Emerging and Novel Treatments for Pituitary Tumors
Abstract
:1. Introduction
2. Temozolomide (TMZ)
3. Tyrosine Kinase (TK) Inhibitors
4. VEGF-Targeted Therapy
5. mTOR Inhibitors
6. Immune Checkpoint Inhibitors
7. Peptide Receptor Radionuclide Therapy (PRRT)
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raverot, G.; Burman, P.; McCormack, A.; Heaney, A.; Petersenn, S.; Popovic, V.; Trouillas, J.; Dekkers, O.M.; The European Society of Endocrinology. European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur. J. Endocrinol. 2018, 178, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L.; Casar-Borota, O.; Chanson, P.; Delgrange, E.; Earls, P.; Ezzat, S.; Grossman, A.; Ikeda, H.; Inoshita, N.; Karavitaki, N.; et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): An International Pituitary Pathology Club proposal. Endocr. Relat. Cancer 2017, 24, 5–8. [Google Scholar] [CrossRef] [PubMed]
- McCormack, A.; Dekkers, O.M.; Petersenn, S.; Popovic, V.; Trouillas, J.; Raverot, G.; Burman, P.; ESE survey collaborators. Treatment of aggressive pituitary tumours and carcinomas: Results of a European Society of Endocrinology (ESE) survey 2016. Eur. J. Endocrinol. 2018, 178, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Lasolle, H.; Cortet, C.; Castinetti, F.; Cloix, L.; Caron, P.; Delemer, B.; Desailloud, R.; Jublanc, C.; Lebrun-Frenay, C.; Sadoul, J.-L.; et al. Temozolomide treatment can improve overall survival in aggressive pituitary tumors and pituitary carcinomas. Eur. J. Endocrinol. 2017, 176, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Vogel, R.I.; Lou, E. Temozolomide treatment of pituitary carcinomas and atypical adenomas: Systematic review of case reports. Neuro Oncol. Pract. 2016, 3, 188–195. [Google Scholar] [CrossRef]
- Syro, L.V.; Rotondo, F.; Camargo, M.; Ortiz, L.D.; Serna, C.A.; Kovacs, K. Temozolomide and Pituitary Tumors: Current Understanding, Unresolved Issues, and Future Directions. Front. Endocrinol. 2018, 9, 318. [Google Scholar] [CrossRef]
- Bengtsson, D.; Schrøder, H.D.; Berinder, K.; Maiter, D.; Hoybye, C.; Ragnarsson, O.; Feldt-Rasmussen, U.; Krogh Rasmussen, Å.; van der Lely, A.; Petersson, M.; et al. Tumoral MGMT content predicts survival in patients with aggressive pituitary tumors and pituitary carcinomas given treatment with temozolomide. Endocrine 2018, 62, 737–739. [Google Scholar] [CrossRef]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 36. [Google Scholar] [CrossRef]
- Ben-Shlomo, A.; Cooper, O. Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: From bench to bedside. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 301–305. [Google Scholar] [CrossRef]
- Cooper, O.; Mamelak, A.; Bannykh, S.; Carmichael, J.; Bonert, V.; Lim, S.; Cook-Wiens, G.; Ben-Shlomo, A. Prolactinoma ErbB receptor expression and targeted therapy for aggressive tumors. Endocrine 2014, 46, 318–327. [Google Scholar] [CrossRef]
- Cooper, O.; Vlotides, G.; Fukuoka, H.; Greene, M.I.; Melmed, S. Expression and function of ErbB receptors and ligands in the pituitary. Endocr. Relat. Cancer 2011, 18, R197–R211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuoka, H.; Cooper, O.; Ben-Shlomo, A.; Mamelak, A.; Ren, S.G.; Bruyette, D.; Melmed, S. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J. Clin. Investig. 2011, 121, 4712–4721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuoka, H.; Cooper, O.; Mizutani, J.; Tong, Y.; Ren, S.G.; Bannykh, S.; Melmed, S. HER2/ErbB2 Receptor Signaling in Rat and Human Prolactinoma Cells: Strategy for Targeted Prolactinoma Therapy. Mol. Endocrinol. 2011, 25, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Kano, M.; Araki, T.; Cooper, O.; Fukuoka, H.; Tone, Y.; Tone, M.; Melmed, S. ErbB Receptor-Driven Prolactinomas Respond to Targeted Lapatinib Treatment in Female Transgenic Mice. Endocrinology 2015, 156, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlotides, G.; Siegel, E.; Donangelo, I.; Gutman, S.; Ren, S.G.; Melmed, S. Rat Prolactinoma Cell Growth Regulation by Epidermal Growth Factor Receptor Ligands. Cancer Res. 2008, 68, 6377–6386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, O.; Bonert, V.; Rudnick, J.; Pressman, B.; Melmed, S. SUN-442 EGFR/ErbB2 Targeted Therapy for Aggressive Prolactinomas. J. Endocr. Soc. 2019, 3, 442. [Google Scholar] [CrossRef]
- Widakowich, C.; de Castro, G.; de Azambuja, E.; Dinh, P.; Awada, A. Review: Side Effects of Approved Molecular Targeted Therapies in Solid Cancers. Oncologist 2007, 12, 1443–1455. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, J.; Haap, M.; Kopp, H.G.; Lipp, H.-P. Tyrosine Kinase Inhibitors–A Review on Pharmacology, Metabolism and Side Effects. Curr. Drug Metab. 2009, 10, 470–481. [Google Scholar] [CrossRef]
- Ye, L.; Santarpia, L.; Gagel, R.F. The Evolving Field of Tyrosine Kinase Inhibitors in the Treatment of Endocrine Tumors. Endocr. Rev. 2010, 31, 578–599. [Google Scholar] [CrossRef]
- De Sousa, S.M.C.; McCormack, A. Aggressive Pituitary Tumors and Pituitary Carcinomas. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000–2018. [Google Scholar]
- Principe, M.; Chanal, M.; Karam, V.; Wierinckx, A.; Mikaélian, I.; Gadet, R.; Auger, C.; Raverot, V.; Jouanneau, E.; Vasiljevic, A.; et al. ALK7 expression in prolactinoma is associated with reduced prolactin and increased proliferation. Endocr. Relat. Cancer 2018, 25, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.V.; Scheithauer, B.W.; Kuroki, T.; Vidal, S.; Kovacs, K.; Stefaneanu, L. Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr. Pathol. 1999, 10, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Tohti, M.; Hu, Y.; Wang, S.; Li, W.; Lu, Z.; Ma, C. The expression profile of Dopamine D2 receptor, MGMT and VEGF in different histological subtypes of pituitary adenomas: A study of 197 cases and indications for the medical therapy. J. Exp. Clin. Cancer Res. 2014, 33, 56. [Google Scholar] [CrossRef] [PubMed]
- Kurowska, M.; Nowakowski, A.; Zieliński, G.; Malicka, J.; Tarach, J.S.; Maksymowicz, M.; Denew, P. Temozolomide-Induced Shrinkage of Invasive Pituitary Adenoma in Patient with Nelson’s Syndrome: A Case Report and Review of the Literature. Case Rep. Endocrinol. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.D.; Syro, L.V.; Scheithauer, B.W.; Ersen, A.; Uribe, H.; Fadul, C.E.; Rotondo, F.; Horvath, E.; Kovacs, K. Anti-VEGF therapy in pituitary carcinoma. Pituitary 2012, 15, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Rotman, L.E.; Vaughan, T.B.; Hackney, J.R.; Riley, K.O. Long-Term Survival After Transformation of an Adrenocorticotropic Hormone–Secreting Pituitary Macroadenoma to a Silent Corticotroph Pituitary Carcinoma. World Neurosurg. 2019, 122, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Touma, W.; Hoostal, S.; Peterson, R.A.; Wiernik, A.; SantaCruz, K.S.; Lou, E. Successful treatment of pituitary carcinoma with concurrent radiation, temozolomide, and bevacizumab after resection. J. Clin. Neurosci. 2017, 41, 75–77. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, L.M.; Greally, M.; Coleman, N.; Breathnach, O.S.; Hennessy, B.; Thompson, C.J.; Grogan, W. Metastatic ACTH-producing pituitary carcinoma managed with combination pasireotide and bevacizumab following failure of temozolamide therapy: A case report. J. Clin. Oncol. 2013, 31, e13022. [Google Scholar] [CrossRef]
- Gordon, M.S.; Cunningham, D. Managing Patients Treated with Bevacizumab Combination Therapy. Oncology 2005, 69, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kapelakis, I.; Toutouzas, K.; Drakopoulou, M.; Michelongona, A.; Zagouri, F.; Mpamias, A.; Pliatsika, P.; Dimopoulos, M.-A.; Stefanadis, C.; Tousoulis, D. Bevacizumab increases the incidence of cardiovascular events in patients with metastatic breast or colorectal cancer. Hell. J. Cardiol. 2017, 58, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Chauvet, N.; Romanò, N.; Lafont, C.; Guillou, A.; Galibert, E.; Bonnefont, X.; Le Tissier, P.; Fedele, M.; Fusco, A.; Mollard, P.; et al. Complementary actions of dopamine D2 receptor agonist and anti-vegf therapy on tumoral vessel normalization in a transgenic mouse model: Tumoral vessel normalization by dopamine and Vegf blockade. Int. J. Cancer 2017, 140, 2150–2161. [Google Scholar] [CrossRef]
- Luque, G.M.; Perez-Millan, M.I.; Ornstein, A.M.; Cristina, C.; Becu-Villalobos, D. Inhibitory Effects of Antivascular Endothelial Growth Factor Strategies in Experimental Dopamine-Resistant Prolactinomas. J. Pharmacol. Exp. Ther. 2011, 337, 766–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zatelli, M.C.; Piccin, D.; Vignali, C.; Tagliati, F.; Ambrosio, M.R.; Bondanelli, M.; Cimino, V.; Bianchi, A.; Schmid, H.A.; Scanarini, M.; et al. Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr. Relat. Cancer 2007, 14, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Dworakowska, D.; Grossman, A.B. The pathophysiology of pituitary adenomas. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Musat, M. Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr. Relat. Cancer 2005, 12, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajjad, E.A.; Zieliński, G.; Maksymowicz, M.; Hutnik, Ł.; Bednarczuk, T.; Włodarski, P. mTOR is Frequently Active in GH-Secreting Pituitary Adenomas without Influencing their Morphopathological Features. Endocr. Pathol. 2013, 24, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Monsalves, E.; Juraschka, K.; Tateno, T.; Agnihotri, S.; Asa, S.L.; Ezzat, S.; Zadeh, G. The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr. Relat. Cancer 2014, 21, R331–R344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorshtein, A.; Rubinfeld, H.; Kendler, E.; Theodoropoulou, M.; Cerovac, V.; Stalla, G.K.; Cohen, Z.R.; Hadani, M.; Shimon, I. Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr. Relat. Cancer 2009, 16, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Wiedemann, T.; Gross, C.; Leinhauser, I.; Roncaroli, F.; Braren, R.; Pellegata, N.S. Targeting PI3K/mTOR Signaling Displays Potent Antitumor Efficacy against Nonfunctioning Pituitary Adenomas. Clin. Cancer Res. 2015, 21, 3204–3215. [Google Scholar] [CrossRef] [Green Version]
- Chanal, M.; Chevallier, P.; Raverot, V.; Fonteneau, G.; Lucia, K.; Monteserin Garcia, J.L.; Rachwan, A.; Jouanneau, E.; Trouillas, J.; Honnorat, J.; et al. Differential Effects of PI3K and Dual PI3K/mTOR Inhibition in Rat Prolactin-Secreting Pituitary Tumors. Mol. Cancer Ther. 2016, 15, 1261–1270. [Google Scholar] [CrossRef] [Green Version]
- Pivonello, C.; Patalano, R.; Solari, D.; Auriemma, R.S.; Frio, F.; Vitulli, F.; Grasso, L.F.S.; Di Cera, M.; De Martino, M.C.; Cavallo, L.M.; et al. Effect of combined treatment with a pan-PI3K inhibitor or an isoform-specific PI3K inhibitor and everolimus on cell proliferation in GH-secreting pituitary tumour in an experimental setting. Endocrine 2018, 62, 663–680. [Google Scholar] [CrossRef]
- Jouanneau, E.; Wierinckx, A.; Ducray, F.; Favrel, V.; Borson-Chazot, F.; Honnorat, J.; Trouillas, J.; Raverot, G. New targeted therapies in pituitary carcinoma resistant to temozolomide. Pituitary 2012, 15, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Donovan, L.E.; Arnal, A.V.; Wang, S.-H.; Odia, Y. Widely metastatic atypical pituitary adenoma with mTOR pathway STK11(F298L) mutation treated with everolimus therapy. CNS Oncol. 2016, 5, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Way, J.S.; Zhang, X.; Sergey, M.; Bergsneider, M.; Wang, M.B.; Yong, W.H.; Heaney, A.P. Effect of Everolimus in Treatment of Aggressive Prolactin-Secreting Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2019, 104, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Zatelli, M.C.; Minoia, M.; Filieri, C.; Tagliati, F.; Buratto, M.; Ambrosio, M.R.; Lapparelli, M.; Scanarini, M.; degli Uberti, E.C. Effect of Everolimus on Cell Viability in Nonfunctioning Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2010, 95, 968–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerovac, V.; Monteserin-Garcia, J.; Rubinfeld, H.; Buchfelder, M.; Losa, M.; Florio, T.; Paez-Pereda, M.; Stalla, G.K.; Theodoropoulou, M. The Somatostatin Analogue Octreotide Confers Sensitivity to Rapamycin Treatment on Pituitary Tumor Cells. Cancer Res. 2010, 70, 666–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paplomata, E.; Zelnak, A.; O’Regan, R. Everolimus: Side effect profile and management of toxicities in breast cancer. Breast Cancer Res. Treat. 2013, 140, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Yim, K.-L. Everolimus and mTOR inhibition in pancreatic neuroendocrine tumors. Cancer Manag. Res. 2012, 4, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Zhang, B.; Liu, X.; Ma, S.; Yang, Y.; Yao, Y.; Feng, M.; Bao, X.; Li, G.; Wang, J.; et al. Inhibition of PI3K/AKT/mTOR Pathway Enhances Temozolomide-Induced Cytotoxicity in Pituitary Adenoma Cell Lines in Vitro and Xenografted Pituitary Adenoma in Female Nude Mice. Endocrinology 2013, 154, 1247–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Wang, T.; Yang, Y.; Yao, K.; Li, Z.; Li, Y.M.; Yan, C.X. The expression profile of PD-L1 and CD8+ lymphocyte in pituitary adenomas indicating for immunotherapy. J. Neuro Oncol. 2018, 139, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Bi, W.L.; Greenwald, N.F.; Du, Z.; Agar, N.Y.R.; Kaiser, U.B.; Woodmansee, W.W.; Reardon, D.A.; Freeman, G.J.; Fecci, P.E.; et al. Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 2016, 7, 76565–76576. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-Q.; Adam, B.; Jack, A.S.; Lam, A.; Broad, R.W.; Chik, C.L. Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocr. Pathol. 2015, 26, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A. Managing Immune Checkpoint-Blocking Antibody Side Effects. Am. Soc. Clin. Oncol. Educ. Book 2015, 2015, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Castinetti, F.; Albarel, F.; Archambeaud, F.; Bertherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; et al. French Endocrine Society Guidance on endocrine side effects of immunotherapy. Endocr. Relat. Cancer 2019, G1–G18. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.L.; Jonsson, P.; Tabar, V.; Yang, T.J.; Cuaron, J.; Beal, K.; Cohen, M.; Postow, M.; Rosenblum, M.; Shia, J.; et al. Marked Response of a Hypermutated ACTH-Secreting Pituitary Carcinoma to Ipilimumab and Nivolumab. J. Clin. Endocrinol. Metab. 2018, 103, 3925–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.-X. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Even-Zohar, N.; Greenman, Y. Management of NFAs: Medical treatment. Pituitary 2018, 21, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Chinezu, L.; Vasiljevic, A.; Jouanneau, E.; François, P.; Borda, A.; Trouillas, J.; Raverot, G. Expression of somatostatin receptors, SSTR2A and SSTR5, in 108 endocrine pituitary tumors using immunohistochemical detection with new specific monoclonal antibodies. Hum. Pathol. 2014, 45, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhu, Z.; Zhong, D.; Ma, W.; Wang, R. Improvement in Diagnosis of Metastatic Pituitary Carcinoma by 68Ga DOTATATE PET/CT. Clin. Nucl. Med. 2015, 40, 129–131. [Google Scholar] [CrossRef]
- Kovács, G.L.; Góth, M.; Rotondo, F.; Scheithauer, B.W.; Carlsen, E.; Saadia, A.; Hubina, E.; Kovács, L.; Szabolcs, I.; Nagy, P.; et al. ACTH-secreting Crooke cell carcinoma of the pituitary. Eur. J. Clin. Investig. 2013, 43, 20–26. [Google Scholar] [CrossRef]
- Komor, J.; Reubi, J.C.; Christ, E.R. Peptide receptor radionuclide therapy in a patient with disabling non-functioning pituitary adenoma. Pituitary 2014, 17, 227–231. [Google Scholar] [CrossRef]
- Maclean, J.; Aldridge, M.; Bomanji, J.; Short, S.; Fersht, N. Peptide receptor radionuclide therapy for aggressive atypical pituitary adenoma/carcinoma: Variable clinical response in preliminary evaluation. Pituitary 2014, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, D.; Schrøder, H.D.; Andersen, M.; Maiter, D.; Berinder, K.; Feldt Rasmussen, U.; Rasmussen, Å.K.; Johannsson, G.; Hoybye, C.; van der Lely, A.J.; et al. Long-Term Outcome and MGMT as a Predictive Marker in 24 Patients With Atypical Pituitary Adenomas and Pituitary Carcinomas Given Treatment With Temozolomide. J. Clin. Endocrinol. Metab. 2015, 100, 1689–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waligórska-Stachura, J.; Gut, P.; Sawicka-Gutaj, N.; Liebert, W.; Gryczyńska, M.; Baszko-Błaszyk, D.; Blanco-Gangoo, A.R.; Ruchała, M. Growth hormone–secreting macroadenoma of the pituitary gland successfully treated with the radiolabeled somatostatin analog 90Y-DOTATATE: Case report. J. Neurosurg. 2016, 125, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, G.; Ferraù, F.; Laudicella, R.; Cotta, O.R.; Messina, E.; Granata, F.; Angileri, F.F.; Vento, A.; Alibrandi, A.; Baldari, S.; et al. Peptide receptor radionuclide therapy for aggressive pituitary tumors: A monocentric experience. Endocr. Connect. 2019, 8, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Priola, S.M.; Esposito, F.; Cannavò, S.; Conti, A.; Abbritti, R.V.; Barresi, V.; Baldari, S.; Ferraù, F.; Germanò, A.; Tomasello, F.; et al. Aggressive Pituitary Adenomas: The Dark Side of the Moon. World Neurosurg. 2017, 97, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Baldari, S.; Ferraù, F.; Alafaci, C.; Herberg, A.; Granata, F.; Militano, V.; Salpietro, F.M.; Trimarchi, F.; Cannavò, S. First demonstration of the effectiveness of peptide receptor radionuclide therapy (PRRT) with 111In-DTPA-octreotide in a giant PRL-secreting pituitary adenoma resistant to conventional treatment. Pituitary 2012, 15, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Pach, D.; Sowa-Staszczak, A.; Kunikowska, J.; Królicki, L.; Trofimiuk, M.; Stefańska, A.; Tomaszuk, M.; Głowa, B.; Mikołajczak, R.; Pawlak, D.; et al. Repeated cycles of peptide receptor radionuclide therapy (PRRT)–Results and side-effects of the radioisotope 90Y-DOTA TATE, 177Lu-DOTA TATE or 90Y/177Lu-DOTA TATE therapy in patients with disseminated NET. Radiother. Oncol. 2012, 102, 45–50. [Google Scholar] [CrossRef]
- Taelman, V.F.; Radojewski, P.; Marincek, N.; Ben-Shlomo, A.; Grotzky, A.; Olariu, C.I.; Perren, A.; Stettler, C.; Krause, T.; Meier, L.P.; et al. Upregulation of Key Molecules for Targeted Imaging and Therapy. J. Nucl. Med. 2016, 57, 1805–1810. [Google Scholar] [CrossRef] [Green Version]
- Fani, M.; Nicolas, G.P.; Wild, D. Somatostatin Receptor Antagonists for Imaging and Therapy. J. Nucl. Med. 2017, 58, 61–66. [Google Scholar] [CrossRef]
Ref. | Sex and Age at Diagnosis | Tumor Type | Carcinoma | Previous Treatments | Treatment | Response | Adverse Effects |
---|---|---|---|---|---|---|---|
[3] | NA | NA | NA | TMZ * | Lapatinib * | PD * | NA |
[3] | NA | NA | NA | TMZ * | Lapatinib * | PD * | NA |
[3] | NA | NA | NA | TMZ * | Erlotinib * | PD * | NA |
[3] | NA | NA | NA | TMZ * | Sunitib * | PD * | NA |
[10,16] | Female, 42y | Functioning lactotroph | No | BCT, NS, CAB 7 mg weekly | Lapatinib 1250 mg daily + CAB 7 mg weekly for 6 months | TV: SD at 6 months HS: PR at 1 month and 6 months | Alopecia (mild), diarrhea (single self-limited episode), appetite loss (mild), and rash |
[10,16] | Female, 31y | Functioning lactotroph | No | CAB, BCT, NS, BCT, CAB 7 mg weekly | Lapatinib 1250 mg daily + CAB 7 mg weekly for 6 months | TV: SD at 6 months HS: PR at 1 month and 6 months | Alopecia (mild), diarrhea (few self-limiting episodes), and rash |
[16] | 2 females and 2 males, 19-70y | Functioning lactotroph | 1 carcinoma * | NS (1 in 1 patient and 2 in 3 patients), RT in 1 patient, DA in all | Lapatinib 1250 mg daily + DA for 6 months (3 patients) and for 3 months (1 patient) | TV: SD (2 patients at 6 months), and PD (1 patient at 3 months and 1 patient at 6 months) ** HS: PR (1 patient at 6 months) and PD (1 patient at 3 months and 2 patients at 6 months) | Reversible elevation of transaminases (grade 1), rash (grade 2), and asymptomatic bradycardia (grade 1) |
Ref. | Sex and Age at Diagnosis | Tumor Type | Carcinoma | Previous Treatments | Treatment | Response | Adverse Effects |
---|---|---|---|---|---|---|---|
[25] | Male, 38y | Silent corticotroph | Yes | 4 NS, RT, NS, TMZ, NS, TMZ, surgery for metastases, TMZ, RT for metastases, NS | BVZ 10 mg/kg every 2 weeks for 26 months (ongoing) | TV: SD for 26 months ** | NA |
[28] | Female, 25y | Functioning corticotroph | Yes | 2 NS, bilateral adrenalectomy, NS, RT, SSA, RT, TMZ | BVZ + pasireotide for 6 months | TV: SD at 6 months ** HS: PR at 6 months | NA |
[24] | Female, 50y | Functioning corticotroph | No | 2 NS, RT, NS, bilateral adrenalectomy, 2 NS, LAR+CAB, TMZ | BVZ * | Transient SD ** (patient deceased due to complications of another NS) | NA |
[27] | Male, 63y | Functioning corticotroph | Yes | NS | BVZ 10 mg/kg every 2 weeks + TMZ 75 mg/m2 daily + RT for 2 months, then TMZ 200 mg/m2 daily for 5 consecutive days out of 28 days for 12 cycles | TV: CR of the pulmonary nodule 8 weeks after starting BVZ+TMZ+RT, with no recurrence for 5 years HS: NA | NA |
[3] | NA | NA | NA | No previous TMZ * | BVZ + first-line TMZ * | PR * | NA |
[3] | NA | NA | NA | TMZ * | BVZ + second course of TMZ * | PR * | NA |
[3] | NA | NA | NA | TMZ * | BVZ + second course of TMZ * | PD * | NA |
[3] | NA | NA | NA | TMZ * | BVZ + second course of TMZ * | NA | NA |
[1,3] | NA | NA | NA | TMZ * | BVZ as second-line therapy * | PR after 3 months * | NA |
[1,3] | NA | NA | NA | TMZ * | BVZ as second-line therapy * | SD * | NA |
[1,3] | NA | NA | NA | TMZ * | BVZ as third-line therapy * | PD * | NA |
[26] | Male, 50y | Functioning corticotroph adenoma transformed into silent corticotroph carcinoma | Yes | NS, RT, surgery for metastases, RT for metastases, TMZ | BVZ 10–15 mg/kg every 2 weeks (09/2010–11/2012) + TMZ 150–200 mg/m2 daily for 5 consecutive days monthly (09/2010–08/2011) | TV: SD for 8 years ** | NA |
Ref. | Sex and Age at Diagnosis | Tumor Type | Carcinoma | Previous Treatments | Treatment | Response | Adverse Effects |
---|---|---|---|---|---|---|---|
[42] | Male, 45y | Functioning corticotroph | Yes | 2 NS, RT, bilateral adrenalectomy, RT on metastases, TMZ | EVE 5 mg daily + octreotide 30 mg for 1 month, then EVE 5 mg daily for another 2 months | No effect at 3 months ** | NA |
[43] | Female, 46y | Functioning corticotroph | Yes | 2 NS, bilateral adrenalectomy, NS, RT, OCT, NS, OCT, NS, capecitabine + TMZ, NS | EVE 7.5 mg daily + palliative RT on metastases (01–02/2015), EVE 10 mg daily (02–06/2015), palliative RT on metastases (06–07/2015), EVE 7.5 mg daily + capecitabine 1000 mg/m2 b.i.d. two weeks out of three (07–09/2015) | TV: ~5 months transient stability, then PD ** HS: NA | Multifocal herpes zoster (left arm and left eye, requiring enucleation) despite prophylaxis, and neutropenia |
[3] | NA | NA | NA | TMZ * | EVE as second- or third- line therapy * | PD * | NA |
[3] | NA | NA | NA | TMZ * | EVE as second- or third- line therapy * | PD * | NA |
[3] | NA | NA | NA | TMZ * | EVE as second- or third- line therapy * | PD * | NA |
[44] | Male, 62y | Functioning lactotroph | No | NS, RT, CAB, NS, CAB 0.75 mg daily | EVE 10 mg daily + CAB 1.5 mg daily | TV: SD at 5 and 12 months HS: PR at ~20 weeks (stable at ~35 weeks) | Altered mental status due to hyperglycemia, transient hypogeusia, and mouth sores |
Ref. | Sex and Age at Diagnosis | Tumor Type | Carcinoma | Previous Treatments | Treatment, Number of Cycles (cumulative dose/activity) | Response | Adverse Effects |
---|---|---|---|---|---|---|---|
[60] | Female, 16y | Functioning corticotroph | Yes | 2 NS, RT, 4 NS, RT, NS, bilateral adrenalectomy, NS, RT | 90Y-DOTATOC, 2 cycles (200mCi) | NA, but the patient died of elevated intracranial pressure shortly after | NA |
[61] | Male, 56y | NIR | No | NS, RT | 177Lu-DOTATOC, 3 cycles (600 mCi) | TV: SD ** | NA |
[62] | Male, 40y | NF * | Yes | NS, RT, NS, surgery for metastasis | 177Lu-DOTATATE, 4 cycles (~30 MBq) | TV: CR in some nodules, and overall SD at 40 months ** | Transient thrombocytopenia |
[62] | Male, 39y | Functioning somato-lactotroph | No | NS, RT, LAN, CAB, 4 NS with gliadel wafers in 2, TMZ, RT | 177Lu-DOTATATE, 2 cycles (15.3 Mbq) | TV: PD ** (the patient died 2 months after PRRT was started—deterioration of brainstem disease) HS: NA | NA |
[62] | Male, 26y | Silent corticotroph | No | 2 NS, RT, NS, TMZ, TMZ, NS | 177Lu-DOTATATE, 1 cycle | TV: PD ** | Severe increase in the facial pain |
[63] | Male, 59y | NF * | No | 3 NS, RT, SSA, TMZ | 177Lu-DOTATATE * | TV: NA, but the patient died in the following months | NA |
[63] | Male, 46y | Functioning somatotroph | Yes | 6 NS, RT, SSA/PEG, TMZ, palliative RT | 90Y-DOTATATE * | No effect ** | NA |
[64] | Male, 23y | Functioning somatotroph | No | SSA, NS, SSA, RT | 90Y-DOTATATE, 4 cycles (400mCi) | TV: PR at 12 months HS: PR at 12 months | Transient anemia and leucopenia |
[4] | NA | NA | NA | TMZ * | DOTATOC * | No effect ** | NA |
[4] | NA | NA | NA | TMZ * | DOTATOC * | Ongoing * | NA |
[3] | NA | NA | No | No previous TMZ * | As first-line therapy * | PR * | NA |
[3] | NA | NA | No | No previous TMZ * | As first-line therapy * | SD * | NA |
[3] | NA | NA | NA | TMZ * | As second- or third-line therapy * | PD * | NA |
[3] | NA | NA | NA | TMZ * | As second- or third-line therapy * | PD * | NA |
[3] | NA | NA | NA | TMZ * | As second- or third-line therapy * | PD * | NA |
[3] | NA | NA | NA | TMZ * | As second- or third-line therapy * | PD * | NA |
[3] | NA | NA | NA | TMZ * | As second- or third-line therapy * | PD * | NA |
[65,66,67] | Female, 58y | Functioning lactotroph | No | BCT, NS, CAB, RT | 111In-octreotide, 5 cycles (37 GBq) + CAB 0.5 mg daily | TV: PR after the first 2 cycles, further PR after the next 2 cycles, and further PR after the last cycle HS: PR | None |
[65,66] | Male, 54y | Functioning lactotroph | No | CAB, 3 NS, RT, TMZ | 177Lu-DOTATOC, 2 cycles (12.6 GBq) | TV: PD HS: Good biochemical control ** | None |
[65,66] | Female, 53y | NF * | No | 5 NS, RT, TMZ | 177Lu-DOTATOC, 5 cycles (29.8 GBq) | TV: PD | None |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilie, M.D.; Lasolle, H.; Raverot, G. Emerging and Novel Treatments for Pituitary Tumors. J. Clin. Med. 2019, 8, 1107. https://doi.org/10.3390/jcm8081107
Ilie MD, Lasolle H, Raverot G. Emerging and Novel Treatments for Pituitary Tumors. Journal of Clinical Medicine. 2019; 8(8):1107. https://doi.org/10.3390/jcm8081107
Chicago/Turabian StyleIlie, Mirela Diana, Hélène Lasolle, and Gérald Raverot. 2019. "Emerging and Novel Treatments for Pituitary Tumors" Journal of Clinical Medicine 8, no. 8: 1107. https://doi.org/10.3390/jcm8081107
APA StyleIlie, M. D., Lasolle, H., & Raverot, G. (2019). Emerging and Novel Treatments for Pituitary Tumors. Journal of Clinical Medicine, 8(8), 1107. https://doi.org/10.3390/jcm8081107