Natural History of Atherosclerosis and Abdominal Aortic Intima-Media Thickness: Rationale, Evidence, and Best Practice for Detection of Atherosclerosis in the Young
Abstract
:1. Rationale for Assessing Aortic Atherosclerosis
1.1. Natural History of Atherosclerosis
1.2. Abdominal Aortic Atherosclerosis, Cardiovascular Risk Factors, and Cardiovascular Events
2. Abdominal Aortic IMT as a Marker of Preclinical Atherosclerosis in Children and Adolescents
Association of Aortic IMT with Cardiovascular Risk Factors and Response to Interventions
3. Methodological Considerations for Abdominal Aortic IMT
4. Assessment of Subclinical Atherosclerosis: Strengths and Limitations of Current Techniques
4.1. Carotid IMT
4.2. Coronary Artery Calcium
4.3. Magnetic Resonance: Carotid and Aortic Wall Thickness
4.4. Pulse Wave Velocity (PWV)
5. Abdominal Aortic IMT: Gaps in Knowledge and Research Priorities
6. Summary and Conclusions: Abdominal Aortic IMT and Associated Methodologies to Further the Study of the Natural History of Atherosclerosis
- Aortic and carotid atherosclerosis.
- -
- In children less than 8 years of age, the abdominal aorta is the site with the most pronounced early atherosclerosis, and where the strongest associations of risk factors with arterial IMT are observed.
- -
- In children and adolescents aged 8 to 12 years, associations of risk factors with arterial IMT are observed in the abdominal aorta and the carotid arteries. The association of risk factors with carotid IMT is the most pronounced in high-risk groups (e.g., diabetes and chronic kidney disease) [87,88].
- -
- In adolescents and young adults, obesity is an important factor limiting the feasibility of abdominal aortic IMT assessment. MRI holds promise as a research tool for the accurate assessment of both abdominal aortic wall thickness and stiffness in this age group, although further research is required.
- -
- Longitudinal studies tracking abdominal aortic and carotid atherosclerosis from fetal life through adulthood are required.
- Arterial stiffness. The assessment of pulse wave velocity should be considered as a measure of complementary pathophysiological processes, particularly in those aged ≥10 years.
- Multiple methodologies should be considered, particularly in adolescence, for more complete profiling of atherosclerosis development throughout the arterial tree early in the life course.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A. Best Practice Guidelines for Abdominal Aortic IMT Assessment
Appendix A.1. Scanning Protocol—Location
Aspect | Best Practice Guidelines for Abdominal Aortic IMT Assessment |
---|---|
Scanning protocol - Location | - Abdominal aorta. - Exact section determined by (a) image quality, (b) an anatomical landmark (e.g., just proximal to bifurcation), or (c) predisposition of the site to formation of atheroma. - IMT measured from far wall. - Study protocol should prospectively state the prespecified site, or criteria for site selection if based on image quality. |
Scanning protocol - Imaging | - Abdominal aorta imaged in longitudinal section, horizontal on screen. - Images should use an appropriate zoom. |
Equipment | - Linear array probe (≥7 MHz) is preferred. - For multi-frequency probes, settings that favor the frequency spectrum ≥7 MHz should be prioritized. - Lower imaging frequencies may be required in fetuses, adults, and when scanning at greater depth. - Ultrasound equipment and settings, including frequency, dynamic range, and persistence, should be standardized in each research study and maintained throughout. |
Loop acquisition | - Minimum of one digital loop, with ≥3 cardiac cycles. |
Measurement and analysis | - Report both mean and maximum abdominal aortic IMT. - Mean abdominal aortic IMT should be assessed in a region free of plaques. - Measurement of abdominal aortic IMT should be undertaken at end-diastole. - Semi-automated measurement of abdominal aortic IMT with dedicated software is preferred to measurement with calipers. - Measurement using semi-automated analysis derived from a minimum of 4 mm of abdominal aortic wall, over a minimum of 3 cardiac cycles. - Blinded image analysis. - Measurement methodology should be applied consistently. - Multi-center studies should use a single center for all IMT measurements. - Reproducibility of imaging and measurement should be undertaken periodically, and published. |
Longitudinal studies (cohorts and trials) | - All scanning and assessment methodology should remain consistent across multiple visits, where possible. - Methods that promote the analysis of aortic IMT at the same arterial region should be applied. - Studies with serial measures of abdominal aortic IMT should have a minimum total follow-up of 12 months, but preferably 24 months or longer. - In addition to baseline and final visit abdominal aortic IMT, scans should also preferentially be obtained at an intermediate time-point(s). |
Statistical analysis | - Results should be presented with and without adjustment for body habitus or abdominal aortic diameter, preferably by inclusion as a covariate. - In studies with sufficient statistical power, consideration should be given to dichotomizing abdominal aortic IMT into “elevated” and “normal” groups, using the age-specific, sex-specific, and population-specific 95th percentile to identify those with “elevated” abdominal aortic IMT in childhood and adolescence. |
Feasibility | - Feasibility of technique in a specific group, defined as a successful measurement in a minimum of 90% of all participants (arbitrary cut point). |
Appendix A.2. Scanning Protocol—Imaging
Appendix A.3. Equipment
Appendix A.4. Loop Acquisition
Appendix A.5. Radio Frequency Analysis
Appendix A.6. Measurement/Analysis
Appendix A.7. Longitudinal Studies (Cohorts and Trials)
Appendix A.8. Statistical Analysis
Appendix A.9. Feasibility
References
- Stary, H.C.; Blankenhorn, D.H.; Chandler, A.B.; Glagov, S.; Insull, W., Jr.; Richardson, M.; Rosenfeld, M.E.; Schaffer, S.A.; Schwartz, C.J.; Wagner, W.D.; et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1992, 85, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Stary, H.C.; Chandler, A.B.; Glagov, S.; Guyton, J.R.; Insull, W., Jr.; Rosenfeld, M.E.; Schaffer, S.A.; Schwartz, C.J.; Wagner, W.D.; Wissler, R.W. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994, 89, 2462–2478. [Google Scholar] [CrossRef] [PubMed]
- Stary, H.C.; Chandler, A.B.; Dinsmore, R.E.; Fuster, V.; Glagov, S.; Insull, W., Jr.; Rosenfeld, M.E.; Schwartz, C.J.; Wagner, W.D.; Wissler, R.W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995, 92, 1355–1374. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Chen, Y.X.; Kinukawa, N.; Sueishi, K. Distributions of diffuse intimal thickening in human arteries: Preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch. Int. J. Pathol. 2002, 441, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Wight, T.N.; Sueishi, K. Early atherosclerosis in humans: Role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc. Res. 2008, 79, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, M.; Watanabe, J.; Kumagai, K.; Baba, S.; Shinozaki, T.; Miura, M.; Kagaya, Y.; Shirato, K. Normal and oxidized low density lipoproteins accumulate deep in physiologically thickened intima of human coronary arteries. Lab. Investig. 2002, 82, 1437–1447. [Google Scholar] [CrossRef]
- Napoli, C.; Glass, C.K.; Witztum, J.L.; Deutsch, R.; D’Armiento, F.P.; Palinski, W. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 1999, 354, 1234–1241. [Google Scholar] [CrossRef]
- Napoli, C.; D’Armiento, F.P.; Mancini, F.P.; Postiglione, A.; Witztum, J.L.; Palumbo, G.; Palinski, W. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. J. Clin. Investig. 1997, 100, 2680–2690. [Google Scholar] [CrossRef]
- Zinserling, W.D. Untersuchungen über Atherosklerose. In Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin; Springer-Verlag: Berlin/Heidelberg, Germany, 1925; Volume 255, pp. 677–705. [Google Scholar]
- Strong, J.P.; McGill, H.C., Jr. The pediatric aspects of atherosclerosis. J. Atheroscler. Res. 1969, 9, 251–265. [Google Scholar] [CrossRef]
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.P., 3rd; Tracy, R.E.; Wattigney, W.A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef]
- Eggen, D.A.; Solberg, L.A. Variation of atherosclerosis with age. Lab. Investig. 1968, 18, 571–579. [Google Scholar]
- Berenson, G.S.; Wattigney, W.A.; Tracy, R.E.; Newman, W.P., 3rd; Srinivasan, S.R.; Webber, L.S.; Dalferes, E.R., Jr.; Strong, J.P. Atherosclerosis of the aorta and coronary arteries and cardiovascular risk factors in persons aged 6 to 30 years and studied at necropsy (The Bogalusa Heart Study). Am. J. Cardiol. 1992, 70, 851–858. [Google Scholar] [CrossRef]
- Bland, J.; Skordalaki, A.; Emery, J.L. Early intimal lesions in the common carotid artery. Cardiovasc. Res. 1986, 20, 863–868. [Google Scholar] [CrossRef]
- Kawauchi, T. A pathological study on arteriosclerosis of carotid. Acta Med. Nagasaki. 1965, 9, 89–119. [Google Scholar]
- Solberg, L.A.; Eggen, D.A. Localization and sequence of development of atherosclerotic lesions in the carotid and vertebral arteries. Circulation 1971, 43, 711–724. [Google Scholar] [CrossRef]
- Guyton, J.R.; Klemp, K.F. Transitional features in human atherosclerosis. Intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks. Am. J. Pathol. 1993, 143, 1444–1457. [Google Scholar]
- Bocan, T.M.; Guyton, J.R. Human aortic fibrolipid lesions. Progenitor lesions for fibrous plaques, exhibiting early formation of the cholesterol-rich core. Am. J. Pathol. 1985, 120, 193–206. [Google Scholar]
- Dalager, S.; Paaske, W.P.; Kristensen, I.B.; Laurberg, J.M.; Falk, E. Artery-related differences in atherosclerosis expression: Implications for atherogenesis and dynamics in intima-media thickness. Stroke 2007, 38, 2698–2705. [Google Scholar] [CrossRef]
- McGill, H.C., Jr.; McMahan, C.A.; Herderick, E.E.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 2000, 72, 1307S–1315S. [Google Scholar]
- McMahan, C.A.; Gidding, S.S.; Fayad, Z.A.; Zieske, A.W.; Malcom, G.T.; Tracy, R.E.; Strong, J.P.; McGill, H.C., Jr. Risk scores predict atherosclerotic lesions in young people. Arch. Intern. Med. 2005, 165, 883–890. [Google Scholar] [CrossRef]
- Maroules, C.D.; Rosero, E.; Ayers, C.; Peshock, R.M.; Khera, A. Abdominal aortic atherosclerosis at MR imaging is associated with cardiovascular events: The Dallas heart study. Radiology 2013, 269, 84–91. [Google Scholar] [CrossRef]
- Lorenz, M.W.; Markus, H.S.; Bots, M.L.; Rosvall, M.; Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. Circulation 2007, 115, 459–467. [Google Scholar] [CrossRef]
- Jarvisalo, M.J.; Jartti, L.; Nanto-Salonen, K.; Irjala, K.; Rönnemaa, T.; Hartiala, J.J.; Celermajer, D.S.; Raitakari, O.T. Increased aortic intima-media thickness: A marker of preclinical atherosclerosis in high-risk children. Circulation 2001, 104, 2943–2947. [Google Scholar] [CrossRef]
- Dawson, J.D.; Sonka, M.; Blecha, M.B.; Lin, W.; Davis, P.H. Risk factors associated with aortic and carotid intima-media thickness in adolescents and young adults: The Muscatine Offspring Study. J. Am. Coll. Cardiol. 2009, 53, 2273–2279. [Google Scholar] [CrossRef]
- Harrington, J.; Peña, A.S.; Gent, R.; Hirte, C.; Couper, J. Aortic Intima Media Thickness is an Early Marker of Atherosclerosis in Children with Type 1 Diabetes Mellitus. J. Pediatr. 2010, 156, 237–241. [Google Scholar] [CrossRef]
- Pahkala, K.; Laitinen, T.T.; Heinonen, O.J.; Viikari, J.S.; Ronnemaa, T.; Niinikoski, H.; Helajarvi, H.; Juonala, M.; Simell, O.; Raitakari, O.T. Association of fitness with vascular intima-media thickness and elasticity in adolescence. Pediatrics 2013, 132, e77–e84. [Google Scholar] [CrossRef]
- Skilton, M.R.; Pahkala, K.; Viikari, J.S.; Ronnemaa, T.; Simell, O.; Jula, A.; Niinikoski, H.; Celermajer, D.S.; Raitakari, O.T. The association of dietary alpha-linolenic Acid with blood pressure and subclinical atherosclerosis in people born small for gestational age: The Special Turku coronary Risk factor Intervention Project study. J. Pediatr. 2015, 166, 1252–1257. [Google Scholar] [CrossRef]
- Skilton, M.R.; Evans, N.; Griffiths, K.A.; Harmer, J.A.; Celermajer, D.S. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet 2005, 365, 1484–1486. [Google Scholar] [CrossRef]
- Cosmi, E.; Visentin, S.; Fanelli, T.; Mautone, A.J.; Zanardo, V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet. Gynecol. 2009, 114, 1109–1114. [Google Scholar] [CrossRef]
- Pignoli, P.; Tremoli, E.; Poli, A.; Oreste, P.; Paoletti, R. Intimal plus medial thickness of the arterial wall: A direct measurement with ultrasound imaging. Circulation 1986, 74, 1399–1406. [Google Scholar] [CrossRef]
- Lo Vasco, V.R.; Salmaso, R.; Zanardo, V.; Businaro, R.; Visentin, S.; Trevisanuto, D.; Cosmi, E. Fetal aorta wall inflammation in ultrasound-detected aortic intima/media thickness and growth retardation. J. Reprod. Immunol. 2011, 91, 103–107. [Google Scholar] [CrossRef]
- Norman, M. Low birth weight and the developing vascular tree: A systematic review. Acta Paediatr. 2008, 97, 1165–1172. [Google Scholar] [CrossRef]
- Skilton, M.R.; Viikari, J.S.; Juonala, M.; Laitinen, T.; Lehtimäki, T.; Taittonen, L.; Kähönen, M.; Celermajer, D.S.; Raitakari, O.T. Fetal growth and preterm birth influence cardiovascular risk factors and arterial health in young adults: The cardiovascular risk in young Finns study. Arter. Thromb. Vasc. Biol. 2011, 31, 2975–2981. [Google Scholar] [CrossRef]
- Huxley, R.; Owen, C.G.; Whincup, P.H.; Cook, D.G.; Rich-Edwards, J.; Smith, G.D.; Collins, R. Is birth weight a risk factor for ischemic heart disease in later life? Am. J. Clin. Nutr. 2007, 85, 1244–1250. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, D.; Tikkanen, E.; Gustafsson, S.; Priest, J.R.; Burgess, S.; Ingelsson, E. Birthweight, Type 2 Diabetes Mellitus, and Cardiovascular Disease: Addressing the Barker Hypothesis With Mendelian Randomization. Circ. Genom. Precis. Med. 2018, 11, e002054. [Google Scholar] [CrossRef]
- Pahkala, K.; Heinonen, O.J.; Simell, O.; Viikari, J.S.; Ronnemaa, T.; Niinikoski, H.; Raitakari, O.T. Association of physical activity with vascular endothelial function and intima-media thickness. Circulation 2011, 124, 1956–1963. [Google Scholar] [CrossRef]
- Pahkala, K.; Hietalampi, H.; Laitinen, T.T.; Viikari, J.S.; Ronnemaa, T.; Niinikoski, H.; Lagstrom, H.; Talvia, S.; Jula, A.; Heinonen, O.J.; et al. Ideal cardiovascular health in adolescence: Effect of lifestyle intervention and association with vascular intima-media thickness and elasticity (the Special Turku Coronary Risk Factor Intervention Project for Children [STRIP] study). Circulation 2013, 127, 2088–2096. [Google Scholar] [CrossRef]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez, H.R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar]
- Urbina, E.M.; Williams, R.V.; Alpert, B.S.; Collins, R.T.; Daniels, S.R.; Hayman, L.; Jacobson, M.; Mahoney, L.; Mietus-Snyder, M.; Rocchini, A.; et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: Recommendations for standard assessment for clinical research: A scientific statement from the American Heart Association. Hypertension 2009, 54, 919–950. [Google Scholar] [CrossRef]
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S. Use of Carotid Ultrasound to Identify Subclinical Vascular Disease and Evaluate Cardiovascular Disease Risk: A Consensus Statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008, 21, 93–111. [Google Scholar]
- Wong, M.; Edelstein, J.; Wollman, J.; Bond, M.G. Ultrasonic-pathological comparison of the human arterial wall. Verification of intima-media thickness. Arter. Thromb. 1993, 13, 482–486. [Google Scholar] [CrossRef]
- Kusters, D.M.; Avis, H.J.; de Groot, E.; Wijburg, F.A.; Kastelein, J.J.; Wiegman, A.; Hutten, B.A. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA 2014, 312, 1055–1057. [Google Scholar] [CrossRef]
- Bots, M.L.; Evans, G.W.; Riley, W.A.; Grobbee, D.E. Carotid intima-media thickness measurements in intervention studies: Design options, progression rates, and sample size considerations: A point of view. Stroke 2003, 34, 2985–2994. [Google Scholar] [CrossRef]
- Raitakari, O.T.; Juonala, M.; Kähönen, M.; Taittonen, L.; Laitinen, T.; Maki-Torkko, N.; Jarvisalo, M.J.; Uhari, M.; Jokinen, E.; Rönnemaa, T.; et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: The Cardiovascular Risk in Young Finns Study. JAMA 2003, 290, 2277–2283. [Google Scholar] [CrossRef]
- Ne, J.Y.A.; Cai, T.Y.; Celermajer, D.S.; Caterson, I.D.; Gill, T.; Lee, C.M.Y.; Skilton, M.R. Obesity, arterial function and arterial structure-A systematic review and meta-analysis. Obes. Sci. Pract. 2017, 3, 171–184. [Google Scholar] [CrossRef]
- Markus, R.A.; Mack, W.J.; Azen, S.P.; Hodis, H.N. Influence of lifestyle modification on atherosclerotic progression determined by ultrasonographic change in the common carotid intima-media thickness. Am. J. Clin. Nutr. 1997, 65, 1000–1004. [Google Scholar] [CrossRef]
- Crouse, J.R., 3rd; Raichlen, J.S.; Riley, W.A.; Evans, G.W.; Palmer, M.K.; O’Leary, D.H.; Grobbee, D.E.; Bots, M.L. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: The METEOR Trial. JAMA 2007, 297, 1344–1353. [Google Scholar] [CrossRef]
- Skilton, M.R.; Yeo, S.Q.; Ne, J.Y.A.; Celermajer, D.S.; Caterson, I.D.; Lee, C.M.Y. Weight loss and carotid intima-media thickness—A meta-analysis. Obesity 2017, 25, 357–362. [Google Scholar] [CrossRef]
- Kapellas, K.; Maple-Brown, L.J.; Jamieson, L.M.; Do, L.G.; O’Dea, K.; Brown, A.; Cai, T.Y.; Anstey, N.M.; Sullivan, D.R.; Wang, H.; et al. Effect of periodontal therapy on arterial structure and function among Aboriginal Australians: A randomized controlled trial. Hypertension 2014, 64, 702–708. [Google Scholar] [CrossRef]
- Polak, J.F.; Pencina, M.J.; Pencina, K.M.; O’Donnell, C.J.; Wolf, P.A.; D’Agostino, R.B., Sr. Carotid-wall intima-media thickness and cardiovascular events. N. Engl. J. Med. 2011, 365, 213–221. [Google Scholar] [CrossRef]
- Lorenz, M.W.; Schaefer, C.; Steinmetz, H.; Sitzer, M. Is carotid intima media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the Carotid Atherosclerosis Progression Study (CAPS). Eur. Heart J. 2010, 31, 2041–2048. [Google Scholar] [CrossRef] [Green Version]
- Baldassarre, D.; Veglia, F.; Hamsten, A.; Humphries, S.E.; Rauramaa, R.; de Faire, U.; Smit, A.J.; Giral, P.; Kurl, S.; Mannarino, E.; et al. Progression of carotid intima-media thickness as predictor of vascular events: Results from the IMPROVE study. Arter. Thromb. Vasc. Biol. 2013, 33, 2273–2279. [Google Scholar] [CrossRef]
- Lorenz, M.W.; Polak, J.F.; Kavousi, M.; Mathiesen, E.B.; Volzke, H.; Tuomainen, T.P.; Sander, D.; Plichart, M.; Catapano, A.L.; Robertson, C.M.; et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): A meta-analysis of individual participant data. Lancet 2012, 379, 2053–2062. [Google Scholar] [CrossRef]
- Skilton, M.R.; Celermajer, D.S. Non-invasive Assessment of Arterial Structure and Function. In Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care; da Cruz, E.M., Dunbar Ivy, D., Jagger, J., Eds.; Springer: London, UK, 2014; pp. 531–545. [Google Scholar]
- Dalla Pozza, R.; Ehringer-Schetitska, D.; Fritsch, P.; Jokinen, E.; Petropoulos, A.; Oberhoffer, R. Association for European Paediatric Cardiology Working Group on Cardiovascular Prevention. Intima media thickness measurement in children: A statement from the Association for European Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention endorsed by the Association for European Paediatric Cardiology. Atherosclerosis 2015, 238, 380–387. [Google Scholar]
- Baroncini, L.A.; Sylvestre Lde, C.; Pecoits Filho, R. Assessment of Intima-Media Thickness in Healthy Children Aged 1 to 15 Years. Arq. Bras. Cardiol. 2016, 106, 327–332. [Google Scholar] [CrossRef]
- Juonala, M.; Magnussen, C.G.; Venn, A.; Dwyer, T.; Burns, T.L.; Davis, P.H.; Chen, W.; Srinivasan, S.R.; Daniels, S.R.; Kahonen, M.; et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: The Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation 2010, 122, 2514–2520. [Google Scholar]
- Wiegman, A.; de Groot, E.; Hutten, B.A.; Rodenburg, J.; Gort, J.; Bakker, H.D.; Sijbrands, E.J.; Kastelein, J.J. Arterial intima-media thickness in children heterozygous for familial hypercholesterolaemia. Lancet 2004, 363, 369–370. [Google Scholar] [CrossRef]
- Park, M.H.; Skow, A.; De Matteis, S.; Kessel, A.S.; Saxena, S.; Viner, R.M.; Kinra, S. Adiposity and carotid-intima media thickness in children and adolescents: A systematic review. BMC Pediatr. 2015, 15, 161. [Google Scholar] [CrossRef]
- Stergiotou, I.; Crispi, F.; Valenzuela-Alcaraz, B.; Cruz-Lemini, M.; Bijnens, B.; Gratacos, E. Aortic and carotid intima-media thickness in term small-for-gestational-age newborns and relationship with prenatal signs of severity. Ultrasound Obstet. Gynecol. 2014, 43, 625–631. [Google Scholar] [CrossRef]
- Lamont, D.; Parker, L.; White, M.; Unwin, N.; Bennett, S.M.; Cohen, M.; Richardson, D.; Dickinson, H.O.; Adamson, A.; Alberti, K.G.; et al. Risk of cardiovascular disease measured by carotid intima-media thickness at age 49-51: Lifecourse study. BMJ 2000, 320, 273–278. [Google Scholar] [CrossRef]
- Ayer, J.G.; Harmer, J.A.; Nakhla, S.; Xuan, W.; Ng, M.K.; Raitakari, O.T.; Marks, G.B.; Celermajer, D.S. HDL-cholesterol, blood pressure, and asymmetric dimethylarginine are significantly associated with arterial wall thickness in children. Arter. Thromb. Vasc. Biol. 2009, 29, 943–949. [Google Scholar] [CrossRef]
- Meyer, A.A.; Kundt, G.; Steiner, M.; Schuff-Werner, P.; Kienast, W. Impaired flow-mediated vasodilation, carotid artery intima-media thickening, and elevated endothelial plasma markers in obese children: The impact of cardiovascular risk factors. Pediatrics 2006, 117, 1560–1567. [Google Scholar] [CrossRef]
- Ruminska, M.; Witkowska-Sedek, E.; Majcher, A.; Brzewski, M.; Czerwonogrodzka-Senczyna, A.; Demkow, U.; Pyrzak, B. Carotid Intima-Media Thickness and Metabolic Syndrome Components in Obese Children and Adolescents. Adv. Exp. Med. Biol. 2017, 1021, 63–72. [Google Scholar]
- Woo, K.S.; Chook, P.; Yu, C.W.; Sung, R.Y.; Qiao, M.; Leung, S.S.; Lam, C.W.; Metreweli, C.; Celermajer, D.S. Overweight in children is associated with arterial endothelial dysfunction and intima-media thickening. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Sorof, J.M.; Alexandrov, A.V.; Cardwell, G.; Portman, R.J. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics 2003, 111, 61–66. [Google Scholar] [CrossRef]
- Lande, M.B.; Carson, N.L.; Roy, J.; Meagher, C.C. Effects of childhood primary hypertension on carotid intima media thickness: A matched controlled study. Hypertension 2006, 48, 40–44. [Google Scholar] [CrossRef]
- Urbina, E.M.; Kimball, T.R.; McCoy, C.E.; Khoury, P.R.; Daniels, S.R.; Dolan, L.M. Youth with obesity and obesity-related type 2 diabetes mellitus demonstrate abnormalities in carotid structure and function. Circulation 2009, 119, 2913–2919. [Google Scholar] [CrossRef]
- Gidding, S.S.; Bookstein, L.C.; Chomka, E.V. Usefulness of electron beam tomography in adolescents and young adults with heterozygous familial hypercholesterolemia. Circulation 1998, 98, 2580–2583. [Google Scholar] [CrossRef]
- Skilton, M.R.; Boussel, L.; Bonnet, F.; Bernard, S.; Douek, P.C.; Moulin, P.; Serusclat, A. Carotid intima-media and adventitial thickening: Comparison of new and established ultrasound and magnetic resonance imaging techniques. Atherosclerosis 2011, 215, 405–410. [Google Scholar] [CrossRef]
- Gupta, S.; Berry, J.D.; Ayers, C.R.; Peshock, R.M.; Khera, A.; de Lemos, J.A.; Patel, P.C.; Markham, D.W.; Drazner, M.H. Left ventricular hypertrophy, aortic wall thickness, and lifetime predicted risk of cardiovascular disease:the Dallas Heart Study. JACC Cardiovasc. Imaging 2010, 3, 605–613. [Google Scholar] [CrossRef]
- Malayeri, A.A.; Natori, S.; Bahrami, H.; Bertoni, A.G.; Kronmal, R.; Lima, J.A.; Bluemke, D.A. Relation of aortic wall thickness and distensibility to cardiovascular risk factors (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am. J. Cardiol. 2008, 102, 491–496. [Google Scholar] [CrossRef]
- Liu, C.Y.; Chen, D.; Bluemke, D.A.; Wu, C.O.; Teixido-Tura, G.; Chugh, A.; Vasu, S.; Lima, J.A.; Hundley, W.G. Evolution of aortic wall thickness and stiffness with atherosclerosis: Long-term follow up from the Multi-Ethnic Study of Atherosclerosis. Hypertension 2015, 65, 1015–1019. [Google Scholar] [CrossRef]
- McCulloch, M.A.; Mauras, N.; Canas, J.A.; Hossain, J.; Sikes, K.M.; Damaso, L.C.; Redheuil, A.; Ross, J.L.; Gidding, S.S. Magnetic resonance imaging measures of decreased aortic strain and distensibility are proportionate to insulin resistance in adolescents with type 1 diabetes mellitus. Pediatr. Diabetes 2015, 16, 90–97. [Google Scholar] [CrossRef]
- Das, S.; Zhang, S.; Mitchell, D.; Gidding, S.S. Metabolic syndrome with early aortic atherosclerosis in a child. J. Cardiometab. Syndr. 2006, 1, 286–287. [Google Scholar] [CrossRef]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement From the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef]
- Thurn, D.; Doyon, A.; Sozeri, B.; Bayazit, A.K.; Canpolat, N.; Duzova, A.; Querfeld, U.; Schmidt, B.M.; Schaefer, F.; Wuhl, E.; et al. Aortic Pulse Wave Velocity in Healthy Children and Adolescents: Reference Values for the Vicorder Device and Modifying Factors. Am. J. Hypertens. 2015, 28, 1480–1488. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.B.; Capingana, D.P.; Magalhaes, P.; Molina Mdel, C.; Baldo, M.P.; Mill, J.G. Predictors and Reference Values of Pulse Wave Velocity in Prepubertal Angolan Children. J. Clin. Hypertens. (Greenwich) 2016, 18, 725–732. [Google Scholar] [CrossRef]
- Reusz, G.S.; Cseprekal, O.; Temmar, M.; Kis, E.; Cherif, A.B.; Thaleb, A.; Fekete, A.; Szabo, A.J.; Benetos, A.; Salvi, P. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension 2010, 56, 217–224. [Google Scholar] [CrossRef]
- Fischer, D.C.; Schreiver, C.; Heimhalt, M.; Noerenberg, A.; Haffner, D. Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. J. Hypertens. 2012, 30, 2159–2167. [Google Scholar] [CrossRef]
- Urbina, E.M.; McCoy, C.E.; Gao, Z.; Khoury, P.R.; Shah, A.S.; Dolan, L.M.; Kimball, T.R. Lipoprotein particle number and size predict vascular structure and function better than traditional lipids in adolescents and young adults. J. Clin. Lipidol. 2017, 11, 1023–1031. [Google Scholar] [CrossRef]
- Urbina, E.M.; Kimball, T.R.; Khoury, P.R.; Daniels, S.R.; Dolan, L.M. Increased arterial stiffness is found in adolescents with obesity or obesity-related type 2 diabetes mellitus. J. Hypertens. 2010, 28, 1692–1698. [Google Scholar] [CrossRef] [Green Version]
- Hidvegi, E.V.; Illyes, M.; Benczur, B.; Bocskei, R.M.; Ratgeber, L.; Lenkey, Z.; Molnar, F.T.; Cziraki, A. Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. J. Hypertens. 2012, 30, 2314–2321. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.H.; Dawson, J.D.; Blecha, M.B.; Mastbergen, R.K.; Sonka, M. Measurement of aortic intimal-medial thickness in adolescents and young adults. Ultrasound Med. Biol. 2010, 36, 560–565. [Google Scholar] [CrossRef]
- Schwab, K.O.; Doerfer, J.; Krebs, A.; Krebs, K.; Schorb, E.; Hallermann, K.; Superti-Furga, A.; Zieger, B.; Marz, W.; Schmidt-Trucksass, A.; et al. Early atherosclerosis in childhood type 1 diabetes: Role of raised systolic blood pressure in the absence of dyslipidaemia. Eur. J. Pediatr. 2007, 166, 541–548. [Google Scholar] [CrossRef]
- Brady, T.M.; Schneider, M.F.; Flynn, J.T.; Cox, C.; Samuels, J.; Saland, J.; White, C.T.; Furth, S.; Warady, B.A.; Mitsnefes, M. Carotid intima-media thickness in children with CKD: Results from the CKiD study. Clin. J. Am. Soc. Nephrol. 2012, 7, 1930–1937. [Google Scholar] [CrossRef]
- Bae, J.H.; Bassenge, E.; Park, K.R.; Kim, K.Y.; Schwemmer, M. Significance of the intima-media thickness of the thoracic aorta in patients with coronary atherosclerosis. Clin. Cardiol. 2003, 26, 574–578. [Google Scholar] [CrossRef]
- McGill, H.C., Jr.; McMahan, C.A.; Herderick, E.E.; Tracy, R.E.; Malcom, G.T.; Zieske, A.W.; Strong, J.P. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arter. Thromb. Vasc. Biol. 2000, 20, 836–845. [Google Scholar] [CrossRef]
- Astrand, H.; Sandgren, T.; Ahlgren, A.R.; Lanne, T. Noninvasive ultrasound measurements of aortic intima-media thickness: Implications for in vivo study of aortic wall stress. J. Vasc. Surg. 2003, 37, 1270–1276. [Google Scholar] [CrossRef]
- Bianchini, E.; Bozec, E.; Gemignani, V.; Faita, F.; Giannarelli, C.; Ghiadoni, L.; Demi, M.; Boutouyrie, P.; Laurent, S. Assessment of carotid stiffness and intima-media thickness from ultrasound data: Comparison between two methods. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2010, 29, 1169–1175. [Google Scholar] [CrossRef]
- McCloskey, K.; Ponsonby, A.L.; Carlin, J.B.; Jachno, K.; Cheung, M.; Skilton, M.R.; Koleff, J.; Vuillermin, P.; Burgner, D.; Barwon Infant Study Investigator Group. Reproducibility of aortic intima-media thickness in infants using edge-detection software and manual caliper measurements. Cardiovasc. Ultrasound 2014, 12, 18. [Google Scholar] [CrossRef]
- Polak, J.F.; O’Leary, D.H. Edge-detected common carotid artery intima-media thickness and incident coronary heart disease in the multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 2015, 4, e001492. [Google Scholar] [CrossRef]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; et al. Mannheim Carotid Intima-Media Thickness Consensus (2004–2006). Cerebrovasc. Dis. 2007, 23, 75–80. [Google Scholar] [CrossRef]
- McCloskey, K.; Vuillermin, P.; Carlin, J.B.; Skilton, M.R.; Raitakari, O.T.; Jachno, K.; Cheung, M.; Burgner, D.; Ponsonby, A.L. Assessment of early life markers of atherosclerosis using aortic intima-media thickness; how should we optimally adjust for infant size? J. Vasc. Ultrasound 2015, 39, 119–126. [Google Scholar] [CrossRef]
- Koklu, E.; Akcakus, M.; Kurtoglu, S.; Koklu, S.; Yikilmaz, A.; Coskun, A.; Gunes, T. Aortic intima-media thickness and lipid profile in macrosomic newborns. Eur. J. Pediatr. 2007, 166, 333–338. [Google Scholar] [CrossRef]
- Carr, J.J.; Jacobs, D.R., Jr.; Terry, J.G.; Shay, C.M.; Sidney, S.; Liu, K.; Schreiner, P.J.; Lewis, C.E.; Shikany, J.M.; Reis, J.P.; et al. Association of Coronary Artery Calcium in Adults Aged 32 to 46 Years With Incident Coronary Heart Disease and Death. JAMA Cardiol. 2017, 2, 391–399. [Google Scholar] [CrossRef]
- Kizirian, N.V.; Kong, Y.; Muirhead, R.; Brodie, S.; Garnett, S.P.; Petocz, P.; Sim, K.A.; Celermajer, D.S.; Louie, J.C.; Markovic, T.P.; et al. Effects of a low-glycemic index diet during pregnancy on offspring growth, body composition, and vascular health: A pilot randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 1073–1082. [Google Scholar] [CrossRef]
- Koc, A.S.; Sumbul, H.E. Increased aortic intima-media thickness may be used to detect macrovascular complications in adult type II diabetes mellitus patients. Cardiovasc. Ultrasound 2018, 16, 8. [Google Scholar] [CrossRef]
- Lawrence, J.P. Physics and instrumentation of ultrasound. Crit. Care Med. 2007, 35, S314–S322. [Google Scholar] [CrossRef]
- Gomez-Roig, M.D.; Mazarico, E.; Valladares, E.; Guirado, L.; Fernandez-Arias, M.; Vela, A. Aortic intima-media thickness and aortic diameter in small for gestational age and growth restricted fetuses. PLoS ONE 2015, 10, e0126842. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skilton, M.R.; Celermajer, D.S.; Cosmi, E.; Crispi, F.; Gidding, S.S.; Raitakari, O.T.; Urbina, E.M. Natural History of Atherosclerosis and Abdominal Aortic Intima-Media Thickness: Rationale, Evidence, and Best Practice for Detection of Atherosclerosis in the Young. J. Clin. Med. 2019, 8, 1201. https://doi.org/10.3390/jcm8081201
Skilton MR, Celermajer DS, Cosmi E, Crispi F, Gidding SS, Raitakari OT, Urbina EM. Natural History of Atherosclerosis and Abdominal Aortic Intima-Media Thickness: Rationale, Evidence, and Best Practice for Detection of Atherosclerosis in the Young. Journal of Clinical Medicine. 2019; 8(8):1201. https://doi.org/10.3390/jcm8081201
Chicago/Turabian StyleSkilton, Michael R., David S. Celermajer, Erich Cosmi, Fatima Crispi, Samuel S. Gidding, Olli T. Raitakari, and Elaine M. Urbina. 2019. "Natural History of Atherosclerosis and Abdominal Aortic Intima-Media Thickness: Rationale, Evidence, and Best Practice for Detection of Atherosclerosis in the Young" Journal of Clinical Medicine 8, no. 8: 1201. https://doi.org/10.3390/jcm8081201
APA StyleSkilton, M. R., Celermajer, D. S., Cosmi, E., Crispi, F., Gidding, S. S., Raitakari, O. T., & Urbina, E. M. (2019). Natural History of Atherosclerosis and Abdominal Aortic Intima-Media Thickness: Rationale, Evidence, and Best Practice for Detection of Atherosclerosis in the Young. Journal of Clinical Medicine, 8(8), 1201. https://doi.org/10.3390/jcm8081201