Alternative Donor Transplantation for Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Umbilical Cord Blood Transplantation
3. Myeloablative Single UCB Transplantation
4. Myeloablative Double UCB Transplantation
5. UCB Transplantation with Reduced Intensity Conditioning Regimen
6. Double versus Single UCB Graft
7. UCB Grafts versus Other Donor Sources
Reference | Malignancy | Donor Type | No of Patients | Median Age (range) | Median Time to ANC ≥500/µL | Median Time to Platelet >20 × 109/L | aGVHD (II-IV) CI (%) | cGVHD CI (%) | TRM | Relapse | DFS |
---|---|---|---|---|---|---|---|---|---|---|---|
Myeloablative conditioning | |||||||||||
Laughlin 2004 | Hematologic Malignancy 200 AML | UCB | 150 | (16–60) | 27 days | 60 days | 0.81 | 1.62 | 1.89 | 0.73 | 1.48 |
URD (BM) | 367 | (16–60) | 20 days | 29 days | 0.66 | 1.12 | 0.99 | 0.85 | 0.94 | ||
p = 0.17 | p = 0.02 | p < 0.001 | p = 0.16 | p = 0.001 | |||||||
MM URD (BM) | 83 | (16–60) | 18 days | 29 days | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ||
p < 0.001 | p < 0.001 | p = 0.04 | p = 0.69 | p = 0.96 | p = 0.65 | p = 0.69 | |||||
Rocha 2004 | Hematologic Malignancy 362 AML | UCB | 94 | 25 | 26 days | -- | 0.57 | 0.64 | 1.13 | 1.02 | 0.95 |
(15–55) | |||||||||||
URD BM | 584 | 32 | 19 days | -- | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ||
(15–59) | p = 0.001 | p = 0.01 | p = 0.11 | p = 0.50 | p = 0.93 | p = 0.70 | |||||
Takahashi 2004 | Hematologic Malignancy 54 AML | UCB | 68 | 36 | 22 days | 40 days | 0.61 | 0.60 | 0.32 | 0.75 | 0.27 |
(16–53) | |||||||||||
URD BM | 45 | 26 | 18 days | 22.5 days | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ||
(16–50) | p = 0.01 | p < 0.01 | p = 0.05 | p = 0.18 | p = 0.02 | p = 0.73 | p < 0.01 | ||||
Takahashi 2007 | Hematologic Malignancy 88 AML | UCB | 92 | 38 | 22 days | 40 days | 1.09 | 0.49 | 0.49 | 0.72 | 0.74 |
MRD | 71 | 40 | 17 days | 22.5 days | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ||
p = 0.83 | p < 0.01 | p < 0.01 | p = 0.69 | p = 0.01 | p = 0.13 | p = 0.26 | p = 0.26 | ||||
Gutman 2009 | AML/ALL 53 AML | D100 | 2yr | 2 yr | 2 yr | ||||||
UCB | 31 | 22 | -- | -- | 80.6% | -- | 20.6% | 3.2% | 76.2% | ||
MUD | 31 | 25 | -- | -- | 67.7% | -- | 17% | 25.8% | 57.1% | ||
p = NS | p = 0.78 | p = 0.018 | p = 0.17 | ||||||||
MM URD | 31 | 25 | -- | -- | 87.1% | -- | 29.2% | 23% | 47.8% | ||
p = NS | p = 0.41 | p = 0.019 | p = 0.041 | ||||||||
Atsuta 2009 | AML | UCB | 173 | 38 | -- | -- | 32% | 28% | 30% | 31% | 36% |
URD | 311 | 38 | -- | -- | 35% | 32% | 19% | 24% | 54% | ||
p = 0.39 | p = 0.46 | p = 0.004 | p = 0.067 | p < 0.001 | |||||||
Myeloablative conditioning | |||||||||||
Eapen 2010 | AML/ALL 880 AML | UCB | 165 | 28 | 24 days | 52 days | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
URD BM | 332 | 39 | 19 days | 28 days | 0.78 | 0.63 | 1.69 | 0.85 | 1.15 | ||
MM URD BM | 140 | 0.59 | 0.59 | 1.06 | 0.84 | 0.93 | |||||
URD PB | 632 | 33 | 14 days | 19 days | 0.57 | 0.38 | 1.62 | 0.85 | 1.12 | ||
MM URD PB | 256 | 0.49 | 0.46 | 0.95 | 0.91 | 0.91 | |||||
p < 0.0001 | p < 0.0001 | -- | p = 0.001 | p < 0.0001 | p < 0.0001 | p = 0.86 | p = 0.09 | ||||
Brunstein 2010 | Hematologic Malignancy 476 acute leukemia | DUCB | 128 | 25 | 26 days | 53 days | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
MRD | 204 | 40 | 16 days | 20 days | 1.08 | 1.58 | 0.31 | 3.67 | 1.09 | ||
p = 0.03 | p < 0.01 | p < 0.01 | |||||||||
URD | 152 | 31 | 19 days | 21 days | 1.83 | 1.71 | 0.61 | 3.05 | 0.85 | ||
p < 0.01 | p = 0.01 | p < 0.01 | |||||||||
MM URD | 52 | 31 | 18.5 days | 21 days | 2.35 | 2.07 | 0.38 | 2.50 | 1.12 | ||
p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 | p = 0.01 | p < 0.01 | p < 0.01 | P = NS | ||||
Myeloablative/Reduced intensity conditioning | |||||||||||
Ponce 2011 | Hematologic Malignancy 133 AML | MAC (RIC) | MAC (RIC) | D100 | 1 yr | D180 | 2 yr | 2 yr | |||
DUCB | 75 | 37 | 24 (10) | 51 (38) | 43% | 28% | 21% | 20% | 55% | ||
MRD | 108 | 47 | 11 (11) | 17 (12) | 27% | 31% | 8% | 19% | 66% | ||
p = 0.017 | 9% | 55% | |||||||||
URD | 184 | 48 | 11 (10) | 18 (17) | 39% | 44% | 13% | ||||
p = 0.071 | p < 0.001 | p < 0.001 | p = 0.33 | p = 0.044 | p = 0.123 | p = 0.813 | p = 0.573 | ||||
(p = 0.084) | (p < 0.001) | ||||||||||
Raiola 2014 | Hematologic, 232 acute leukemia 69% MAC | D50 (median) | D100 | 4 yr | D1000 | 4 yr | 4 yr | ||||
UCB | 105 | 40 (18–64) | 23 days | 40 days | 19% | 23% | 35% | 30% | 33% | ||
MRD | 176 | 47 (15–69) | 18 days | 160 days | 31% | 29% | 24% | 40% | 32% | ||
8/8 URD | 43 | 42 (19–66) | 17 days | 100 days | 21% | 22% | 33% | 23% | 36% | ||
7/8 URD | 43 | 47 (17–62) | 16 days | 110 days | 42% | 19% | 35% | 30% | 34% | ||
Haplo | 92 | 45 (17–69) | 18 days | 118 days | 14% | 15% | 18% | 35% | 43% | ||
p < 0.05 | p < 0.01 | p < 0.001 | p = 0.053 | p = 0.10 | p = 0.89 | p = 0.20 | |||||
Reduced intensity conditioning | |||||||||||
Brunstein 2006 | AML | 1yr | 2yr | 2yr OS | |||||||
UCB | 43 | 53 | 88% | -- | 51% | -- | 28% | 35% | 31% | ||
(22–68) | |||||||||||
Sib PBSC | 21 | 54 | 100% | -- | 62% | -- | 38% | 35% | 32% | ||
(19–69) | p = 0.1 | p = 0.85 | p = 0.43 | p = 0.72 | p = 0.62 | ||||||
Majhail 2008 | Hematologic malignancies 29 AML | -- | -- | D100 | 3yr | D180 | 3yr | ||||
UCB (88% | 43 | 59 | 49% | 17% | 28% | -- | 34% | ||||
DUCB) | (55–69) | -- | -- | 42% | 40% | 23% | -- | 30% | |||
MRD | 47 | 58 | p = 0.20 | p = 0.02 | p = 0.23 | p = 0.98 | |||||
(55–70) | |||||||||||
Majhail 2012 | AML/MDS 70 AML | D100 | 2yr | 2yr | 2yr | 2yr | |||||
UCB (95% | 60 | 61 | -- | -- | 45% | 33% | 25% | 47% | 22% | ||
DUCB) | (55–69) | ||||||||||
MRD | 38 | 63 | -- | -- | 38% | 61% | 25% | 34% | 34% | ||
(56–70) | p = 0.19 | p = 0.04 | p = 0.82 | p = 0.19 | p = 0.23 | ||||||
Brunstein 2012 | AML/ALL | D100 | 2 yr | 2 yr | 2 yr | 2 yr TF | |||||
94% AML | DUCBT-TCF | 121 | 55 (23–68) | 1 | -- | 1 | 1 | 1 | 1 | 1 | |
90% AML | 8/8 PBCT | 313 | 59 (23–69) | 0.21 | -- | 1.91 | 0.43 | 0.92 | 1.26 | 1.13 | |
p < 0.0001 | p < 0.001 | p < 0.001 | p = 0.72 | p = 0.155 | p = 0.37 | ||||||
82% AML | 7/8 PBCT | 111 | 58 (21–69) | 0.21 | -- | 1.44 | 0.45 | 0.57 | 1.15 | 0.88 | |
p = 0.013 | p = 0.06 | p < 0.001 | p = 0.035 | p = 0.495 | p = 0.43 | ||||||
75% AML | DUCBT-other | 40 | 48 (21–67) | -- | -- | -- | -- | -- | -- | -- | |
Chen 2012 | Hematologic malignancies, 95 AML | D200 | 2yr | 3 yr | 3 yr | 3 yr | |||||
DUCBT | 64 | 53 (19–67) | 21.5 | 41 | 14.1% | 21.9% | 26.9% | 42.7% | 30% | ||
URD | 221 | 58 (19–73) | 13 | 19 | 20.3% | 53.9% | 10.4% | 49.8% | 40% | ||
p < 0.0001 | p < 0.0001 | p = 0.32 | p < 0.0001 | p = 0.0009 | p = 0.09 | p = 0.47 | |||||
Reduced intensity conditioning | |||||||||||
Le Bourgeois 2013 | Hematologic malignancies 38 AML | 2yr | 2yr | 2yr | 2yr | ||||||
DUCB | 39 | 56 | 16 | 38 | 26% | 26% | 26.5% | 23% | 50.5% | ||
(22–69) | |||||||||||
PBSC | 52 | 59 | 17 | 0 | 31% | 35% | 6% | 35.5% | 59% | ||
(22–70) | P = NS | p = 0.02 | p = 0.02 | p = 0.32 | p = 0.43 | ||||||
Weisdorf 2014 | AML | D28 | D90 | D100 | 3 yr | 3 yr | 3 yr | 3 yr | |||
UCB | 205 | 59 (50–71) | 69% | 69% | 35% | 28% | 35% | 35% | 28% | ||
8/8 URD | 441 | 58 (50–75) | 97% | 91% | 36% | 53% | 27% | 35% | 39% | ||
p < 0.0001 | p < 0.0001 | p = 0.69 | p < 0.0001 | p = 0.05 | p = 0.95 | p = 0.01 | |||||
7/8 URD | 94 | 58 (50–72) | 91% | 89% | 44% | 59% | 41% | 26% at | 34% at | ||
p < 0.0001 | p < 0.0001 | p = 0.14 | p < 0.0001 | p = 0.01 | p = 0.13 | p = 0.39 | |||||
Malard 2015 | AML | D42 | >50K at D180 | ||||||||
UCB | 205 | 49 (19–69) | 75% | 56% | 1 | 1 | 1 | 1 | 1 | ||
10/10 URD | 347 | 57 (19–70) | 96% | 84% | 1.72 | 2.15 | 1.05 | 0.60 | 1.1 | ||
p < 0.001 | p < 0.001 | p = 0.08 | p = 0.08 | p = 0.85 | p = 0.02 | p = 0.49 | |||||
9/10 URD | 99 | 55 (19–68) | 95% | 75% | 2.61 | 1.84 | 1.58 | 0.62 | 1.17 | ||
p < 0.001 | p < 0.001 | p = 0.007 | p = 0.23 | p = 0.13 | p = 0.07 | p = 0.29 |
8. Haploidentical Transplantation
9. T-Cell Depleted Haploidentical Graft
10. Unmodified Haploidentical Graft with Post-Transplant Cyclophosphamide
Reference | Malignancy | Conditioning Regimen | No of Patients | Median Age (range) | Median Time to ANC ≥500/µL | Median Time to Platelet >20 × 109/L | aGVHD (II-IV) CI (%) | cGVHD CI (%) | TRM | Relapse | DFS |
---|---|---|---|---|---|---|---|---|---|---|---|
T-cell depleted haplo-HCT | |||||||||||
Aversa 2005 | Acute leukemia 67 AML | Thio/Flu/TBI/ATG | 104 | 33 (9–64) | 11 days | 15 days | 8% | 7% | 36.5% | 25% at 6mo | 39% at median 22mo |
Ciceri 2008 | Hematologic | TBI-based: | 173 | 37 (17–66) | 12 days | -- | 5% | 10% | 36% CR1 54% CR2 66% advanced | 16% CR1 | 48% CR1 |
Malignancy | 74% CR1/CR2 | CR1/CR2 | 23% CR2 | 21% CR2 | |||||||
173 AML | 71% advanced | 36 (16–63) | 32% | 1% | |||||||
Mostly with ATG | advanced | advanced | advanced | ||||||||
Chang 2009 | Hematologic | Bu/Cy +ATG | 133 | 15 (2–18) | 12 days | 15 days | -- | -- | -- | -- | -- |
Malignancy | |||||||||||
43 AML | |||||||||||
Chang BBMT 2009 | Hematologic | Bu/Cy/cytarabine/ Semustine/rATG | 348 | 24 (2–54) | 13 days | 16 days | -- | -- | -- | -- | -- |
Malignancy | |||||||||||
100 AML | |||||||||||
Haplo-HCT with PT-Cy | |||||||||||
Luznik 2008 | Hematologic | NMA | 68 | 46 (1–71) | 15 days | 24 days | 34% at Day 200 | 5%–25% at 1-yr | 15% at 1-yr | 51% at 1-yr | 26% at 2-yrs |
Malignancy | Flu/Cy/TBI | ||||||||||
27 AML | |||||||||||
Kazamon 2010 | Hematologic | NMA Flu/Cy/TBI | 185 | 50 (1–71) | -- | -- | 31% | 15% | 15% at 1-yr | -- | 35% at 1-yr |
Malignancy | |||||||||||
49 AML | |||||||||||
Munchel 2011 | Hematologic | NMA Flu/Cy/TBI | 210 | 52 (1–73) | 15 days | 24 days | 27% | 13% | 18% at 5-yr | 55% at 5-yr | 27% at 5-yr |
Malignancy | |||||||||||
43 AML | |||||||||||
Solomon 2012 | Hematologic | MA Flu/Bu/Cy | 20 | 44 (25–56) | 16 days | 27 days | 30% | 35% | 10% at 1-yr | 40% at 1-yr | 50% at 1-yr |
Malignancy | |||||||||||
12 AML | |||||||||||
Haplo-HCT with PT-Cy | |||||||||||
Ciurea 2012 | Hematologic Malignancy 42 AML/MDS | TCR-Haplo/PT-Cy: | 65 | 45 (20–63) | 18 days | 26 days | 20% | 7% | 16% at 1-yr | 34% at 1-yr 36% at 1-yr | 50% at 1-yr 21% at 1-yr |
26 MA & 6 NMA | |||||||||||
TCD-Haplo/ATG: MA | 36 (18–56) | 13 days | 12 days | 11% | 18% | 42% at 1-yr | |||||
Castagna 2014 | Hematologic Malignancy 4 AML/MDS | NMA Flu/Cy/TBI | 46 BM 23 PB | 44 (19–68) 54 (25–65) | 21 days 20 days | 29 days 27 days | 25% 33% | 13% 13% | 22% at 2-yr 12% at 2-yr | -- -- | 62% at 2-yr 62% at 2-yr |
Haplo-HCT with intensive immunosuppression | |||||||||||
Huang 2006 | Hematologic Malignancy 51 AML | MA | 171 | 25 (2–56) | 12 days | 15 days | 55% | 47% at 2-yr | 19%–31% at 2-yr | 12%–39% at 2-yr | 42%–68% at 2-yr |
Bu/Cy/ARA-C/ | |||||||||||
Semustine | |||||||||||
IS: ATG/CSA/MTX/ | |||||||||||
MMF | |||||||||||
Huang 2009 | Acute leukemia 108 AML | MA | 250 | 25 (2–56) | 12 days | 15 days | 46% | 23% at 3-yr | 19%–51% at 3-yr | 12%–49% at 3-yr | 25%–71% at 3-yr |
Bu/Cy/ARA-C/ | |||||||||||
Semustine | |||||||||||
IS: ATG/CSA/MTX/ | |||||||||||
MMF | |||||||||||
Di Bartolomeo 2013 | Hematologic Malignancy 45 AML | 80%MA /20%RIC | 80 | 37 (5–71) | 21 days | 28 days | 24% | Extensive6% at 2-yr | 36% at 1-yr | 21% at 1-yr | 38% at 3-yr |
Thio/Bu/Flu | |||||||||||
IS: ATG/CSA/MTX/ | |||||||||||
MMF/Basiliximab | |||||||||||
Haplo-HCT with intensive immunosuppression | |||||||||||
Fu 2014 | Hematologic Malignancy 34 AML | TBI/Cy/simustine/ATG Bu/Cy/simustine/ ARA-C/ATG | 38 77 | 20 (13–46 24 (8–51)) | 13 days 12 days | 19 days 16 days | 32% 48% | 61% at 1-yr 53% at 1-yr | 13% at 1-yr 16% at 1-yr | 27% at 2-yr 32% at 2-yr | 58% at 2-yr 57% at 2-yr |
Comparative studies with Haplo-HCT | |||||||||||
Lu 2006 | Hematologic malignancies 69 AML | MA Haplo (Bu/Cy/ATG) MRD (Bu/Cy) | 135 158 | D100 | 2-yr | 2-yr | 2-yr | 2-yr | |||
24 | 12 days | 15 days | 32% | 55% | 22% | 18% | 64% | ||||
(3–50) | |||||||||||
37 | 15 days | 15 days | 40% | 56% | 14% | 13% | 71% | ||||
(5–50) | p < 0.001 | p = NS | N = 0.13 | p = 0.90 | p = 0.10 | p = 0.40 | p = 0.27 | ||||
Brunstein 2011 | Hematologic malignancies 51 AML | RIC Haplo PT-Cy dUCB | 50 50 | 48 (7–70) 58 (16–69) | 16 days 15 days | 24 days 38 days | D100 32% 40% p = 0.13 | 1-yr 13% 25% | 1-yr | 1-yr | 1-yr |
7% | 45% | 48% | |||||||||
4% | 31% | 46% | |||||||||
Bashey 2013 | Hematologic malignancies 91 AML | 50% MA Haplo PT-Cy MRD 8/8 URD | 46 50 51 | 59 (50–71) 58 (50–75) 58 (50–72) | -- -- -- | -- -- -- | D180 | 2-yr | 2-yr | 2-yr | 2-yr |
30% | 38% | 7% | 33% | 60% | |||||||
27% | 54% | 13% | 34% | 53% | |||||||
p = NS | p < 0.05 | p = NS | p = NS | p = NS | |||||||
39% | 54% | 16% | 34% | 52% | |||||||
p = NS | p < 0.05 | p = NS | p = NS | p = NS | |||||||
Comparative studies with Haplo-HCT | |||||||||||
Raiola 2014 | Hematologic malignancies 232 acute leukemia | 69% MA UCB MRD 8/8 URD 7/8 URD Haplo | 105 176 43 43 92 | 40 (18–64) 47 (15–69) 42 (19–66) 47 (17–62) 45 (17–69) | D50 (median) | D100 | 4 yr | D1000 | 4 yr | 4 yr | |
23 days | 40 days | 19% | 23% | 35% | 30% | 33% | |||||
18 days | 160 days | 31% | 29% | 24% | 40% | 32% | |||||
17 days | 100 days | 21% | 22% | 33% | 23% | 36% | |||||
16 days | 110 days | 42% | 19% | 35% | 30% | 34% | |||||
18 days | 118 days | 14% | 15% | 18% | 35% | 43% | |||||
p < 0.05 | p < 0.01 | p < 0.001 | p = 0.053 | p = 0.10 | p = 0.89 | p = 0.20 | |||||
Ciurea 2014 (ASH) | 2174 AML | MA-Haplo PT-Cy MA-8/8 URD RIC-Haplo PT-Cy RIC-8/8 URD | 104 1245 88 737 | 21–70 | D30 CI | -- -- -- -- | -- -- -- -- | -- -- -- -- | HR | HR | 2-yr OS |
90% | 1.0 | 1.0 | 47% | ||||||||
97% | 1.07 | 0.88 | 54% | ||||||||
p = 0.01 | p = 0.82 | p = 0.40 | p = 0.22 | ||||||||
93% | 1.0 | 1.0 | 53% | ||||||||
96% | 2.35 | 0.76 | 49% | ||||||||
p = 0.25 | p = 0.03 | p = 0.09 | p = 0.25 | ||||||||
Luo 2014 | Hematologic malignancies 126 AML | TCR-Haplo MRD 8/8 URD | 99 90 116 | 25 (9–55) 34 (16–56) 26 (10–50) | 12 days 12 days 12 days | 15 days 12 days 13 days | D90 | 2-yr | 5-yr | 5-yr | |
42% | 41% | 31% | 14% | 58% | |||||||
16% | 24% | 5% | 34% | 64% | |||||||
p < 0.05 | p =NS | p < 0.001 | p = 0.008 | p = NS | |||||||
40% | 42% | 22% | 21% | 58% | |||||||
p = NS | p = NS | p = NS | p = NS | p = NS | |||||||
Ruggeri 2015 | AML | Haplo (32% PT-Cy) UCB (49% Cy/Flu/TBI) | 360 558 | -- -- | HR | HR | HR | HR | |||
44 (18–75) | 23 days | 27% | 1.0 | 1.0 | 1.0 | 1.0 | |||||
45 (18–72) | 17 days | 31% | 0.63 | 1.16 | 0.95 | 0.78 | |||||
p = 0.62 | p < 0.01 | p = 0.10 | p = 0.008 | p = 0.47 | p = 0.76 | p = 0.78 |
11. Unmodified Haploidentical Graft with Intensive Immune Suppression
12. The Way Forward
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grewal, S.S.; Barker, J.N.; Davies, S.M.; Wagner, J.E. Unrelated donor hematopoietic cell transplantation: Marrow or umbilical cord blood? Blood 2003, 101, 4233–4244. [Google Scholar] [CrossRef] [PubMed]
- Confer, D.; Robinett, P. The US National Marrow Donor Program role in unrelated donor hematopoietic cell transplantation. Bone Marrow Transplant. 2008, 42 (Suppl. 1), S3–S5. [Google Scholar] [CrossRef] [PubMed]
- Ballen, K.K.; Spitzer, T.R.; Yeap, B.Y.; McAfee, S.; Dey, B.R.; Attar, E.; Haspel, R.; Kao, G.; Liney, D.; Alyea, E.; et al. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol. Blood Marrow Transplant. 2007, 13, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Brunstein, C.G.; Barker, J.N.; Weisdorf, D.J.; DeFor, T.E.; Miller, J.S.; Blazar, B.R.; McGlave, P.B.; Wagner, J.E. Umbilical cord blood transplantation after nonmyeloablative conditioning: Impact on transplantation outcomes in 110 adults with hematologic disease. Blood 2007, 110, 3064–3070. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, D.E.; Zachary, A.A.; Fuchs, E.J.; Luznik, L.; Kasamon, Y.L.; King, K.E.; Brodsky, R.A.; Jones, R.J.; Leffell, M.S. Partially mismatched transplantation and human leukocyte antigen donor-specific antibodies. Biol. Blood Marrow Transplant. 2013, 19, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Misawa, M.; Kai, S.; Okada, M.; Nakajima, T.; Nomura, K.; Wakae, T.; Toda, A.; Itoi, H.; Takatsuka, H.; Itsukuma, T. Reduced-intensity conditioning followed by unrelated umbilical cord blood transplantation for advanced hematologic malignancies: Rapid engraftment in bone marrow. Int. J. Hematol. 2006, 83, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Brunstein, C.G.; Fuchs, E.J.; Carter, S.L.; Karanes, C.; Costa, L.J.; Wu, J.; Devine, S.M.; Wingard, J.R.; Aljitawi, O.S.; Cutler, C.S.; et al. Alternative donor transplantation after reduced intensity conditioning: Results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood 2011, 118, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Xu, L.P.; Liu, D.H.; Liu, K.Y.; Han, W.; Chen, Y.H.; Wang, Y.; Chen, H.; Wang, J.Z.; Zhang, X.H. Platelet engraftment in patients with hematologic malignancies following unmanipulated haploidentical blood and marrow transplantation: Effects of CD34+ cell dose and disease status. Biol. Blood Marrow Transplant. 2009, 15, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Bashey, A.; Zhang, X.; Sizemore, C.A.; Manion, K.; Brown, S.; Holland, H.K.; Morris, L.E.; Solomon, S.R. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J. Clin. Oncol. 2013, 31, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Kasamon, Y.L.; Luznik, L.; Leffell, M.S.; Kowalski, J.; Tsai, H.L.; Bolanos-Meade, J.; Morris, L.E.; Crilley, P.A.; O’Donnell, P.V.; Rossiter, N.; et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: Effect of HLA disparity on outcome. Biol. Blood Marrow Transplant. 2010, 16, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Delaney, C.; Varnum-Finney, B.; Aoyama, K.; Brashem-Stein, C.; Bernstein, I.D. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 2005, 106, 2693–2699. [Google Scholar] [CrossRef] [PubMed]
- De Lima, M.; McNiece, I.; Robinson, S.N.; Munsell, M.; Eapen, M.; Horowitz, M.; Alousi, A.; Saliba, R.; McMannis, J.D.; Kaur, I. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 2012, 367, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.E.; Brunstein, C.G.; McKenna, D.; Sumstad, D.; Maahs, S.; Boitano, A.E.; Cooke, M.P.; Bleul, C.C. Safety and Exploratory Efficacy of Ex Vivo Expanded Umbilical Cord Blood (UCB) Hematopoietic Stem and Progenitor Cells (HSPC) Using Cytokines and Stem-Regenin 1 (SR1): Interim Results of a Phase 1/2 Dose Escalation Clinical Study. Blood (ASH Annu. Meet. Abstr.) 2013, 122, 698. [Google Scholar]
- Frassoni, F.; Gualandi, F.; Podesta, M.; Raiola, A.M.; Ibatici, A.; Piaggio, G.; Sessarego, M.; Sessarego, N.; Gobbi, M.; Sacchi, N. Direct intrabone transplant of unrelated cord-blood cells in acute leukaemia: A phase I/II study. Lancet Oncol. 2008, 9, 831–839. [Google Scholar] [CrossRef]
- Frassoni, F.; Varaldo, R.; Gualandi, F.; Bacigalupo, A.; Sambuceti, G.; Sacchi, N.; Podestà, M. The intra-bone marrow injection of cord blood cells extends the possibility of transplantation to the majority of patients with malignant hematopoietic diseases. Best Pract. Res. Clin. Haematol. 2010, 23, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Brunstein, C.G.; Barker, J.N.; Weisdorf, D.J.; Defor, T.E.; McKenna, D.; Chong, S.Y.; Miller, J.S.; McGlave, P.B.; Wagner, J.E. Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplant. 2009, 43, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Brunstein, C.G.; Miller, J.S.; Cao, Q.; McKenna, D.H.; Hippen, K.L.; Curtsinger, J.; Defor, T.; Levine, B.L.; June, C.H.; Rubinstein, P.; et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics. Blood 2011, 117, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Perotti, C.; Torretta, L.; Maccario, R.; Montagna, D.; Ravelli, A.; Giorgiani, G.; De Benedetti, F.; Giraldi, E.; Magnani, M.L.; et al. Mobilization and selection of peripheral blood hematopoietic progenitors in children with systemic sclerosis. Haematologica 1999, 84, 839–843. [Google Scholar] [PubMed]
- Barker, J.N.; Weisdorf, D.J.; Wagner, J.E. Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N. Engl. J. Med. 2001, 344, 1870–1871. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.; Cornish, J.; Sievers, E.L.; Filipovich, A.; Locatelli, F.; Peters, C.; Remberger, M.; Michel, G.; Arcese, W.; Dallorso, S.; et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 2001, 97, 2962–2971. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.E.; Barker, J.N.; DeFor, T.E.; Baker, K.S.; Blazar, B.R.; Eide, C.; Goldman, A.; Kersey, J.; Krivit, W.; MacMillan, M.L.; et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: Influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 2002, 100, 1611–1618. [Google Scholar] [PubMed]
- Michel, G.; Rocha, V.; Chevret, S.; Arcese, W.; Chan, K.W.; Filipovich, A.; Takahashi, T.A.; Vowels, M.; Ortega, J.; Bordigoni, P.; et al. Unrelated cord blood transplantation for childhood acute myeloid leukemia: A Eurocord Group analysis. Blood 2003, 102, 4290–4297. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, E.; Rocha, V. Cord blood transplantation for children with acute leukaemia: A Eurocord registry analysis. Blood Cells Mol. Dis. 2004, 33, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Escolar, M.L.; Poe, M.D.; Provenzale, J.M.; Richards, K.C.; Allison, J.; Wood, S.; Wenger, D.A.; Pietryga, D.; Wall, D.; Champagne, M.; et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N. Engl. J. Med. 2005, 352, 2069–2081. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, M.J.; Barker, J.; Bambach, B.; Koc, O.N.; Rizzieri, D.A.; Wagner, J.E.; Gerson, S.L.; Lazarus, H.M.; Cairo, M.; Stevens, C.E.; et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N. Engl. J. Med. 2001, 344, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Cornetta, K.; Laughlin, M.; Carter, S.; Wall, D.; Weinthal, J.; Delaney, C.; Wagner, J.; Sweetman, R.; McCarthy, P.; Chao, N. Umbilical cord blood transplantation in adults: Results of the prospective Cord Blood Transplantation (COBLT). Biol. Blood Marrow Transplant. 2005, 11, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Ooi, J.; Tomonari, A.; Konuma, T.; Tsukada, N.; Oiwa-Monna, M.; Fukuno, K.; Uchiyama, M.; Takasugi, K.; Iseki, T.; et al. Comparative single-institute analysis of cord blood transplantation from unrelated donors with bone marrow or peripheral blood stem-cell transplants from related donors in adult patients with hematologic malignancies after myeloablative conditioning regimen. Blood 2007, 109, 1322–1330. [Google Scholar] [PubMed]
- Sanz, J.; Sanz, M.A.; Saavedra, S.; Lorenzo, I.; Montesinos, P.; Senent, L.; Planelles, D.; Larrea, L.; Martín, G.; Palau, J.; et al. Cord blood transplantation from unrelated donors in adults with high-risk acute myeloid leukemia. Biol. Blood Marrow Transplant. 2010, 16, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; Boluda, J.C.; Martin, C.; Gonzalez, M.; Ferra, C.; Serrano, D.; de Heredia, C.D.; Barrenetxea, C.; Martinez, A.M.; Solano, C.; et al. Single-unit umbilical cord blood transplantation from unrelated donors in patients with hematological malignancy using busulfan, thiotepa, fludarabine and ATG as myeloablative conditioning regimen. Bone Marrow Transplant. 2012, 47, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; Jaramillo, F.J.; Planelles, D.; Montesinos, P.; Lorenzo, I.; Moscardo, F.; Martin, G.; López, F.; Martínez, J.; Jarque, I.; et al. Impact on outcomes of human leukocyte antigen matching by allele-level typing in adults with acute myeloid leukemia undergoing umbilical cord blood transplantation. Biol. Blood Marrow Transplant. 2014, 20, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.N.; Weisdorf, D.J.; DeFor, T.E.; Blazar, B.R.; McGlave, P.B.; Miller, J.S.; Verfaillie, C.M.; Wagner, J.E. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 2005, 105, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, M.E.; Morris, A.; Gasparetto, C.; Sullivan, K.; Long, G.; Chute, J.; Verfaillie, C.M.; Wagner, J.E. Myeloablative intravenous busulfan/fludarabine conditioning does not facilitate reliable engraftment of dual umbilical cord blood grafts in adult recipients. Biol. Blood Marrow Transplant. 2008, 14, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Bradstock, K.; Hertzberg, M.; Kerridge, I.; Svennilson, J.; George, B.; McGurgan, M.; Huang, G.; Antonenas, V.; Gottlieb, D. Single versus double unrelated umbilical cord blood units for allogeneic transplantation in adults with advanced haematological malignancies: A retrospective comparison of outcomes. Intern. Med. J. 2009, 39, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Kanda, J.; Rizzieri, D.A.; Gasparetto, C.; Long, G.D.; Chute, J.P.; Sullivan, K.M.; Morris, A.; Smith, C.A.; Hogge, D.E.; Nitta, J.; et al. Adult dual umbilical cord blood transplantation using myeloablative total body irradiation (1350 cGy) and fludarabine conditioning. Biol. Blood Marrow Transplant. 2011, 17, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Kai, S.; Wake, A.; Okada, M.; Kurata, M.; Atsuta, Y.; Ishikawa, J.; Nakamae, H.; Aotsuka, N.; Kasai, M.; Misawa, M.; et al. Double-unit cord blood transplantation after myeloablative conditioning for patients with hematologic malignancies: A multicenter phase II study in Japan. Biol. Blood Marrow Transplant. 2013, 19, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Hulegardh, E.; Nilsson, C.; Lazarevic, V.; Garelius, H.; Antunovic, P.; Rangert Derolf, A.; Möllgård, L.; Uggla, B.; Wennström, L.; Wahlin, A.; et al. Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: A report from the Swedish Acute Leukemia Registry. Am. J. Hematol. 2015, 90, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Yahng, S.A.; Yoon, J.H.; Lee, S.E.; Cho, B.S.; Eom, K.S.; Lee, S.; Min, C.K.; Kim, H.J.; Cho, S.G.; et al. Survival benefits with transplantation in secondary AML evolving from myelodysplastic syndrome with hypomethylating treatment failure. Bone Marrow Transplant. 2013, 48, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.N.; Weisdorf, D.J.; DeFor, T.E.; Blazar, B.R.; Miller, J.S.; Wagner, J.E. Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced-intensity conditioning. Blood 2003, 102, 1915–1919. [Google Scholar] [CrossRef] [PubMed]
- Brunstein, C.G.; Eapen, M.; Ahn, K.W.; Appelbaum, F.R.; Ballen, K.K.; Champlin, R.E.; Cutler, C.; Kan, F.; Laughlin, M.J.; Soiffer, R.J.; et al. Reduced-intensity conditioning transplantation in acute leukemia: The effect of source of unrelated donor stem cells on outcomes. Blood 2012, 119, 5591–5598. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.; Crotta, A.; Ruggeri, A.; Purtill, D.; Boudjedir, K.; Herr, A.L.; Ionescu, I.; Gluckman, E.; Eurocord Registry. Double cord blood transplantation: Extending the use of unrelated umbilical cord blood cells for patients with hematological diseases. Best Pract. Res. Clin. Haematol. 2010, 23, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.; Ruggeri, A.; Labopin, M.; Niederwieser, D.; Tabrizi, R.; Sanz, G.; Bourhis, J.H.; van Biezen, A.; Koenecke, C.; Blaise, D.; et al. Comparison of Unrelated Cord Blood and Peripheral Blood Stem Cell Transplantation in Adults with Myelodysplastic Syndrome after Reduced-Intensity Conditioning Regimen: A Collaborative Study from Eurocord (Cord blood Committee of Cellular Therapy & Immunobiology Working Party of EBMT) and Chronic Malignancies Working Party. Biol. Blood Marrow Transplant. 2015, 21, 489–495. [Google Scholar] [PubMed]
- Scaradavou, A.; Brunstein, C.G.; Eapen, M.; Le-Rademacher, J.; Barker, J.N.; Chao, N.; Cutler, C.; Delaney, C.; Kan, F.; Isola, L.; et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood 2013, 121, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Kindwall-Keller, T.L.; Hegerfeldt, Y.; Meyerson, H.J.; Margevicius, S.; Fu, P.; van Heeckeren, W.; Lazarus, H.M.; Cooper, B.W.; Gerson, S.L.; Barr, P.; et al. Prospective study of one- vs. two-unit umbilical cord blood transplantation following reduced intensity conditioning in adults with hematological malignancies. Bone Marrow Transplant. 2012, 47, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Newell, L.F.; Milano, F.; Gutman, J.A.; Riffkin, I.; Lopez, M.; Ziegler, D.; Nemecek, E.R.; Delaney, C. Treosulfan-Based Conditioning Is Sufficient to Promote Engraftment in Cord Blood Transplantation. Biol. Blood Marrow Transplant. 2011, 17, S227–S228. [Google Scholar] [CrossRef]
- Ponce, D.M.; Sauter, C.; Devlin, S.; Lubin, M.; Gonzales, A.M.; Kernan, N.A.; Scaradavou, A.; Giralt, S.; Goldberg, J.D.; Koehne, G.; et al. A novel reduced-intensity conditioning regimen induces a high incidence of sustained donor-derived neutrophil and platelet engraftment after double-unit cord blood transplantation. Biol. Blood Marrow Transplant. 2013, 19, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Cutler, C.; Stevenson, K.; Kim, H.T.; Brown, J.; McDonough, S.; Herrera, M.; Reynolds, C.; Liney, D.; Kao, G.; Ho, V.; et al. Double umbilical cord blood transplantation with reduced intensity conditioning and sirolimus-based GVHD prophylaxis. Bone Marrow Transplant. 2011, 46, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Rio, B.; Chevret, S.; Vigouroux, S.; Chevallier, P.; Furst, S.; Sirvent, A.; Bay, J.O.; Socie, G.; Ceballos, P.; Huynh, A.; et al. Reduced Intensity Conditioning Regimen Prior to Unrelated Cord Blood Transplantation in Patients with Acute Myeloid leukemia: Preliminary Analysis of a Prospective Phase II Multicentric Trial on Behalf of Societe Française De Greffe De Moelle Osseuse Et Therapie Cellulaire (SFGM-TC) and Eurocord. Blood (ASH Annu. Meet. Abstr.) 2010, 116, 911. [Google Scholar]
- Wallet, H.L.; Sobh, M.; Morisset, S.; Robin, M.; Fegueux, N.; Furst, S.; Mohty, M.; Deconinck, E.; Fouillard, L.; Bordigoni, P.; et al. Double umbilical cord blood transplantation for hematological malignancies: A long-term analysis from the SFGM-TC registry. Exp. Hematol. 2013, 41, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Rio, B.; Chevret, S.; Vigouroux, S.; Chevallier, P.; Furst, S.; Sirvent, A.; Bay, J.O.; Socié, G.; Ceballos, P.; Huynh, A.; et al. Decreased Nonrelapse Mortality after Unrelated Cord Blood Transplantation for Acute Myeloid Leukemia Using Reduced-Intensity Conditioning: A Prospective Phase II Multicenter Trial. Biol. Blood Marrow Transplant. 2015, 21, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.; Sanz, G.F.; Ionescu, I.; Rio, B.; Sirvent, A.; Renaud, M.; Carreras, E.; Milpied, N.; Mohty, M.; Beguin, Y.; et al. Unrelated cord blood transplantation in adults with myelodysplasia or secondary acute myeloblastic leukemia: A survey on behalf of Eurocord and CLWP of EBMT. Leukemia 2011, 25, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.; Labopin, M.; Ruggeri, A.; Podestà, M.; Caballero, D.; Bonifazi, F.; Montserrat, R.; Gallamini, A.; Fagioli, F.; Socié, G.; et al. Unrelated Cord Blood Transplantation: Comparison After Single Unit Cord Blood Intrabone Injection and Double Unit Cord Blood Transplantation In Patients with Hematological Malignant Disorders. A Eurocord-EBMT Analysis. Blood (ASH Annu. Meet. Abstr.) 2010, 116, 223. [Google Scholar] [CrossRef] [PubMed]
- Verneris, M.R.; Brunstein, C.G.; Barker, J.; MacMillan, M.L.; DeFor, T.; McKenna, D.H.; Burke, M.J.; Blazar, B.R.; Miller, J.S.; McGlave, P.B.; et al. Relapse risk after umbilical cord blood transplantation: Enhanced graft-versus-leukemia effect in recipients of 2 units. Blood 2009, 114, 4293–4299. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; Wagner, J.E.; Sanz, M.A.; DeFor, T.; Montesinos, P.; Bachanova, V.; Lorenzo, I.; Warlick, E.; Sanz, G.F.; Brunstein, C. Myeloablative cord blood transplantation in adults with acute leukemia: Comparison of two different transplant platforms. Biol. Blood Marrow Transplant. 2013, 19, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, A.; Sanz, G.; Bittencourt, H.; Sanz, J.; Rambaldi, A.; Volt, F.; Yakoub-Agha, I.; Ribera, J.M.; Mannone, L.; Sierra, J.; Mohty, M.; et al. Comparison of outcomes after single or double cord blood transplantation in adults with acute leukemia using different types of myeloablative conditioning regimen, a retrospective study on behalf of Eurocord and the Acute Leukemia Working Party of EBMT. Leukemia 2014, 28, 779–786. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, M.L.; Weisdorf, D.J.; Brunstein, C.G.; Cao, Q.; DeFor, T.E.; Verneris, M.R.; Blazar, B.R.; Wagner, J.E. Acute graft-versus-host disease after unrelated donor umbilical cord blood transplantation: Analysis of risk factors. Blood 2009, 113, 2410–2415. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.E., Jr.; Eapen, M.; Carter, S.; Wang, Y.; Schultz, K.R.; Wall, D.A.; Bunin, N.; Delaney, C.; Haut, P.; Margolis, D.; et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N. Engl. J. Med. 2014, 371, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Eapen, M.; Rocha, V.; Sanz, G.; Scaradavou, A.; Zhang, M.J.; Arcese, W.; Sirvent, A.; Champlin, R.E.; Chao, N.; Gee, A.P.; et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: A retrospective analysis. Lancet Oncol. 2010, 11, 653–660. [Google Scholar] [CrossRef]
- Brunstein, C.G.; Gutman, J.A.; Weisdorf, D.J.; Woolfrey, A.E.; Defor, T.E.; Gooley, T.A.; Verneris, M.R.; Appelbaum, F.R.; Wagner, J.E.; Delaney, C. Allogeneic hematopoietic cell transplantation for hematologic malignancy: Relative risks and benefits of double umbilical cord blood. Blood 2010, 116, 4693–4699. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, M.J.; Eapen, M.; Rubinstein, P.; Wagner, J.E.; Zhang, M.J.; Champlin, R.E.; Stevens, C.; Barker, J.N.; Gale, R.P.; Lazarus, H.M.; et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N. Engl. J. Med. 2004, 351, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.; Labopin, M.; Sanz, G.; Arcese, W.; Schwerdtfeger, R.; Bosi, A.; Jacobsen, N.; Ruutu, T.; de Lima, M.; Finke, J.; et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N. Engl. J. Med. 2004, 351, 2276–2285. [Google Scholar] [CrossRef] [PubMed]
- Gutman, J.A.; Leisenring, W.; Appelbaum, F.R.; Woolfrey, A.E.; Delaney, C. Low relapse without excessive transplant-related mortality following myeloablative cord blood transplantation for acute leukemia in complete remission: A matched cohort analysis. Biol. Blood Marrow Transplant. 2009, 15, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Majhail, N.S.; Brunstein, C.G.; Tomblyn, M.; Thomas, A.J.; Miller, J.S.; Arora, M.; Kaufman, D.S.; Burns, L.J.; Slungaard, A.; McGlave, P.B.; et al. Reduced-intensity allogeneic transplant in patients older than 55 years: Unrelated umbilical cord blood is safe and effective for patients without a matched related donor. Biol. Blood Marrow Transplant. 2008, 14, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Majhail, N.S.; Brunstein, C.G.; Shanley, R.; Sandhu, K.; McClune, B.; Oran, B.; Warlick, E.D.; Wagner, J.E.; Weisdorf, D.J. Reduced-intensity hematopoietic cell transplantation in older patients with AML/MDS: Umbilical cord blood is a feasible option for patients without HLA-matched sibling donors. Bone Marrow Transplant. 2012, 47, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.B.; Aldridge, J.; Kim, H.T.; Ballen, K.K.; Cutler, C.; Kao, G.; Liney, D.; Bourdeau, G.; Alyea, E.P.; Armand, P.; et al. Reduced-intensity conditioning stem cell transplantation: Comparison of double umbilical cord blood and unrelated donor grafts. Biol. Blood Marrow Transplant. 2012, 18, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Le Bourgeois, A.; Mohr, C.; Guillaume, T.; Delaunay, J.; Malard, F.; Loirat, M.; Peterlin, P.; Blin, N.; Dubruille, V.; Mahe, B.; et al. Comparison of outcomes after two standards-of-care reduced-intensity conditioning regimens and two different graft sources for allogeneic stem cell transplantation in adults with hematologic diseases: A single-center analysis. Biol. Blood Marrow Transplant. 2013, 19, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Weisdorf, D.; Eapen, M.; Ruggeri, A.; Zhang, M.J.; Zhong, X.; Brunstein, C.; Ustun, C.; Rocha, V.; Gluckman, E. Alternative donor transplantation for older patients with acute myeloid leukemia in first complete remission: A center for international blood and marrow transplant research-eurocord analysis. Biol. Blood Marrow Transplant. 2014, 20, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Malard, F.; Milpied, N.; Blaise, D.; Chevallier, P.; Michallet, M.; Lioure, B.; Clément, L.; Hicheri, Y.; Cordonnier, C.; Huynh, A.; et al. Effect of graft source on unrelated donor hemopoietic stem cell transplantation in adults with acute myeloid leukaemia after reduced intensity or non-myeloablative conditioning: A study from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Biol. Blood Marrow Transplant. 2015, 21, 1059–1067. [Google Scholar] [PubMed]
- Ponce, D.M.; Zheng, J.; Gonzales, A.M.; Lubin, M.; Heller, G.; Castro-Malaspina, H.; Giralt, S.; Hsu, K.; Jakubowski, A.A.; Jenq, R.R. Reduced late mortality risk contributes to similar survival after double-unit cord blood transplantation compared with related and unrelated donor hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2011, 17, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Atsuta, Y.; Suzuki, R.; Nagamura-Inoue, T.; Taniguchi, S.; Takahashi, S.; Kai, S.; Sakamaki, H.; Kouzai, Y.; Kasai, M.; Fukuda, T.; et al. Disease-specific analyses of unrelated cord blood transplantation compared with unrelated bone marrow transplantation in adult patients with acute leukemia. Blood 2009, 113, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, F.R.; Anasetti, C.; Antin, J.H.; Atkins, H.; Davies, S.; Devine, S.; Giralt, S.; Heslop, H.; Laport, G.; Lee, S.J.; et al. Blood and marrow transplant clinical trials network state of the Science Symposium 2014. Biol. Blood Marrow Transplant. 2015, 21, 202–224. [Google Scholar] [CrossRef] [PubMed]
- Powles, R.L.; Morgenstern, G.R.; Kay, H.E.; McElwain, T.J.; Clink, H.M.; Dady, P.J.; Barrett, A.; Jameson, B.; Depledge, M.H.; Watson, J.G.; et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet 1983, 1, 612–615. [Google Scholar] [CrossRef]
- Szydlo, R.; Goldman, J.M.; Klein, J.P.; Gale, R.P.; Ash, R.C.; Bach, F.H.; Bradley, B.A.; Casper, J.T.; Flomenberg, N.; Gajewski, J.L.; et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J. Clin. Oncol. 1997, 15, 1767–1777. [Google Scholar] [PubMed]
- Beatty, P.G.; Clift, R.A.; Mickelson, E.M.; Nisperos, B.B.; Flournoy, N.; Martin, P.J.; Sanders, J.E.; Stewart, P.; Buckner, C.D.; Storb, R. Marrow transplantation from related donors other than HLA-identical siblings. N. Engl. J. Med. 1985, 313, 765–771. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, R.J.; Keever, C.; Kernan, N.A.; Brochstein, J.; Collins, N.; Flomenberg, N.; Laver, J.; Emanuel, D.; Dupont, B.; Cunningham, I.; et al. HLA nonidentical T cell depleted marrow transplants: A comparison of results in patients treated for leukemia and severe combined immunodeficiency disease. Transplant. Proc. 1987, 19 (6 Suppl. 7), 55–60. [Google Scholar] [PubMed]
- Ash, R.C.; Horowitz, M.M.; Gale, R.P.; van Bekkum, D.W.; Casper, J.T.; Gordon-Smith, E.C.; Henslee, P.J.; Kolb, H.J.; Lowenberg, B.; Masaoka, T. Bone marrow transplantation from related donors other than HLA-identical siblings: Effect of T cell depletion. Bone Marrow Transplant. 1991, 7, 443–452. [Google Scholar] [PubMed]
- Munchel, A.; Kesserwan, C.; Symons, H.J.; Luznik, L.; Kasamon, Y.L.; Jones, R.J.; Fuchs, E.J. Nonmyeloablative, HLA-haploidentical bone marrow transplantation with high dose, post-transplantation cyclophosphamide. Pediatr. Rep. 2011, 3 (Suppl. 2), e15. [Google Scholar] [CrossRef] [PubMed]
- Ciurea, S.O.; Zhang, M.J.; Bacigalupo, A.; Bashey, A.; Appelbaum, F.R.; Antin, J.H.; Chen, J.; Devine, S.M.; Fowler, D.H.; Nakamura, R.; et al. Survival after T-Cell Replete Haplo-Identical Related Donor Transplant Using Post-Transplant Cyclophosphamide Compared with Matched Unrelated Donor Transplant for Acute Myeloid Leukemia. Blood (ASH Annu. Meet. Abstr.) 2014, 124, 679. [Google Scholar]
- Luznik, L.; Fuchs, E.J. High-dose, post-transplantation cyclophosphamide to promote graft-host tolerance after allogeneic hematopoietic stem cell transplantation. Immunol. Res. 2010, 47, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Raiola, A.M.; Dominietto, A.; di Grazia, C.; Lamparelli, T.; Gualandi, F.; Ibatici, A.; Bregante, S.; Van Lint, M.T.; Varaldo, R.; Ghiso, A.; et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol. Blood Marrow Transplant. 2014, 20, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Perruccio, K.; Tosti, A.; Burchielli, E.; Topini, F.; Ruggeri, L.; Carotti, A.; Capanni, M.; Urbani, E.; Mancusi, A.; Aversa, F.; et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 2005, 106, 4397–4406. [Google Scholar] [CrossRef] [PubMed]
- Feuchtinger, T.; Opherk, K.; Bethge, W.A.; Topp, M.S.; Schuster, F.R.; Weissinger, E.M.; Mohty, M.; Or, R.; Maschan, M.; Schumm, M.; et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 2010, 116, 4360–4367. [Google Scholar] [CrossRef] [PubMed]
- Comoli, P.; Basso, S.; Zecca, M.; Pagliara, D.; Baldanti, F.; Bernardo, M.E.; Barberi, W.; Moretta, A.; Labirio, M.; Paulli, M.; et al. Preemptive therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am. J. Transplant. 2007, 7, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Comoli, P.; Schilham, M.W.; Basso, S.; van Vreeswijk, T.; Bernardo, M.E.; Maccario, R.; van Tol, M.J.; Locatelli, F.; Veltrop-Duits, L.A. T-cell lines specific for peptides of adenovirus hexon protein and devoid of alloreactivity against recipient cells can be obtained from HLA-haploidentical donors. J. Immunother. 2008, 31, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Leen, A.M.; Christin, A.; Myers, G.D.; Liu, H.; Cruz, C.R.; Hanley, P.J.; Kennedy-Nasser, A.A.; Leung, K.S.; Gee, A.P.; Krance, R.A.; et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood 2009, 114, 4283–4292. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, F.; Bonini, C.; Stanghellini, M.T.; Bondanza, A.; Traversari, C.; Salomoni, M.; Turchetto, L.; Colombi, S.; Bernardi, M.; Peccatori, J.; et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): A non-randomised phase I-II study. Lancet Oncol. 2009, 10, 489–500. [Google Scholar] [CrossRef]
- Vago, L.; Oliveira, G.; Bondanza, A.; Noviello, M.; Soldati, C.; Ghio, D.; Brigida, I.; Greco, R.; Lupo Stanghellini, M.T.; Peccatori, J.; et al. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation. Blood 2012, 120, 1820–1830. [Google Scholar] [CrossRef] [PubMed]
- Di Stasi, A.; Tey, S.K.; Dotti, G.; Fujita, Y.; Kennedy-Nasser, A.; Martinez, C.; Straathof, K.; Liu, E.; Durett, A.G.; Grilley, B.; et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 2011, 365, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Shashidhar, S.; Chang, D.S.; Ho, L.; Kambham, N.; Bachmann, M.; Brown, J.M.; Negrin, R.S. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood 2008, 111, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Di Ianni, M.; Falzetti, F.; Carotti, A.; Terenzi, A.; Castellino, F.; Bonifacio, E.; Del Papa, B.; Zei, T.; Ostini, R.I.; Cecchini, D.; et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 2011, 117, 3921–3928. [Google Scholar] [CrossRef] [PubMed]
- Martelli, M.F.; Di Ianni, M.; Ruggeri, L.; Falzetti, F.; Carotti, A.; Terenzi, A.; Pierini, A.; Massei, M.S.; Amico, L.; Urbani, E.; et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood 2014, 124, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Mielke, S.; Nunes, R.; Rezvani, K.; Fellowes, V.S.; Venne, A.; Solomon, S.R.; Fan, Y.; Gostick, E.; Price, D.A.; Scotto, C.; et al. A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood 2008, 111, 4392–4402. [Google Scholar] [CrossRef] [PubMed]
- Bastien, J.P.; Krosl, G.; Therien, C.; Rashkovan, M.; Scotto, C.; Cohen, S.; Allan, D.S.; Hogge, D.; Egeler, R.M.; Perreault, C.; et al. Photodepletion differentially affects CD4+ Tregs versus CD4+ effector T cells from patients with chronic graft-versus-host disease. Blood 2010, 116, 4859–4869. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, K.J.; Cunningham, A.J. A new analysis of allogeneic interactions. Aust. J. Exp. Biol. Med. Sci. 1975, 53, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Guinan, E.C.; Boussiotis, V.A.; Neuberg, D.; Brennan, L.L.; Hirano, N.; Nadler, L.M.; Fan, Y.; Gostick, E.; Price, D.A.; Scotto, C.; et al. Transplantation of anergic histoincompatible bone marrow allografts. N. Engl. J. Med. 1999, 340, 1704–1714. [Google Scholar] [CrossRef] [PubMed]
- Federmann, B.; Bornhauser, M.; Meisner, C.; Kordelas, L.; Beelen, D.W.; Stuhler, G.; Stelljes, M.; Schwerdtfeger, R.; Christopeit, M.; Behre, G.; et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: A phase II study. Haematologica 2012, 97, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Godder, K.T.; Henslee-Downey, P.J.; Mehta, J.; Park, B.S.; Chiang, K.Y.; Abhyankar, S.; Lamb, L.S. Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant. 2007, 39, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Federmann, B.; Hagele, M.; Pfeiffer, M.; Wirths, S.; Schumm, M.; Faul, C.; Vogel, W.; Handgretinger, R.; Kanz, L.; Bethge, W.A. Immune reconstitution after haploidentical hematopoietic cell transplantation: Impact of reduced intensity conditioning and CD3/CD19 depleted grafts. Leukemia 2011, 25, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Bauquet, A.; Palumbo, G.; Moretta, F.; Bertaina, A. Negative depletion of alpha/beta+ T cells and of CD19+ B lymphocytes: A novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol. Lett. 2013, 155, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Ciurea, S.O.; Mulanovich, V.; Saliba, R.M.; Bayraktar, U.D.; Jiang, Y.; Bassett, R.; Wang, S.A.; Konopleva, M.; Fernandez-Vina, M.; Montes, N.; et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2012, 18, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Raiola, A.M.; Dominietto, A.; Ghiso, A.; Di Grazia, C.; Lamparelli, T.; Gualandi, F.; Bregante, S.; Van Lint, M.T.; Geroldi, S.; Luchetti, S.; et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol. Blood Marrow Transplant. 2013, 19, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.R.; Sizemore, C.A.; Sanacore, M.; Zhang, X.; Brown, S.; Holland, H.K.; Morris, L.E.; Bashey, A. Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: Results of a prospective phase II trial. Biol. Blood Marrow Transplant. 2012, 18, 1859–1866. [Google Scholar] [PubMed]
- Chang, Y.J.; Xu, L.P.; Liu, D.H.; Liu, K.Y.; Han, W.; Chen, Y.H.; Wang, Y.; Chen, H.; Wang, J.Z.; Zhang, X.H.; et al. The impact of CD34+ cell dose on platelet engraftment in pediatric patients following unmanipulated haploidentical blood and marrow transplantation. Pediatr. Blood Cancer 2009, 53, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, F.; Labopin, M.; Aversa, F.; Rowe, J.M.; Bunjes, D.; Lewalle, P.; Nagler, A.; Di Bartolomeo, P.; Lacerda, J.F.; Lupo Stanghellini, M.T.; et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: A risk factor analysis of outcomes for patients in remission at transplantation. Blood 2008, 112, 3574–3581. [Google Scholar] [CrossRef] [PubMed]
- Aversa, F.; Terenzi, A.; Tabilio, A.; Falzetti, F.; Carotti, A.; Ballanti, S.; Falcinelli, F.; Velardi, A.; Ruggeri, L.; Aloisi, T.; et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: A phase II study in patients with acute leukemia at high risk of relapse. J. Clin. Oncol. 2005, 23, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Luznik, L.; O’Donnell, P.V.; Symons, H.J.; Chen, A.R.; Leffell, M.S.; Zahurak, M.; Gooley, T.A.; Piantadosi, S.; Kaup, M.; Ambinder, R.F.; et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2008, 14, 641–650. [Google Scholar] [CrossRef] [PubMed]
- El-Cheikh, J.; Crocchiolo, R.; Furst, S.; Bramanti, S.; Sarina, B.; Granata, A.; Vai, A.; Lemarie, C.; Faucher, C.; Mohty, B.; et al. Unrelated cord blood compared with haploidentical grafts in patients with hematological malignancies. Cancer 2015, 121, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, A.; Labopin, M.; Sanz, G.; Piemontese, S.; Arcese, W.; Bacigalupo, A.; Blaise, D.; Bosi, A.; Huang, H.; Karakasis, D.; et al. Comparison of outcomes after unrelated cord blood and unmanipulated haploidentical stem cell transplantation in adults with acute leukemia. Leukemia 2015. [Google Scholar] [CrossRef]
- Grosso, D.; Gaballa, S.; Alpdogan, O.; Carabasi, M.; Filicko-O’Hara, J.; Kasner, M.; Martinez-Outschoorn, U.; Wagner, J.L.; O’Hara, W.; Rudolph, S.; et al. A Two-Step Approach to Myeloablative Haploidentical Transplantation: Low Nonrelapse Mortality and High Survival Confirmed in Patients with Earlier Stage Disease. Biol. Blood Marrow Transplant. 2015, 21, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.J.; Liu, D.H.; Liu, K.Y.; Xu, L.P.; Chen, H.; Han, W.; Chen, Y.H.; Wang, J.Z.; Gao, Z.Y.; Zhang, Y.C.; et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant. 2006, 38, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.P.; Dong, L.; Wu, T.; Huang, X.J.; Zhang, M.J.; Han, W.; Chen, H.; Liu, D.H.; Gao, Z.Y.; Chen, Y.H.; et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood 2006, 107, 3065–3073. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.J.; Liu, D.H.; Liu, K.Y.; Xu, L.P.; Chen, H.; Han, W.; Chen, Y.H.; Zhang, X.H.; Lu, D.P. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol. Blood Marrow Transplant. 2009, 15, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xiao, H.; Lai, X.; Shi, J.; Tan, Y.; He, J.; Xie, W.; Zheng, W.; Zhu, Y.; Ye, X.; et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HSCT. Blood 2014, 124, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Xu, L.; Liu, D.; Liu, K.; Zhang, X.; Chen, H.; Chen, Y.; Han, W.; Wang, Y.; Wang, J.; et al. Total body irradiation and cyclophosphamide plus antithymocyte globulin regimen is well tolerated and promotes stable engraftment as a preparative regimen before T cell-replete haploidentical transplantation for acute leukemia. Biol. Blood Marrow Transplant. 2014, 20, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wen, Q.; Chen, X.; Liu, Y.; Zhang, C.; Gao, L.; Kong, P.; Zhang, Y.; Li, Y.; Liu, J.; et al. Effects of priming with recombinant human granulocyte colony-stimulating factor on conditioning regimen for high-risk acute myeloid leukemia patients undergoing human leukocyte antigen-haploidentical hematopoietic stem cell transplantation: A multicenter randomized controlled study in southwest China. Biol. Blood Marrow Transplant. 2014, 20, 1932–1939. [Google Scholar] [PubMed]
- Di Bartolomeo, P.; Santarone, S.; De Angelis, G.; Picardi, A.; Cudillo, L.; Cerretti, R.; Adorno, G.; Angelini, S.; Andreani, M.; De Felice, L.; et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood 2013, 121, 849–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peccatori, J.; Forcina, A.; Clerici, D.; Crocchiolo, R.; Vago, L.; Stanghellini, M.T.; Noviello, M.; Messina, C.; Crotta, A.; Assanelli, A.; et al. Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors. Leukemia 2015, 29, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, F.; Bregni, M.; Peccatori, J. Innovative platforms for haploidentical stem cell transplantation: The role of unmanipulated donor graft. J. Cancer 2011, 2, 339–340. [Google Scholar] [CrossRef] [PubMed]
- Pidala, J.; Lee, S.J.; Ahn, K.W.; Spellman, S.; Wang, H.L.; Aljurf, M.; Askar, M.; Dehn, J.; Fernandez Viña, M.; Gratwohl, A.; et al. Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation. Blood 2014, 124, 2596–2606. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejanyan, N.; Haddad, H.; Brunstein, C. Alternative Donor Transplantation for Acute Myeloid Leukemia. J. Clin. Med. 2015, 4, 1240-1268. https://doi.org/10.3390/jcm4061240
Bejanyan N, Haddad H, Brunstein C. Alternative Donor Transplantation for Acute Myeloid Leukemia. Journal of Clinical Medicine. 2015; 4(6):1240-1268. https://doi.org/10.3390/jcm4061240
Chicago/Turabian StyleBejanyan, Nelli, Housam Haddad, and Claudio Brunstein. 2015. "Alternative Donor Transplantation for Acute Myeloid Leukemia" Journal of Clinical Medicine 4, no. 6: 1240-1268. https://doi.org/10.3390/jcm4061240
APA StyleBejanyan, N., Haddad, H., & Brunstein, C. (2015). Alternative Donor Transplantation for Acute Myeloid Leukemia. Journal of Clinical Medicine, 4(6), 1240-1268. https://doi.org/10.3390/jcm4061240