamine Infusions for Neuropathic Pain Management: A Promising Therapy in Need of Optimization. Anesth. Analg. 2017, 124, 661–674. [Google Scholar] [CrossRef]
- Eide, P.K.; Jørum, E.; Stubhaug, A.; Bremnes, J.; Breivik, H. Relief of post-herpetic neuralgia with the N-methyl-D-aspartic acid receptor antagonist ketamine: A double-blind, cross-over comparison with morphine and placebo. Pain 1994, 58, 347–354. [Google Scholar] [CrossRef]
- Kvarnström, A.; Karlsten, R.; Quiding, H.; Emanuelsson, B.M.; Gordh, T. The effectiveness of intravenous ketamine and lidocaine on peripheral neuropathic pain. Acta Anaesthesiol. Scand. 2003, 47, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Hocking, G.; Cousins, M.J. Ketamine in chronic pain management: An evidence-based review. Anesth. Analg. 2003, 97, 1730–1739. [Google Scholar] [CrossRef] [PubMed]
- Shteamer, J.W.; Callaway, M.A.; Patel, P.; Singh, V. How effective is ketamine in the management of chronic neuropathic pain? Pain Manag. 2019, 9, 517–519. [Google Scholar] [CrossRef]
- Guimarães Pereira, J.E.; Ferreira Gomes Pereira, L.; Mercante Linhares, R.; Darcy Alves Bersot, C.; Aslanidis, T.; Ashmawi, H.A. Efficacy and Safety of Ketamine in the Treatment of Neuropathic Pain: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Pain Res. 2022, 15, 1011–1037. [Google Scholar] [CrossRef] [PubMed]
- Loftus, R.W.; Yeager, M.P.; Clark, J.A.; Brown, J.R.; Abdu, W.A.; Sengupta, D.K.; Beach, M.L. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology 2010, 113, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Amr, Y.M. Multi-day low dose ketamine infusion as adjuvant to oral gabapentin in spinal cord injury related chronic pain: A prospective, randomized, double blind trial. Pain Physician 2010, 13, 245–249. [Google Scholar] [CrossRef]
- McMullin, P.R.; Hynes, A.T.; Arefin, M.A.; Saeed, M.; Gandhavadi, S.; Arefin, N.; Eckmann, M.S. Infusion Therapy in the Treatment of Neuropathic Pain. Curr. Pain Headache Rep. 2022, 26, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Anitescu, M. Efficacy of outpatient ketamine infusions in refractory chronic pain syndromes: A 5-year retrospective analysis. Pain Med. 2012, 13, 263–269. [Google Scholar] [CrossRef]
- Bennett, G.J. Update on the neurophysiology of pain transmission and modulation: Focus on the NMDA-receptor. J. Pain Symptom Manag. 2000, 19 (Suppl. S1), S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J.; Thompson, S.W.N. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991, 44, 293–299. [Google Scholar] [CrossRef]
- Costigan, M.; Scholz, J.; Woolf, C.J. Neuropathic pain: A maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 2009, 32, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, M.H.; Dussor, G.O.; Porreca, F. Central modulation of pain. J. Clin. Investig. 2010, 120, 3779–3787. [Google Scholar] [CrossRef]
- Marchand, F.; Perretti, M.; McMahon, S.B. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 2005, 6, 521–532. [Google Scholar] [CrossRef]
- Wolff, K.; Winstock, A.R. Ketamine: From medicine to misuse. CNS Drugs 2006, 20, 199–218. [Google Scholar] [CrossRef]
- Yang, Y.; Maher, D.P.; Cohen, S.P. Emerging concepts on the use of ketamine for chronic pain. Expert Rev. Clin. Pharmacol. 2020, 13, 135–146. [Google Scholar] [CrossRef]
- Baldwin, M.; Boilini, H.; Lamvu, G. Chronic Pain and Suicide: Is There a Role for Ketamine? Mil. Med. 2017, 182, 1746–1748. [Google Scholar] [CrossRef]
- Hassett, A.L.; Aquino, J.K.; Ilgen, M.A. The risk of suicide mortality in chronic pain patients. Curr. Pain Headache Rep. 2014, 18, 436. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.K.; Crane, C. Suicidality in chronic pain: A review of the prevalence, risk factors and psychological links. Psychol. Med. 2006, 36, 575–586. [Google Scholar] [CrossRef] [PubMed]
- McNicol, E.D.; Schumann, R.; Haroutounian, S. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain. Acta Anaesthesiol. Scand. 2014, 58, 1199–1213. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.; Wang, D. The Effect of Ketamine Infusion in the Treatment of Complex Regional Pain Syndrome: A Systemic Review and Meta-analysis. Curr. Pain Headache Rep. 2018, 22, 12. [Google Scholar] [CrossRef]
- Voute, M.; Riant, T.; Amodéo, J.M.; André, G.; Barmaki, M.; Collard, O.; Colomb, C.; Créac’h, C.; Deleens, R.; Delorme, C.; et al. Ketamine in chronic pain: A Delphi survey. Eur. J. Pain 2022, 26, 873–887. [Google Scholar] [CrossRef]
- Corriger, A.; Voute, M.; Lambert, C.; Pereira, B.; Pickering, G.; OKAPI Consortium. Ketamine for refractory chronic pain: A 1-year follow-up study. Pain 2022, 163, 690–701. [Google Scholar] [CrossRef]
- Dahan, A.; van Velzen, M.; Niesters, M. Ketamine for neuropathic pain: A tiger that won’t bite? Br. J. Anaesth. 2020, 125, e275–e276. [Google Scholar] [CrossRef]
- Jonkman, K.; van de Donk, T.; Dahan, A. Ketamine for cancer pain: What is the evidence? Curr. Opin. Support. Palliat. Care 2017, 11, 88–92. [Google Scholar] [CrossRef]
- Kissin, I.; Bright, C.A.; Bradley, E.L., Jr. The effect of ketamine on opioid-induced acute tolerance: Can it explain reduction of opioid consumption with ketamine-opioid analgesic combinations? Anesth. Analg. 2000, 91, 1483–1488. [Google Scholar] [CrossRef]
- Bell, R.F.; Eccleston, C.; Kalso, E.A. Ketamine as an adjuvant to opioids for cancer pain. Cochrane Database Syst. Rev. 2017, 6, CD003351. [Google Scholar] [CrossRef]
- Courade, M.; Bertrand, A.; Guerrini-Rousseau, L.; Pagnier, A.; Levy, D.; Lervat, C.; Cojean, N.; Ribrault, A.; Dugue, S.; Thouvenin, S.; et al. Low-dose ketamine adjuvant treatment for refractory pain in children, adolescents and young adults with cancer: A pilot study. BMJ Support. Palliat. Care 2022, 12, e656–e663. [Google Scholar] [CrossRef]
- Bell, R.F.; Eccleston, C.; Kalso, E. Ketamine as adjuvant to opioids for cancer pain. A qualitative systematic review. J. Pain Symptom Manag. 2003, 26, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Legge, J.; Ball, N.; Elliott, D.P. The potential role of ketamine in hospice analgesia: A literature review. Consult. Pharm. 2006, 21, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Prommer, E.E. Ketamine for pain: An update of uses in palliative care. J. Palliat. Med. 2012, 15, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Bredlau, A.L.; Thakur, R.; Korones, D.N.; Dworkin, R.H. Ketamine for pain in adults and children with cancer: A systematic review and synthesis of the literature. Pain Med. 2013, 14, 1505–1517. [Google Scholar] [CrossRef]
- Hardy, J.; Quinn, S.; Fazekas, B.; Plummer, J.; Eckermann, S.; Agar, M.; Spruyt, O.; Rowett, D.; Currow, D.C. Randomized, double-blind, placebo-controlled study to assess the efficacy and toxicity of subcutaneous ketamine in the management of cancer pain. J. Clin. Oncol. 2012, 30, 3611–3617. [Google Scholar] [CrossRef]
- Goldman, N.; Frankenthaler, M.; Klepacz, L. The Efficacy of Ketamine in the Palliative Care Setting: A Comprehensive Review of the Literature. J. Palliat. Med. 2019, 22, 1154–1161. [Google Scholar] [CrossRef]
- Giamberardino, M.A.; Affaitati, G.; Costantini, R.; Guglielmetti, M.; Martelletti, P. Acute headache management in emergency department. A narrative review. Intern. Emerg. Med. 2020, 15, 109–117. [Google Scholar] [CrossRef]
- Takahashi, T.T.; Ornello, R.; Quatrosi, G.; Torrente, A.; Albanese, M.; Vigneri, S.; Guglielmetti, M.; Maria De Marco, C.; Dutordoir, C.; Colangeli, E.; et al. Medication overuse and drug addiction: A narrative review from addiction perspective. J. Headache Pain 2021, 22, 32, Erratum in J. Headache Pain 2021, 22, 64. [Google Scholar] [CrossRef]
- Lauritsen, C.; Mazuera, S.; Lipton, R.B.; Ashina, S. Intravenous ketamine for subacute treatment of refractory chronic migraine: A case series. J. Headache Pain 2016, 17, 106. [Google Scholar] [CrossRef]
- Chah, N.; Jones, M.; Milord, S.; Al-Eryani, K.; Enciso, R. Efficacy of ketamine in the treatment of migraines and other unspecified primary headache disorders compared to placebo and other interventions: A systematic review. J. Dent. Anesth. Pain Med. 2021, 21, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Sarvari, H.R.; Baigrezaii, H.; Nazarianpirdosti, M.; Meysami, A.; Safari-Faramani, R. Comparison of the efficacy of intranasal ketamine versus intravenous ketorolac on acute non-traumatic headaches: A randomized double-blind clinical trial. Head Face Med. 2022, 18, 1. [Google Scholar] [CrossRef]
- Naeem, F.; Schramm, C.; Friedman, B.W. Emergent management of primary headache: A review of current literature. Curr. Opin. Neurol. 2018, 31, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.; Mazer-Amirshahi, M.; Pourmand, A. Current Approach to Undifferentiated Headache Management in the Emergency Department. Curr. Pain Headache Rep. 2019, 23, 26. [Google Scholar] [CrossRef]
- Weber, W.V.; Jawalekar, K.S.; Jawalekar, S.R. The effect of ketamine on nerve conduction in isolated sciatic nerves of the toad. Neurosci. Lett. 1975, 1, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Frenkel, C.; Urban, B.W. Molecular actions of racemic ketamine on human CNS sodium channels. Br. J. Anaesth. 1992, 69, 292–297. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, H.S.; Kalefa, M.A.; Imbaby, A.S. Efficacy of ketamine as an adjunct to lidocaine in intravenous regional anesthesia. Reg. Anesth. Pain Med. 2014, 39, 418–422. [Google Scholar] [CrossRef]
- Heydari, F.; Khalilian, S.; Golshani, K.; Majidinejad, S.; Masoumi, B.; Massoumi, A. Topical ketamine as a local anesthetic agent in reducing venipuncture pain: A randomized controlled trial. Am. J. Emerg. Med. 2021, 48, 48–53. [Google Scholar] [CrossRef]
- Wang, H.Z.; Wang, L.Y.; Liang, H.H.; Fan, Y.T.; Song, X.R.; She, Y.J. Effect of caudal ketamine on minimum local anesthetic concentration of ropivacaine in children: A prospective randomized trial. BMC Anesthesiol. 2020, 20, 144. [Google Scholar] [CrossRef]
- Tverskoy, M.; Oren, M.; Vaskovich, M.; Dashkovsky, I.; Kissin, I. Ketamine enhances local anesthetic and analgesic effects of bupivacaine by peripheral mechanism: A study in postoperative patients. Neurosci. Lett. 1996, 215, 5–8. [Google Scholar] [CrossRef]
- Majidinejad, S.; Esmailian, M.; Emadi, M. Comparison of Intravenous Ketamine with Morphine in Pain Relief of Long Bones Fractures: A Double Blind Randomized Clinical Trial. Emerg 2014, 2, 77–80. [Google Scholar]
- Motov, S.; Mann, S.; Drapkin, J.; Butt, M.; Likourezos, A.; Yetter, E.; Brady, J.; Rothberger, N.; Gohel, A.; Flom, P.; et al. Intravenous subdissociative-dose ketamine versus morphine for acute geriatric pain in the Emergency Department: A randomized controlled trial. Am. J. Emerg. Med. 2019, 37, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Karper, L.P.; Seibyl, J.P.; Freeman, G.K.; Delaney, R.; Bremner, J.D.; Heninger, G.R.; Bowers, M.B., Jr.; Charney, D.S. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 1994, 51, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Lahti, A.C.; Weiler, M.A.; Tamara Michaelidis, B.A.; Parwani, A.; Tamminga, C.A. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001, 25, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Stoker, A.D.; Rosenfeld, D.M.; Buras, M.R.; Alvord, J.M.; Gorlin, A.W. Evaluation of Clinical Factors Associated with Adverse Drug Events in Patients Receiving Sub-Anesthetic Ketamine Infusions. J. Pain Res. 2019, 12, 3413–3421. [Google Scholar] [CrossRef]
- Green, S.M.; Roback, M.G.; Kennedy, R.M.; Krauss, B. Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. Ann. Emerg. Med. 2011, 57, 449–461. [Google Scholar] [CrossRef]
- Noppers, I.M.; Niesters, M.; Aarts, L.P.H.J.; Bauer, M.C.R.; Drewes, A.M.; Dahan, A.; Sarton, E.Y. Drug-induced liver injury following a repeated course of ketamine treatment for chronic pain in CRPS type 1 patients: A report of 3 cases. Pain 2011, 152, 2173–2178. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, R.T.; Rohr, P.; Ploppa, A.; Dieterich, H.J.; Grothusen, J.; Koffler, S.; Altemeyer, K.H.; Unertl, K.; Schwartzman, R.J. Efficacy of ketamine in anesthetic dosage for the treatment of refractory complex regional pain syndrome: An open-label phase II study. Pain Med. 2008, 9, 1173–1201. [Google Scholar] [CrossRef] [PubMed]
- Blonk, M.I.; Koder, B.G.; van den Bemt, P.M.; Huygen, F.J. Use of oral ketamine in chronic pain management: A review. Eur. J. Pain 2010, 14, 466–472. [Google Scholar] [CrossRef]
- Green, S.M.; Clark, R.; Hostetler, M.A.; Cohen, M.; Carlson, D.; Rothrock, S.G. Inadvertent ketamine overdose in children: Clinical manifestations and outcome. Ann. Emerg. Med. 1999, 34 Pt 1, 492–497. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, A.T.; Yang, A.H.; Chen, K.K. Microvascular Injury in Ketamine-Induced Bladder Dysfunction. PLoS ONE 2016, 11, e0160578. [Google Scholar] [CrossRef]
- Gray, T.; Dass, M. Ketamine cystitis: An emerging diagnostic and therapeutic challenge. Br. J. Hosp. Med. 2012, 73, 576–579. [Google Scholar] [CrossRef]
- Himmelseher, S.; Durieux, M.E. Ketamine for perioperative pain management. Anesthesiology 2005, 102, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.J.; Garg, S.; Rovnaghi, C.R.; Narsinghani, U.; Bhutta, A.T.; Hall, R.W. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr. Res. 2007, 62, 283–290. [Google Scholar] [CrossRef]
- Bell, J.D. In Vogue: Ketamine for Neuroprotection in Acute Neurologic Injury. Anesth. Analg. 2017, 124, 1237–1243. [Google Scholar] [CrossRef]
- Bates, M.L.S.; Trujillo, K.A. Long-lasting effects of repeated ketamine administration in adult and adolescent rats. Behav. Brain Res. 2019, 369, 111928. [Google Scholar] [CrossRef] [PubMed]
- Green, S.M.; Coté, C.J. Ketamine and neurotoxicity: Clinical perspectives and implications for emergency medicine. Ann. Emerg. Med. 2009, 54, 181–190. [Google Scholar] [CrossRef]
- Short, B.; Fong, J.; Galvez, V.; Shelker, W.; Loo, C.K. Side-effects associated with ketamine use in depression: A systematic review. Lancet Psychiatry 2018, 5, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Strayer, R.J.; Nelson, L.S. Adverse events associated with ketamine for procedural sedation in adults. Am. J. Emerg. Med. 2008, 26, 985–1028, Erratum in Am. J. Emerg. Med. 2009, 27, 512. [Google Scholar] [CrossRef] [PubMed]
- Coppel, D.L.; Bovill, J.G.; Dundee, J.W. The taming of ketamine. Anaesthesia 1973, 28, 293–296. [Google Scholar] [CrossRef]
- Tobias, J.D. Dexmedetomidine and ketamine: An effective alternative for procedural sedation? Pediatr. Crit. Care Med. 2012, 13, 423–427. [Google Scholar] [CrossRef]
- Azizkhani, R.; Kouhestani, S.; Heydari, F.; Majidinejad, S. A comparative study of dexmedetomidine and propofol to prevent recovery agitation in adults undergoing procedural sedation with ketamine: A randomized double-blind clinical trial. Am. J. Emerg. Med. 2021, 50, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Azizkhani, R.; Kouhestani, S.; Heydari, F.; Esmailian, M.; Feizi, A.; Gourtani, B.K.; Safavi, M. Comparison of the effects of dexmedetomidine and propofol in reducing recovery agitation in pediatric patients after ketamine procedural sedation in emergency department. J. Res. Med. Sci. 2021, 26, 61. [Google Scholar] [CrossRef]
- Bubeníková-Valesová, V.; Horácek, J.; Vrajová, M.; Höschl, C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev. 2008, 32, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Blagrove, M.; Morgan, C.J.; Curran, H.V.; Bromley, L.; Brandner, B. The incidence of unpleasant dreams after sub-anaesthetic ketamine. Psychopharmacology 2009, 203, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.A.; Ivester, J.R., Jr. Ketamine for Pain Management-Side Effects & Potential Adverse Events. Pain Manag. Nurs. 2017, 18, 372–377. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, D.; Wu, B.; Zhou, W. Ketamine abuse potential and use disorder. Brain Res. Bull. 2016, 126 Pt 1, 68–73. [Google Scholar] [CrossRef]
- Walsh, Z.; Mollaahmetoglu, O.M.; Rootman, J.; Golsof, S.; Keeler, J.; Marsh, B.; Nutt, D.J.; Morgan, C.J.A. Ketamine for the treatment of mental health and substance use disorders: Comprehensive systematic review. BJPsych Open 2021, 8, e19, Erratum in BJPsych Open 2022, 8, e29. [Google Scholar] [CrossRef] [PubMed]
- Worrell, S.D.; Gould, T.J. Therapeutic potential of ketamine for alcohol use disorder. Neurosci. Biobehav. Rev. 2021, 126, 573–589. [Google Scholar] [CrossRef]
- Pal, H.R.; Berry, N.; Kumar, R.; Ray, R. Ketamine dependence. Anaesth. Intensive Care 2002, 30, 382–384. [Google Scholar] [CrossRef]
- Gable, R.S. Acute toxic effects of club drugs. J. Psychoact. Drugs 2004, 36, 303–313. [Google Scholar] [CrossRef]
- Jansen, K.L.; Darracot-Cankovic, R. The nonmedical use of ketamine, part two: A review of problem use and dependence. J. Psychoact. Drugs 2001, 33, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, B.; Adams, B.; Verma, A.; Daly, D. Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 1997, 17, 2921–2927. [Google Scholar] [CrossRef] [PubMed]
- Ivan Ezquerra-Romano, I.; Lawn, W.; Krupitsky, E.; Morgan, C.J.A. Ketamine for the treatment of addiction: Evidence and potential mechanisms. Neuropharmacology 2018, 142, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Cvrcek, P. Side effects of ketamine in the long-term treatment of neuropathic pain. Pain Med. 2008, 9, 253–257. [Google Scholar] [CrossRef]
- Gottlieb, M.; Long, B.; Koyfman, A. Approach to the Agitated Emergency Department Patient. J. Emerg. Med. 2018, 54, 447–457. [Google Scholar] [CrossRef]
- Cauli, O.; González-Usano, A.; Cabrera-Pastor, A.; Gimenez-Garzó, C.; López-Larrubia, P.; Ruiz-Sauri, A.; Hernández-Rabaza, V.; Duszczyk, M.; Malek, M.; Lazarewicz, J.W.; et al. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain. Neuromolecular. Med. 2014, 16, 360–375. [Google Scholar] [CrossRef]
- Lindefors, N.; Barati, S.; O’Connor, W.T. Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex. Brain Res. 1997, 759, 205–212. [Google Scholar] [CrossRef]
- De Iaco, F.; Riccardi, A.; Guarino, M.; Gandolfo, E.; Di Ricatti, G.; Saggese, M.P.; Cibinel, G.A.; Carbone, G. Il dolore non può aspettare. Campagna formativa SIMEU sul dolore acuto in Medicina d’Emergenza Urgenza. In Fighting Pain—Combattere Il Dolore; HPS—Health Publishing & Services: Milano, Italy, 2014; Volume 1. [Google Scholar]
LOW DOSE KETAMINE (ANALGESIC) | |
---|---|
Administration Route | Dose |
Intravenous | 0.15–0.3 mg/kg bolus 0.15–0.3 mg/kg/h infusion |
Intramuscolar | 0.5–1 mg/kg |
Intranasal | 1 mg/kg |
Oral | 0.5 mg/kg every 12 h |
Transdermal | 25 mg/24 h |
Subcutaneous | 0.05–0.15 mg/kg/h |
Rectal | 10 mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccardi, A.; Guarino, M.; Serra, S.; Spampinato, M.D.; Vanni, S.; Shiffer, D.; Voza, A.; Fabbri, A.; De Iaco, F., on behalf of the Study and Research Center of the Italian Society of Emergency Medicine. Narrative Review: Low-Dose Ketamine for Pain Management. J. Clin. Med. 2023, 12, 3256. https://doi.org/10.3390/jcm12093256
Riccardi A, Guarino M, Serra S, Spampinato MD, Vanni S, Shiffer D, Voza A, Fabbri A, De Iaco F on behalf of the Study and Research Center of the Italian Society of Emergency Medicine. Narrative Review: Low-Dose Ketamine for Pain Management. Journal of Clinical Medicine. 2023; 12(9):3256. https://doi.org/10.3390/jcm12093256
Chicago/Turabian StyleRiccardi, Alessandro, Mario Guarino, Sossio Serra, Michele Domenico Spampinato, Simone Vanni, Dana Shiffer, Antonio Voza, Andrea Fabbri, and Fabio De Iaco on behalf of the Study and Research Center of the Italian Society of Emergency Medicine. 2023. "Narrative Review: Low-Dose Ketamine for Pain Management" Journal of Clinical Medicine 12, no. 9: 3256. https://doi.org/10.3390/jcm12093256