Analysis of Various Subsets of Circulating Mononuclear Cells in Asymptomatic Coronary Artery Disease
Abstract
:1. Introduction
2. Design and Methods
2.1. Study Population
2.2. Contrast-Enhanced Spiral Computed Tomography Angiography
2.3. Echocardiography Examination
2.4. Glomerular Filtration Ratio Estimation
2.5. Blood Sampling and Biomarker Measurements
2.5.1. High-Sensitive C-Reactive Protein Level Determination
2.5.2. Serum Uric Acid Measurement
2.5.3. Cholesterol Level Measurement
2.5.4. Circulating EPCs
2.5.5. Cardiovascular Risk Calculation
3. Statistical Analysis
4. Results and Discussion
Healthy volunteers (n = 25) | Patients with known CAD (n = 126) | p Value | |
---|---|---|---|
Age, years | 51.70 ± 6.10 | 58.34 ± 9.60 | 0.22 |
Male, n (%) | 14 (56.0%) | 74 (58.7%) | 0.56 |
Framingham General Cardiovascular Risk, % | 23 (16–27) | 2 (1–3) | 0.001 |
Arterial hypertension, n (%) | None | 84 (66.7%) | - |
Hyperlipidaemia, n (%) | None | 56 (44.4%) | - |
T2DM, n (%) | None | 46 (36.5%) | - |
Premature CAD, n (%) | 2 (8.0%) | 12 (9.5%) | 0.48 |
Smoking, n (%) | 6 (24.0%) | 26 (20.6%) | 0.42 |
Body mass index, kg/m2 | 23.3 (95% CI = 20.1–25.1) | 24.1 (95% CI = 21.6–28.7) | 0.58 |
eGFR, mL/min/m2 | 93.5 (95% CI = 88.3–101.3) | 82.3 (95% CI = 68.7–102.6) | 0.21 |
HbA1c, % | 3.8 (95% CI = 3.1–4.6) | 6.8 (95% CI = 4.1–9.5) | 0.001 |
Fasting glucose, mmol/L | 4.11 (95% CI = 3.2–5.5) | 5.20 (95% CI = 3.3–9.7) | 0.07 |
Creatinin, μmol/L | 65.7 (95% CI = 53.1–80.5) | 72.3 (95% CI = 58.7–92.6) | 0.48 |
SUA, mmol/L | 17.1 (95% CI = 9.1–25.7) | 23.8 (95% CI = 15.8–31.3) | 0.05 |
hs-CRP, mg/L | 1.15 (95% CI = 0.11–3.18) | 4.95 (95% CI = 3.15–9.80) | 0.001 |
TC, mmol/L | 4.1 (95% CI = 3.1–5.0) | 5.1 (95% CI = 3.9–6.1) | 0.012 |
LDL cholesterol, mmol/L | 2.75 (95% CI = 2.44–3.6) | 3.23 (95% CI = 3.11–4.4) | 0.014 |
HDL cholesterol, mmol/L | 1.01 (95% CI = 0.92–1.2) | 0.91 (95% CI = 0.89–1.12) | 0.012 |
Mean systolic BP, mm Hg | 127.30 ± 5.66 | 130.90 ± 8.41 | 0.44 |
Heart rate, beats per min | 68.56 ± 3.17 | 70.52 ± 3.34 | 0.52 |
LV EF, % | 65.40 ± 0.87 | 42.80 ± 0.76 | 0.001 |
Patients with known CAD (n = 126) | |
---|---|
CAP, n (%) | 96 (95% CI = 31–102) |
HD-NCP, n (%) | 31 (95% CI = 21–56) |
LD-NCP, n (%) | 25 (95% CI = 13–48) |
Agatston score index | 586 (95% CI = 401–838) |
Coronary arteries with plaques determined | |
1 vessel, n (%) | 46 (36.5%) |
2 vessels, n (%) | 42 (33.3%) |
3 vessels and more, n (%) | 38 (30.2%) |
ACEI/ARBs, n (%) | 126 (100%) |
Aspirin, n (%) | 98 (77.8%) |
Other antiagregants, n (%) | 6 (4.8%) |
Statins, n (%) | 94 (74.6%) |
Metformin, n (%) | 41 (32.5%) |
Healthy volunteers (n = 25) | Patients with known CAD (n = 126) | p Value | |
---|---|---|---|
CD45+CD34+, % | 1.90 (IQR = 1.49–2.10) | 2.19 (IQR = 1.76–2.613) | 0.36 |
CD45+CD34+, cells × 103/μL | 0.114 (IQR = 0.095–0.120) | 0.113 (IQR = 0.094–0.119) | 0.72 |
CD45−CD34+ × 10−4, % | 1.00 (IQR = 0.69–1.35) | 1.09 (IQR = 1.00–1.348) | 0.15 |
CD45−CD34+, cells × 10−1/μL | 0.06 (IQR = 0.05–0.07) | 0.057 (IQR = 0.053–0.065) | 0.12 |
CD14+CD309+ × 10−4, % | 71.00 (IQR = 61.50–96.00) | 57.00 (IQR = 43.20–81.50) | 0.02 |
CD14+CD309+, cells × 10−1/μL | 4.26 (IQR = 3.70–5.74) | 2.96 (IQR = 2.25–4.21) | 0.01 |
CD14+CD309+Tie2+ × 10−4, % | 7.70 (IQR = 4.20–12.20) | 5.50 (IQR = 3.05–8.15) | 0.04 |
CD14+CD309+Tie2+, cells × 10−1/μL | 0.465 (IQR = 0.253–0.710) | 0.270 (IQR = 0.241–0.411) | 0.01 |
Factors | CD14+CD309+ | CD14+CD309+Tie2+ | ||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Gender (male) | 0.82 (0.71–1.02) | 0.043 | 1.03 (1.00–1.10) | 0.042 |
Hypertension | 0.93 (0.80–1.03) | 0.025 | 1.05 (0.97–1.11) | 0.005 |
Hyperlipidemia | 1.04 (0.92–1.22) | 0.032 | 1.09 (1.04–1.18) | 0.034 |
T2DM | 1.18 (1.10–1.31) | 0.005 | 1.20 (1.06–1.34) | 0.005 |
BMI | 0.95 (0.74–1.18) | 0.039 | 1.03 (0.99–1.07) | 0.052 |
Smoking | 0.80 (0.55–1.16) | 0.042 | 0.92 (0.72–1.01) | 0.006 |
hs-CRP > 2.54 mg/L | 1.12 (1.03–1.20) | 0.007 | 1.22 (1.06–1.44) | 0.006 |
Agatston score index | 1.14 (1.02–1.18) | 0.009 | 1.16 (1.10–1.22) | 0.044 |
TC | 1.03 (0.88–1.13) | 0.022 | 1.06 (1.00–1.11) | 0.006 |
SUA | 1.02 (0.94–1.14) | 0.039 | 1.10 (0.96–1.29) | 0.032 |
Number of MCRFs >3 | 1.25 (1.07–1.46) | 0.008 | 1.27 (1.10–1.42) | 0.009 |
5. Conclusion
6. Study Restrictions
Ethical Declaration
Acknowledgements
Conflict of Interest
References
- Krankel, N.; Adams, V.; Linke, A.; Gielen, S.; Erbs, S.; Lenk, K.; Schuler, G.; Hambrecht, R. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 698–703. [Google Scholar] [CrossRef]
- Loomans, C.J.; de Koning, E.J.; Staal, F.J.; Rookmaaker, M.B.; Verseyden, C.; de Boer, H.C.; Verhaar, M.C.; Braam, B.; Rabelink, T.J.; van Zonneveld, A.J. Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 2004, 53, 195–199. [Google Scholar]
- Singh, N.; van Craeyveld, E.; Tjwa, M.; Ciarka, A.; Emmerechts, J.; Droogne, W.; Gordts, S.C.; Carlier, V.; Jacobs, F.; Fieuws, S.; et al. Circulating apoptotic endothelial cells and apoptotic endothelial microparticles independently predict the presence of cardiac allograft vasculopathy. J. Am. Coll. Cardiol. 2012, 60, 324–331. [Google Scholar] [CrossRef]
- Sobrino, T.; Hurtado, O.; Moro, M.A.; Rodríguez-Yáñez, M.; Castellanos, M.; Brea, D.; Moldes, O.; Blanco, M.; Arenillas, J.F.; Leira, R.; et al. The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome. Stroke 2007, 38, 2759–2764. [Google Scholar] [CrossRef]
- Ravi, S.; Caves, J.M.; Martinez, A.W.; Xiao, J.; Wen, J.; Haller, C.A.; Davis, M.E.; Chaikof, E.L. Effect of bone marrow-derived extracellular matrix on cardiac function after ischemic injury. Biomaterials 2012, 33, 7736–7745. [Google Scholar] [CrossRef]
- George, J.; Goldstein, E.; Abashidze, S.; Deutsch, V.; Schmilovich, H.; Finkelstein, A.; Herz, I.; Miller, H.; Keren, G. Circulating endothelial progenitor cells in patients with unstable angina: Association with systemic inflammation. Eur. Heart J. 2004, 25, 1003–1008. [Google Scholar] [CrossRef]
- Chen, J.Z.; Zhang, F.R.; Tao, Q.M.; Wang, X.X.; Zhu, J.H.; Zhu, J.H. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin. Sci. (Lond.) 2004, 107, 273–280. [Google Scholar] [CrossRef]
- Adams, V.; Lenk, K.; Linke, A.; Lenz, D.; Erbs, S.; Sandri, M.; Tarnok, A.; Gielen, S.; Emmrich, F.; Schuler, G.; et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 684–690. [Google Scholar] [CrossRef]
- Banerjee, S.; Brilakis, E.; Zhang, S.; Roesle, M.; Lindsey, J.; Philips, B.; Blewett, C.G.; Terada, L.S. Endothelial progenitor cell mobilization after percutaneous coronary intervention. Atherosclerosis 2006, 189, 70–75. [Google Scholar] [CrossRef]
- Hill, J.M.; Zalos, G.; Halcox, J.P.; Schenke, W.H.; Waclawiw, M.A.; Quyyumi, A.A.; Finkel, T. Circulating endotelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 2003, 348, 593–600. [Google Scholar] [CrossRef]
- George, J.; Shmilovich, H.; Deutsch, V.; Miller, H.; Keren, G.; Roth, A. Comparative analysis of methods for assessment of circulating endothelial progenitor cells. Tissue Eng. 2006, 12, 331–335. [Google Scholar] [CrossRef]
- Vasa, M.; Fichtlscherer, S.; Aicher, A.; Adler, K.; Urbich, C.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 2001, 89, E1–E7. [Google Scholar] [CrossRef]
- Tamura, H.; Okamoto, S.; Iwatsuki, K.; Futamata, Y.; Tanaka, K.; Nakayama, Y.; Miyajima, A.; Hara, T. In vivo differentiation of stem cells in the aorta-gonad-mesonephros region of mouse embryo and adult bone marrow. Exp. Hematol. 2002, 30, 957–966. [Google Scholar] [CrossRef]
- Morishita, T.; Uzui, H.; Nakano, A.; Mitsuke, Y.; Geshi, T.; Ueda, T.; Lee, J.D. Number of endothelial progenitor cells in peripheral artery disease as a marker of severity and association with pentraxin-3, malondialdehyde-modified low-density lipoprotein and membrane type-1 matrix metalloproteinase. J. Atheroscler. Thromb. 2012, 19, 149–158. [Google Scholar] [CrossRef]
- Padfield, G.J.; Tura-Ceide, O.; Freyer, E.; Barclay, G.R.; Turner, M.; Newby, D.E.; Mills, N.L. Endothelial progenitor cells, atheroma burden and clinical outcome in patients with coronary artery disease. Heart 2013, 99, 791–798. [Google Scholar] [CrossRef]
- Bluemke, D.A.; Achenbach, S.; Budoff, M.; Gerber, T.C.; Gersh, B.; Hillis, L.D.; Hundley, W.G.; Manning, W.J.; Printz, B.F.; Stuber, M.; et al. Noninvasive coronary artery imaging: Magnetic resonance angiography and multidetector computed tomography angiography: A scientific statement from the American heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 2008, 118, 586–606. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R. Ultrafast computed tomography in coronary screening. Circulation 1994, 89, 1908–1909. [Google Scholar] [CrossRef]
- Budoff, M.J.; Achenbach, S.; Blumenthal, R.S.; Carr, J.J.; Goldin, J.G.; Greenland, P.; Guerci, A.D.; Lima, J.A.C.; Rader, D.J.; Rubin, G.D.; et al. Assessment of coronary artery disease by cardiac computed tomography: A scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 2006, 114, 1761–1791. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1994, 15, 827–832. [Google Scholar]
- Schiller, N.B.; Shah, P.M.; Crawford, M.; de Maria, A.; Devereux, R.; Feigenbaum, H.; Gutgesell, H.; Reichek, N.; Sahn, D.; Schnittger, I. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 1989, 2, 358–367. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar]
- Tung, J.W.; Parks, D.R.; Moore, W.A.; Herzenberg, L.A.; Herzenberg, L.A. New approaches to fluorescence compensation and visualization of FACS data. Clin. Immunol. 2004, 110, 277–283. [Google Scholar] [CrossRef]
- Bakogiannis, C.; Tousoulis, D.; Androulakis, E.; Briasoulis, A.; Papageorgiou, N.; Vogiatzi, G.; Kampoli, A.M.; Charakida, M.; Siasos, G.; Latsios, G.; et al. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Curr. Med. Chem. 2012, 19, 2597–2604. [Google Scholar] [CrossRef]
- Liew, A.; Barry, F.; O’Brien, T. Endothelial progenitor cells: Diagnostic and therapeutic considerations. Bioessays 2006, 28, 261–270. [Google Scholar] [CrossRef]
- Werner, N.; Nickenig, G. Influence of cardiovascular risk factors on endothelial progenitor cells: Limitations for therapy? Arterioscler. Thromb. Vasc. Biol. 2006, 26, 257–266. [Google Scholar] [CrossRef]
- Boilson, B.A.; Kiernan, T.J.; Harbuzariu, A.; Nelson, R.E.; Lerman, A.; Simari, R.D. Circulating CD34+ cell subsets in patients with coronary endothelial dysfunction. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 489–496. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Berezin, A.E.; Kremzer, A.A. Analysis of Various Subsets of Circulating Mononuclear Cells in Asymptomatic Coronary Artery Disease. J. Clin. Med. 2013, 2, 32-44. https://doi.org/10.3390/jcm2030032
Berezin AE, Kremzer AA. Analysis of Various Subsets of Circulating Mononuclear Cells in Asymptomatic Coronary Artery Disease. Journal of Clinical Medicine. 2013; 2(3):32-44. https://doi.org/10.3390/jcm2030032
Chicago/Turabian StyleBerezin, Alexander E., and Alexander A. Kremzer. 2013. "Analysis of Various Subsets of Circulating Mononuclear Cells in Asymptomatic Coronary Artery Disease" Journal of Clinical Medicine 2, no. 3: 32-44. https://doi.org/10.3390/jcm2030032
APA StyleBerezin, A. E., & Kremzer, A. A. (2013). Analysis of Various Subsets of Circulating Mononuclear Cells in Asymptomatic Coronary Artery Disease. Journal of Clinical Medicine, 2(3), 32-44. https://doi.org/10.3390/jcm2030032