Retinal Blood Velocity and Flow in Early Diabetes and Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Human Subjects
2.2. Optical Coherence Tomography Angiography (OCTA)
2.3. Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO)
2.4. AOSLO XT Imaging
2.5. XT Imaging Analysis: Blood Velocity and Flow Calculations
2.6. Statistical Analysis
3. Results
3.1. Subjects
3.2. OCTA Parafoveal Vessel Density
3.3. Comparison of AOSLO Blood Velocity across Groups
3.4. Comparison of Blood Flow Across Groups
3.5. Relationship between Velocity and Flow on AOSLO and Capillary Density on OCTA
3.6. Flow Measurement Precision
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyle, J.P.; Thompson, T.J.; Gregg, E.W.; Barker, L.E.; Williamson, D.F. Projection of the year 2050 burden of diabetes in the US adult population: Dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 2010, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Antonetti, D.A.; Klein, R.; Gardner, T.W. Diabetic retinopathy. N. Engl. J. Med. 2012, 366, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.I.; Mooney, M.P.; Cho, D.J. Hemorheological disorders in diabetes mellitus. J. Diabetes Sci. Technol. 2008, 2, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Kohner, E.M.; Hamilton, A.M.; Saunders, S.J.; Sutcliffe, B.A.; Bulpitt, C.J. The retinal blood flow in diabetes. Diabetologia 1975, 11, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, D.E. Deterioration of the microcirculation in diabetes. Diabetes 1975, 24, 944–957. [Google Scholar] [CrossRef]
- McMillan, D.E. The effect of diabetes on blood flow properties. Diabetes 1983, 32, 56–63. [Google Scholar] [CrossRef]
- Schmetterer, L.; Wolzt, M. Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 1999, 42, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Kohner, E.M. The problems of retinal blood flow in diabetes. Diabetes 1976, 25, 839–844. [Google Scholar]
- Cunha-Vaz, J.G.; Fonseca, J.R.; de Abreu, J.R.; Lima, J.J. Studies on retinal blood flow. II. Diabetic retinopathy. Arch. Ophthalmol. 1978, 96, 809–811. [Google Scholar] [CrossRef]
- Bursell, S.E.; Clermont, A.C.; Kinsley, B.T.; Simonson, D.C.; Aiello, L.M.; Wolpert, H.A. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 1996, 37, 886–897. [Google Scholar]
- Clermont, A.C.; Aiello, L.P.; Mori, F.; Aiello, L.M.; Bursell, S.E. Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo: A potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy. Am. J. Ophthalmol. 1997, 124, 433–446. [Google Scholar] [CrossRef]
- Grunwald, J.E.; Riva, C.E.; Sinclair, S.H.; Brucker, A.J.; Petrig, B.L. Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. Arch. Ophthalmol. 1986, 104, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, J.E.; Brucker, A.J.; Grunwald, S.E.; Riva, C.E. Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study. Investig. Ophthalmol. Vis. Sci. 1993, 34, 66–71. [Google Scholar]
- Grunwald, J.E.; DuPont, J.; Riva, C.E. Retinal haemodynamics in patients with early diabetes mellitus. Br. J. Ophthalmol. 1996, 80, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Feke, G.T.; Buzney, S.M.; Ogasawara, H.; Fujio, N.; Goger, D.G.; Spack, N.P.; Gabbay, K.H. Retinal circulatory abnormalities in type 1 diabetes. Investig. Ophthalmol. Vis. Sci. 1994, 35, 2968–2975. [Google Scholar]
- Konno, S.; Feke, G.T.; Yoshida, A.; Fujio, N.; Goger, D.G.; Buzney, S.M. Retinal blood flow changes in type I diabetes. A long-term follow-up study. Investig. Ophthalmol. Vis. Sci. 1996, 37, 1140–1148. [Google Scholar] [CrossRef]
- Patel, V.; Rassam, S.; Newsom, R.; Wiek, J.; Kohner, E. Retinal blood flow in diabetic retinopathy. BMJ 1992, 305, 678–683. [Google Scholar] [CrossRef]
- Cuypers, M.H.; Kasanardjo, J.S.; Polak, B.C. Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter. Graefes Arch. Clin. Exp. Ophthalmol. 2000, 238, 935–941. [Google Scholar] [CrossRef]
- Grunwald, J.E.; Riva, C.E.; Baine, J.; Brucker, A.J. Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Investig. Ophthalmol. Vis. Sci. 1992, 33, 356–363. [Google Scholar]
- Mendivil, A.; Cuartero, V.; Mendivil, M.P. Ocular blood flow velocities in patients with proliferative diabetic retinopathy and healthy volunteers: A prospective study. Br. J. Ophthalmol. 1995, 79, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Goebel, W.; Lieb, W.E.; Ho, A.; Sergott, R.C.; Farhoumand, R.; Grehn, F. Color Doppler imaging: A new technique to assess orbital blood flow in patients with diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 1995, 36, 864–870. [Google Scholar]
- MacKinnon, J.R.; McKillop, G.; O’Brien, C.; Swa, K.; Butt, Z.; Nelson, P. Colour Doppler imaging of the ocular circulation in diabetic retinopathy. Acta Ophthalmol. Scand. 2000, 78, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, G.; Kato, S.; Yamashita, H.; Tamaki, Y.; Nagahara, M.; Fukushima, H.; Kitano, S. Relation between retrobulbar circulation and progression of diabetic retinopathy. Br. J. Ophthalmol. 2003, 87, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bower, B.A.; Izatt, J.A.; Tan, O.; Huang, D. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 2007, 12, 041215. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fawzi, A.A.; Varma, R.; Sadun, A.A.; Zhang, X.; Tan, O.; Izatt, J.A.; Huang, D. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Investig. Ophthalmol. Vis. Sci. 2011, 52, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Novais, E.A.; Waheed, N.K.; Adhi, M.; De Carlo, T.E.; Cole, E.D.; Moult, E.M.; Choi, W.; Lane, M.; Baumal, C.R.; et al. En Face Doppler Optical Coherence Tomography Measurement of Total Retinal Blood Flow in Diabetic Retinopathy and Diabetic Macular Edema. JAMA Ophthalmol. 2017, 135, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, S.; Tan, O.; Nittala, M.G.; Wu, J.L.; Fawzi, A.A.; Huang, D.; Sadda, S.R. Assessment of Retinal Blood Flow in Diabetic Retinopathy Using Doppler Fourier-Domain Optical Coherence Tomography. Retina 2017, 37, 2001–2007. [Google Scholar] [CrossRef]
- Lee, J.C.; Wong, B.J.; Tan, O.; Srinivas, S.; Sadda, S.R.; Huang, D.; Fawzi, A.A. Pilot study of Doppler optical coherence tomography of retinal blood flow following laser photocoagulation in poorly controlled diabetic patients. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6104–6111. [Google Scholar] [CrossRef]
- Pinhas, A.; Dubow, M.; Shah, N.; Chui, T.Y.; Scoles, D.; Sulai, Y.N.; Weitz, R.; Walsh, J.B.; Carroll, J.; Dubra, A.; et al. In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography. Biomed. Opt. Express 2013, 4, 1305–1317. [Google Scholar] [CrossRef] [Green Version]
- Burns, S.A.; Elsner, A.E.; Sapoznik, K.A.; Warner, R.L.; Gast, T.J. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 2019, 68, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Chui, T.Y.; Gast, T.J.; Burns, S.A. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7115–7124. [Google Scholar] [CrossRef] [PubMed]
- Bedggood, P.; Metha, A. Direct visualization and characterization of erythrocyte flow in human retinal capillaries. Biomed. Opt. Express 2012, 3, 3264–3277. [Google Scholar] [CrossRef] [PubMed]
- Sulai, Y.N.; Scoles, D.; Harvey, Z.; Dubra, A. Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2014, 31, 569–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Petrig, B.L.; Qi, X.; Burns, S.A. In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. Opt. Express 2008, 16, 12746–12756. [Google Scholar] [CrossRef]
- Zhong, Z.; Song, H.; Chui, T.Y.; Petrig, B.L.; Burns, S.A. Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4151–4157. [Google Scholar] [CrossRef] [PubMed]
- De Castro, A.; Huang, G.; Sawides, L.; Luo, T.; Burns, S.A. Rapid high resolution imaging with a dual-channel scanning technique. Opt. Lett. 2016, 41, 1881–1884. [Google Scholar] [CrossRef] [PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Ophthalmology 1991, 98, 807–822. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs—An extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology 1991, 98, 786–806. [Google Scholar] [CrossRef]
- Jia, Y.; Tan, O.; Tokayer, J.; Potsaid, B.; Wang, Y.; Liu, J.J.; Kraus, M.F.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 2012, 20, 4710–4725. [Google Scholar] [CrossRef] [Green Version]
- Asdourian, G.K.; Goldberg, M.F. The angiographic pattern of the peripheral retinal vasculature. Arch. Ophthalmol. 1979, 97, 2316–2318. [Google Scholar] [CrossRef] [PubMed]
- Dubra, A.; Sulai, Y. Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2011, 2, 1757–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, T.F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 1981, 78, 431–453. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, M.; Feke, G.T.; Cagliero, E.; Pitler, L.; Schaumberg, D.A.; Berisha, F.; Nathan, D.M.; McMeel, J.W. Retinal haemodynamics in individuals with well-controlled type 1 diabetes. Diabetologia 2008, 51, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fawzi, A.; Tan, O.; Gil-Flamer, J.; Huang, D. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography. Opt. Express 2009, 17, 4061–4073. [Google Scholar] [CrossRef]
- Kohner, E.M.; Patel, V.; Rassam, S.M. Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 1995, 44, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Onishi, A.C.; Nesper, P.L.; Roberts, P.K.; Moharram, G.A.; Chai, H.; Liu, L.; Jampol, L.M.; Fawzi, A.A. Importance of Considering the Middle Capillary Plexus on OCT Angiography in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2167–2176. [Google Scholar] [CrossRef] [Green Version]
- Nesper, P.L.; Roberts, P.K.; Onishi, A.C.; Chai, H.; Liu, L.; Jampol, L.M.; Fawzi, A.A. Quantifying Microvascular Abnormalities with Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO307–BIO315. [Google Scholar] [CrossRef]
- Murray, C.D. The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. Proc. Natl. Acad. Sci. USA 1926, 12, 207–214. [Google Scholar] [CrossRef]
- Fahraeus, R.; Lindqvist, T. The Viscosity of the Blood in Narrow Capillary Tubes. Am. J. Physiol. 1931, 96, 562–568. [Google Scholar] [CrossRef]
- Luo, T.; Gast, T.J.; Vermeer, T.J.; Burns, S.A. Retinal Vascular Branching in Healthy and Diabetic Subjects. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2685–2694. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.; Guevara-Torres, A.; Schallek, J.B. Imaging single–Cell blood flow in the smallest to largest vessels in the living retina. ELife 2019, 8, e45077. [Google Scholar] [CrossRef]
- Grunwald, J.E.; Riva, C.E.; Martin, D.B.; Quint, A.R.; Epstein, P.A. Effect of an insulin-induced decrease in blood glucose on the human diabetic retinal circulation. Ophthalmology 1987, 94, 1614–1620. [Google Scholar] [CrossRef]
- Robinson, F.; Riva, C.E.; Grunwald, J.E.; Petrig, B.L.; Sinclair, S.H. Retinal blood flow autoregulation in response to an acute increase in blood pressure. Investig. Ophthalmol. Vis. Sci. 1986, 27, 722–726. [Google Scholar]
Healthy Controls | DM no DR | NPDR | p | |
---|---|---|---|---|
Patients, n | 17 | 21 | 9 | |
Eyes, n | 21 | 26 | 13 | |
Vessel segments, n | 94 | 110 | 56 | |
Vessel diameter range (μm) | 15.98–97.93 | 18.27–91.88 | 32.71–99.45 | |
Age, mean ± SD, | 57.7 ± 11.5 | 49.1 ± 16.3 | 47.6 ± 13.6 | 0.119 |
range | 29–74 | 19–71 | 32–69 | |
Sex | 0.069 | |||
Female, n (%) | 13 (76%) | 10 (48%) | 3 (33%) | |
Male, n (%) | 4 (23%) | 11 (52%) | 6 (66%) | |
DM type | 0.398 * | |||
Type 1, n (%) | n/a | 6 (29%) | 4 (44%) | |
Type 2, n (%) | n/a | 15 (71%) | 5 (56%) | |
Disease duration in years, mean ± SD | n/a | 9.3 ± 7.6 | 15.2 ± 8.5 | 0.070 * |
HbA1c, mean ± SD | n/a | 7.3 ± 1.9 | 7.3 ± 1.1 | 0.998 * |
Lens status | 0.943 | |||
Clear | 8 (47%) | 11 (52%) | 5 (56%) | |
Cataract | 8 (47%) | 9 (43%) | 3 (33%) | |
Pseudophakic | 1 (6%) | 1 (5%) | 1 (11%) | |
Hypertension, n (%) | 1 (6%) | 9 (43%) | 3 (33%) | – |
Parafoveal vessel density (%) | ||||
SCP, mean ± SD | 47.97 ± 3.95 | 45.15 ± 4.49 | 43.23 ± 3.80 | 0.01 |
DCP, mean ± SD | 53.57 ± 3.19 | 50.12 ± 3.50 | 47.59 ± 3.86 | 0 |
Full retina, mean ± SD | 57.69 ± 3.35 | 55.55 ± 3.80 | 54.25 ± 2.67 | 0.023 |
OCTA SSI, mean ± SD | 68.85 ± 6.15 | 67.45 ± 4.24 | 69.55 ± 6.62 | 0.522 |
Control mm/s (n = 94) | DM no DR mm/s (n = 110) | NPDR mm/s (n = 56) | ANOVA p | Control vs DM no DR p | Control vs NPDR p | DM no DR vs NPDR p | |
---|---|---|---|---|---|---|---|
<30 μm (n = 34) | 3.60–8.32, 5.59 (23) | 6.54–14.49, 10.42 (11) | n/a | 0.000 | |||
31–40 μm (n = 62) | 5.64–13.58, 9.08 (20) | 8.29–15.47, 11.51 (31) | 2.42–9.23, 6.68 (11) | 0.000 | 0.000 | 0.020 | 0.000 |
41–60 μm (n = 75) | 7.13–19.18, 13.35 (15) | 10.95–24.28, 17.67 (36) | 3.59–15.13, 10.66 (24) | 0.000 | 0.000 | 0.032 | 0.000 |
>61 μm (n = 89) | 17.84–28.15, 21.98 (36) | 15.88–28.94, 22.88 (32) | 9.85–23.54, 16.70 (21) | 0.000 | 0.499 | 0.000 | 0.000 |
Control mm/s (n = 55) | DM no DR mm/s (n = 79) | NPDR mm/s (n = 47) | ANOVA p | Control vs DM no DR p | Control vs NPDR p | DM no DR vs NPDR p | |
---|---|---|---|---|---|---|---|
<30 μm (n = 13) | 4.22–7.15, 5.51 (9) | 6.54–14.49, 10.59 (4) | n/a | 0.001 | |||
31–40μm (n = 34) | 7.98–11.14, 9.42 (9) | 9.41–15.47, 12.07 (18) | 2.42–9.23, 7.17 (7) | 0.000 | 0.000 | 0.169 | 0.006 |
41–60μm (n = 57) | 10.33–19.18, 14.10 (9) | 12.69–24.28, 18.02 (28) | 6.06–15.13, 11.34 (20) | 0.000 | 0.025 | 0.113 | 0.000 |
>60μm (n = 77) | 17.84–28.15, 22.43 (28) | 16.06–28.94, 22.98 (29) | 9.85–23.54, 16.82 (20) | 0.000 | 0.801 | 0.000 | 0.000 |
Control mm/s (n = 39) | DM no DR mm/s (n = 31) | NPDR mm/s (n = 9) | ANOVA p | Control vs DM no DR p | Control vs NPDR p | DM no DR vs NPDR p | |
---|---|---|---|---|---|---|---|
<30 μm (n = 24) | 3.60–8.32, 5.75 (16) | 7.56–13.79, 10.09 (8) | n/a | 0.000 | |||
31–50 μm (n = 32) | 7.13–13.58, 9.40 (12) | 8.29–17.75, 11.51 (15) | 3.21–9.05, 5.98 (5) | 0.000 | 0.066 | 0.026 | 0.000 |
> 50 μm (n = 23) | 14.47–25.05, 18.84 (11) | 14.43–26.86, 19.45 (8) | 7.81–14.29, 9.95 (4) | 0.001 | 0.930 | 0.001 | 0.001 |
Control μL/min (n = 94) | DM no DR μL/min (n = 110) | NPDR μL/min (n = 56) | ANOVA p | Control vs DM no DR p | Control vs NPDR p | DM no DR vs NPDR p | |
---|---|---|---|---|---|---|---|
<30 μm (n = 34) | 0.05–0.31, 0.16 (23) | 0.13–1.07, 0.42 (11) | n/a | 0.019 | |||
31–40 μm (n = 62) | 0.25–1.04, 0.58 (20) | 0.37–1.16, 0.70 (31) | 0.12–0.71, 0.48 (11) | 0.004 | 0.084 | 0.347 | 0.005 |
41–60 μm (n = 75) | 0.62–2.95, 1.59 (15) | 0.99–3.85, 2.13 (36) | 0.32–2.59, 1.43 (24) | 0.000 | 0.007 | 0.777 | 0.007 |
>61 μm (n = 89) | 1.91–12.44, 6.50 (36) | 3.05–11.12, 6.03 (32) | 1.91–10.65, 4.86 (21) | 0.061 | 0.719 | 0.049 | 0.224 |
Control μL/min (n = 55) | DM no DR μL/min (n = 79) | NPDR μL/min (n = 47) | ANOVA p | Control vs DM no DR p | Control vs NPDR p | DM no DR vs NPDR p | |
---|---|---|---|---|---|---|---|
<30 μm (n = 13) | 0.06–0.29, 0.16 (9) | 0.13–0.40, 0.30 (4) | n/a | 0.032 | |||
31–40 μm (n = 34) | 0.40–0.85, 0.60 (9) | 0.45–1.02, 0.73 (18) | 0.12–0.71, 0.50 (7) | 0.031 | 0.244 | 0.570 | 0.032 |
41–60 μm (n = 57) | 0.85–2.95, 1.65 (9) | 1.02–3.85, 2.33 (28) | 0.48–2.59, 1.51 (20) | 0.001 | 0.051 | 0.872 | 0.001 |
>60 μm (n = 77) | 1.91–12.44, 6.68 (13) | 3.2–11.12, 6.02 (14) | 2.1–10.65, 4.96 (10) | 0.068 | 0.578 | 0.054 | 0.314 |
Control μL/min (n = 39) | DM no DR μL/min (n = 31) | NPDR μL/min (n = 9) | ANOVA p | Control vs DM no DR p | Control vs NPDR p | DM no DR vs NPDR p | |
---|---|---|---|---|---|---|---|
<30 μm (n = 24) | 0.05–0.33, 0.18 (16) | 0.17–1.07, 0.47 (8) | n/a | 0.043 | |||
31–50 μm (n = 32) | 7.13–13.58, 9.40 (12) | 8.29–17.75, 11.51 (15) | 3.21–9.05, 5.98 (5) | 0.059 | 0.542 | 0.246 | 0.048 |
> 50 μm (n = 23) | 1.86–11.62, 4.80 (11) | 1.99–7.68, 3.85 (8) | 1.10–2.87, 1.67 (4) | 0.119 | 0.693 | 0.100 | 0.337 |
DM no DR (n = 11) | NPDR (n = 6) | p | |
---|---|---|---|
Parafoveal vessel density (%) | |||
SCP, mean ± SD | 43.03 ± 4.98 | 43.70 ± 3.61 | 0.252 |
DCP, mean ± SD | 50.71 ± 4.72 | 46.43 ± 3.17 | 0.417 |
Full retina, mean ± SD | 53.81 ± 4.59 | 55.28 ± 1.95 | 0.123 |
OCTA SSI, mean ± SD | 67.27 ± 3.77 | 69.83 ± 8.42 | 0.02 |
DM type | 0.627 | ||
Type 1, n (%) | 6 (55%) | 3 (50%) | |
Type 2, n (%) | 5 (45%) | 3 (50%) | |
Disease duration in years, mean ± SD | 10.87 ± 8.98 | 13.33 ± 8.02 | 0.624 |
HbA1c, mean ± SD | 7.80 ± 2.34 | 6.77 ± 0.65 | 0.072 |
Age, mean ± SD | 42.91 ± 16.22 | 40.17 ± 8.59 | 0.152 |
Flow (μL/min) | Healthy Control | DM without DR | NPDR |
---|---|---|---|
Daughter vessel 1 | 2.08 | 0.25 | 0.93 |
Daughter vessel 2 | 3.96 | 0.37 | 0.97 |
Parent vessel | 6.03 | 0.61 | 1.98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palochak, C.M.A.; Lee, H.E.; Song, J.; Geng, A.; Linsenmeier, R.A.; Burns, S.A.; Fawzi, A.A. Retinal Blood Velocity and Flow in Early Diabetes and Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. J. Clin. Med. 2019, 8, 1165. https://doi.org/10.3390/jcm8081165
Palochak CMA, Lee HE, Song J, Geng A, Linsenmeier RA, Burns SA, Fawzi AA. Retinal Blood Velocity and Flow in Early Diabetes and Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. Journal of Clinical Medicine. 2019; 8(8):1165. https://doi.org/10.3390/jcm8081165
Chicago/Turabian StylePalochak, Cherilyn Mae A., Hee Eun Lee, Jessica Song, Andrew Geng, Robert A. Linsenmeier, Stephen A. Burns, and Amani A. Fawzi. 2019. "Retinal Blood Velocity and Flow in Early Diabetes and Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy" Journal of Clinical Medicine 8, no. 8: 1165. https://doi.org/10.3390/jcm8081165
APA StylePalochak, C. M. A., Lee, H. E., Song, J., Geng, A., Linsenmeier, R. A., Burns, S. A., & Fawzi, A. A. (2019). Retinal Blood Velocity and Flow in Early Diabetes and Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. Journal of Clinical Medicine, 8(8), 1165. https://doi.org/10.3390/jcm8081165