A Systematic Review of COVID-19 Epidemiology Based on Current Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Literature Search
2.3. Additional Analysis
3. Results
3.1. Size of the Outbreak at Epicentre
3.2. Transmissibility of SARS-CoV-2
3.2.1. Basic Reproduction Number ()
3.2.2. Incubation Period
3.2.3. Serial Interval
3.3. Susceptibility
3.4. Severity
3.4.1. Descriptive Analysis
3.4.2. Modeling Studies: Estimates for China
3.4.3. Modeling Studies: Estimates for Outside China
3.5. Control Measures
3.5.1. Travel Restrictions
3.5.2. Non-Pharmaceutical Interventions and Quarantine
3.5.3. Airport Screening
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- BNO Tracking Coronavirus: Map, Data and Timeline. Available online: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ (accessed on 18 March 2020).
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Cowling, B.J.; Leung, G.M. Epidemiological research priorities for public health control of the ongoing global novel coronavirus (2019-nCoV) outbreak. Euro Surveill. 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, M. Measurement and Modeling: Infectious Disease Modeling. In International Encyclopedia of Public Health; Academic Press: Cambridge, MA, USA, 2017; pp. 579–585. ISBN 978-0-12-803708-9. [Google Scholar]
- Du, Z.; Wang, L.; Cauchemez, S.; Xu, X.; Wang, X.; Cowling, B.J.; Meyers, L.A. Risk for Transportation of 2019 Novel Coronavirus Disease from Wuhan to Other Cities in China. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020. [Google Scholar] [CrossRef] [Green Version]
- Nishiura, H.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Miyama, T.; Kinoshita, R.; Linton, N.M.; Jung, S.M.; Yuan, B.; Suzuki, A.; et al. The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. J. Clin. Med. 2020, 9, 419. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Q.; Lu, X.; Pfeiffer, D.; Wang, L.; Song, H.; Pei, T.; Jia, Z.; Zeng, D.D. Incorporating Human Movement Data to Improve Epidemiological Estimates for 2019-nCoV. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore y Piontti, A.; Rossi, L.; Sun, K.; Viboud, C.; et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Yan, H. Simulating the infected population and spread trend of 2019-nCov under different policy by EIR model. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Y.; Small, D.S. Analysis of the epidemic growth of the early 2019-nCoV outbreak using internationally confirmed cases. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhao, S.; Musa, S.S.; Lin, Q.; Ran, J.; Yang, G.; Wang, W.; Lou, Y.; Yang, L.; Gao, D.; He, D.; et al. Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. J. Clin. Med. 2020, 9, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 2020, 92, 214–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riou, J.; Althaus, C.L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020, 25. [Google Scholar] [CrossRef]
- Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. J. Clin. Med. 2020, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.; Nishiura, H. Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J. Clin. Med. 2020, 9, 523. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Peng, Z.; Xiao, Y.; Zhang, L. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China. bioRxiv 2020. [Google Scholar] [CrossRef]
- Read, J.M.; Bridgen, J.R.E.; Cummings, D.A.T.; Ho, A.; Jewell, C.P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Hu, J.; Kang, M.; Lin, L.; Zhong, H.; Xiao, J.; He, G.; Song, T.; Huang, Q.; Rong, Z.; et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV). bioRxiv 2020. [Google Scholar] [CrossRef]
- Majumder, M.; Mandl, K.D. Early Transmissibility Assessment of a Novel Coronavirus in Wuhan, China (January 26, 2020). SSRN 2020. [Google Scholar] [CrossRef]
- Riley, S.; Fraser, C.; Donnelly, C.A.; Ghani, A.C.; Abu-Raddad, L.J.; Hedley, A.J.; Leung, G.M.; Ho, L.M.; Lam, T.H.; Thach, T.Q.; et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science 2003, 300, 1961–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsitch, M.; Cohen, T.; Cooper, B.; Robins, J.M.; Ma, S.; James, L.; Gopalakrishna, G.; Chew, S.K.; Tan, C.C.; Samore, M.H.; et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 2003, 300, 1966–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauchemez, S.; Fraser, C.; Van Kerkhove, M.D.; Donnelly, C.A.; Riley, S.; Rambaut, A.; Enouf, V.; van der Werf, S.; Ferguson, N.M. Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect. Dis. 2014, 14, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Backer, J.A.; Klinkenberg, D.; Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020, 25. [Google Scholar] [CrossRef] [Green Version]
- Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.R.; Jung, S.M.; Yuan, B.; Kinoshita, R.; Nishiura, H. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J. Clin. Med. 2020, 9, 538. [Google Scholar] [CrossRef] [Green Version]
- Ki, M.; Task Force for 2019-nCoV. Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Republic of Korea. Epidemiol. Health 2020, e2020007. [Google Scholar] [CrossRef]
- Jiang, X.; Rayner, S.; Luo, M.H. Does SARS-CoV-2 has a longer incubation period than SARS and MERS? J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of 2019-nCoV from publicly reported confirmed cases: Estimation and application. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhang, J.; Litvinova, M.; Wang, W.; Wang, Y.; Deng, X.; Chen, X.; Li, M.; Zheng, W.; Yi, L.; Chen, X.; et al. Evolving epidemiology of novel coronavirus diseases 2019 and possible interruption of local transmission outside Hubei Province in China: A descriptive and modeling study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Lau, E.H.; Hsiung, C.A.; Cowling, B.J.; Chen, C.H.; Ho, L.M.; Tsang, T.; Chang, C.W.; Donnelly, C.A.; Leung, G.M. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan. BMC Infect. Dis. 2010, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Cowling, B.J.; Park, M.; Fang, V.J.; Wu, P.; Leung, G.M.; Wu, J.T. Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015. Euro Surveill. 2015, 20, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Wang, L.; Xu, X.; Wu, Y.; Cowling, B.J.; Meyers, L.A. The serial interval of COVID-19 from publicly reported confirmed cases. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Nishiura, H.; Linton, N.M.; Akhmetzhanov, A.R. Serial interval of novel coronavirus (2019-nCoV) infections. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Gao, D.; Zhuang, Z.; Chong, M.; Cai, Y.; Ran, J.; Cao, P.; Wang, K.; Lou, Y.; Wang, W.; et al. Estimating the serial interval of the novel coronavirus disease (COVID-19): A statistical analysis using the public data in Hong Kong from January 16 to February 15, 2020. medRxiv 2020. [Google Scholar] [CrossRef]
- Assiri, A.; McGeer, A.; Perl, T.M.; Price, C.S.; Al Rabeeah, A.A.; Cummings, D.A.; Alabdullatif, Z.N.; Assad, M.; Almulhim, A.; Makhdoom, H.; et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 2013, 369, 407–416. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q.; et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Wang, L.; Fang, Z.; Peng, S.; Zhang, L.; Chang, G.; Xia, S.; Zhou, W. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl. Pediatr. 2020, 9, 51–60. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- WHO. Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003. Available online: https://www.who.int/csr/sars/country/table2004_04_21/en/ (accessed on 1 March 2020).
- WHO. Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Available online: https://www.who.int/emergencies/mers-cov/en/ (accessed on 1 March 2020).
- Chen, Z.M.; Fu, J.F.; Shu, Q.; Chen, Y.H.; Hua, C.Z.; Li, F.B.; Lin, R.; Tang, L.F.; Wang, T.L.; Wang, W.; et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J. Pediatr. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ma, Z.; Ning, Y.; Chen, C.; Chen, R.; Chen, Q.; Zhang, H.; Li, C.; He, Y.; Wang, T.; et al. Estimating the case fatality ratio of the COVID-19 epidemic in China. medRxiv 2020. [Google Scholar] [CrossRef]
- Mizumoto, K.; Kagaya, K.; Chowell, G. Early epidemiological assessment of the transmission potential and virulence of 2019 Novel Coronavirus in Wuhan City: China, 2019-2020. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.; Kvalsvig, A.; Telfar Barnard, L.; Baker, M.G. Estimating the Case Fatality Risk of COVID-19 using Cases from Outside China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Liu, Y.; Li, Y.; Kraemer, M.U.G.; Chen, B.; Wu, C.-H.; Cai, J.; Li, B.; Xu, B.; Yang, Q.; et al. Early evaluation of transmission control measures in response to the 2019 novel coronavirus outbreak in China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Koo, J.R.; Cook, A.R.; Park, M.; Sun, Y.; Sun, H.; Lim, J.T.; Tam, C.; Dickens, B.L. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study. Lancet Infect Dis 2020. [Google Scholar] [CrossRef] [Green Version]
- Quilty, B.J.; Clifford, S.; Flasche, S.; Eggo, R.M. Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Euro Surveill. 2020, 25. [Google Scholar] [CrossRef]
- Gostic, K.; Gomez, A.C.R.; Mummah, R.O.; Kucharski, A.J.; Lloyd-Smith, J.O. Estimated effectiveness of traveller screening to prevent international spread of 2019 novel coronavirus (2019-nCoV). medRxiv 2020. [Google Scholar] [CrossRef]
Author | Data | Estimates | Estimation Period | Doubling Time |
---|---|---|---|---|
Published (2020) | ||||
Du et al. [7] | Number of confirmed cases outside China and travel data | 12,400 in Wuhan | By 22 Jan 2020 | 7.31 days |
Wu et al. [8] | Number of confirmed cases outside China and travel data | 75,815 in Wuhan | By 25 Jan 2020 | 6.4 days |
Nishiura et al. [9] | Proportion of asymptomatic cases among Japanese evacuated from Wuhan | 20,767 in Wuhan | By 29 Jan 2020 | - |
Li et al. [10] | Case reports from Wuhan | - | By 22 Jan 2020 | 7.4 days |
Preprint | ||||
Cao et al. [11] | Number of confirmed cases in China and travel data | 18,556 in Wuhan | By 23 Jan 2020 | - |
Chinazzi et al. [12] | Number of confirmed cases outside China and travel data | 58,956 in Wuhan | By 23 Jan 2020 | 4.6 days |
Xiong et al. [13] | Number of confirmed cases in China | 49,093 in China | By 16 Feb 2020 | - |
Q. Zhao et al. [14] | Number of confirmed cases outside China and travel data | − | By 23 Jan 2020 | 2.9 days |
Author | Method | Estimates | Uncertainty | Estimation Period | |||
---|---|---|---|---|---|---|---|
Published (2020) | |||||||
S. Zhao et al. [15] | Exponential growth model | 2.56 | 2.49 | – | 2.63 | 1–15 Jan 2020 | 95%CI |
S. Zhao et al. [16] # | Exponential growth model | 2.24 | 1.96 | – | 2.55 | 10–24 Jan 2020 | 95%CI |
S. Zhao et al. [16] ^ | Exponential growth model | 3.58 | 2.89 | – | 4.39 | 10–24 Jan 2020 | 95%CI |
Riou et al. [17] | Stochastic simulations of outbreak trajectories | 2.2 | 1.4 | – | 3.8 | By 18 Jan 2020 | 90%HDI * |
Li et al. [10] | Analysis of epidemiological data | 2.2 | 1.4 | – | 3.9 | By 22 Jan 2020 | 95%CI |
Tang et al. [18] | SEIR model § | 6.47 | 5.71 | – | 7.23 | By 22 Jan 2020 | 95%CI |
Du et al. [7] | Hierarchical model | 1.90 | 1.47 | – | 2.59 | By 22 Jan 2020 | 95%CI |
Jung et al. [19] † | Epidemic growth model | 2.1 | 2 | – | 2.2 | By 24 Jan 2020 | 95%CI |
Jung et al. [19] ‡ | Epidemic growth model | 3.2 | 2.7 | – | 3.7 | By 24 Jan 2020 | 95%CI |
Wu et al. [8] | SEIR model | 2.68 | 2.47 | – | 2.86 | By 25 Jan 2020 | 95%CI |
Preprint | |||||||
Shen et al. [20] | SEIJR model §§ | 4.71 | 4.5 | – | 4.92 | On 12 Dec 2019 | 95%CI |
Shen et al. [20] | SEIJR model | 2.08 | 1.99 | – | 2.18 | On 22 Jan 2020 | 95%CI |
Read et al. [21] | SEIR model | 3.8 | 3.6 | – | 4.0 | By 22 Jan 2020 | 95%CI |
Liu et al. [22] | Exponential growth model | 2.90 | 2.32 | – | 3.63 | By 23 Jan 2020 | 95%CI |
Liu et al. [22] | MLE ¶ | 2.92 | 2.28 | – | 3.67 | By 23 Jan 2020 | 95%CI |
Chinazziet al. [12] | GLEAM ** and SLIR ## | 2.4 | 2.2 | – | 2.6 | By 23 Jan 2020 | 90%CI |
Q. Zhao et al. [14] | Exponential growth model | 5.7 | 3.4 | – | 9.2 | By 23 Jan 2020 | 95%CI |
Cao et al. [11] | Geo-stratified debiasing estimation framework | 3.24 | By 23 Jan 2020 | ||||
Majumder et al. [23] | Incidence Decay and Exponential Adjustment | 2.5 | 2.0 | – | 3.1 | By 26 Jan 2020 | Range |
Xiong et al. [13] | EIR model (I = Identified) | 2.7 | By 16 Feb 2020 | ||||
Comparison with SARS-CoV and MERS-CoV | |||||||
SARS-CoV [24] | Hong Kong (2003) | 2.7 | 2.2 | – | 3.7 | Early phase | 95%CI |
SARS-CoV [25] | Singapore (2003) | - | 2.2 | – | 3.6 | Early phase | Range |
MERS-CoV [26] | South Korea (2012-2013) | 0.91 | 0.36 | – | 1.44 | 95%CI |
Author | Country/Region | Sample Size | Estimate | Uncertainty | |||
---|---|---|---|---|---|---|---|
Published (2020) | |||||||
Li et al. [10] | Wuhan | 10 cases | 5.2 | 4.1 | – | 7.0 | 95% CI |
Backer et al. [27] | Outside Wuhan | 88 cases | 6.4 | 5.6 | – | 7.7 | 95% CI |
Linton et al. [28] | Wuhan | 158 cases | 5.6 | 5.0 | – | 6.3 | 95% CI |
Linton et al. [28] | Outside Wuhan | 52 cases | 5.0 | 4.2 | – | 6.0 | 95% CI |
Ki [29] | South Korea | 22 cases | 3.6 | 1.0 | – | 9.0 | Range |
Jiang et al. [30] | Global | 50 cases | 4.9 | 4.4 | – | 5.5 | 95% CI |
Guan et al. * [2] | China | 291 cases | 4.0 | 2.0 | – | 7.0 | IQR |
Preprint | |||||||
Lauer et al. [31] | Global (excl. Hubei) | 101 cases | 5.2 | 4.4 | – | 6.0 | 95% CI |
Zhang et al. [32] | China (excl. Hubei) | 49 cases | 5.2 | 1.8 | – | 12.4 | 95% CI |
Comparison with SARS-CoV and MERS-CoV | |||||||
SARS-CoV (2003) [33] | Hong Kong | 4.4 | |||||
MERS-CoV (2012-3) [26] | Global | 5.5 | 3.6 | – | 10.2 | 95% CI | |
MERS-CoV (2015) [34] | South Korea | 6.7 | 6.1 | – | 7.3 | 95% CI |
Author | Country | Sample Size | Estimate | 95% CI | ||
---|---|---|---|---|---|---|
Published (2020) | ||||||
Li et al. [10] | Wuhan | 6 pairs | 7.5 | 5.3 | – | 19.0 |
Ki [29] | Korea | 7 pairs | 4.6 | 3.0 | – | 9.0 |
Preprint | ||||||
Du et al. [35] | China (excl. Hubei) | 468 pairs | 3.96 | 3.53 | – | 4.39 |
Zhang et al. [32] | China (excl. Hubei) | 35 pairs | 5.1 | 1.3 | – | 11.6 |
Nishiura et al. [36] | Global | 28 pairs | 4.0 | 3.1 | – | 4.9 |
Nishiura et al. [36] | Global | 18 pairs | 4.6 | 3.5 | – | 5.9 |
S. Zhao et al. [37] | Hong Kong | 21 pairs | 4.4 | 2.9 | – | 6.7 |
Comparison with SARS-CoV and MERS-CoV | ||||||
SARS-CoV (2003) [25] | Singapore | 8.4 | - | - | ||
MERS-CoV (2013) [38] | Saudi Arabia | 7.6 | 2.5 | – | 23.1 | |
MERS-CoV (2015) [34] | South Korea | 12.6 | 12.1 | – | 13.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Cook, A.R.; Lim, J.T.; Sun, Y.; Dickens, B.L. A Systematic Review of COVID-19 Epidemiology Based on Current Evidence. J. Clin. Med. 2020, 9, 967. https://doi.org/10.3390/jcm9040967
Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A Systematic Review of COVID-19 Epidemiology Based on Current Evidence. Journal of Clinical Medicine. 2020; 9(4):967. https://doi.org/10.3390/jcm9040967
Chicago/Turabian StylePark, Minah, Alex R. Cook, Jue Tao Lim, Yinxiaohe Sun, and Borame L. Dickens. 2020. "A Systematic Review of COVID-19 Epidemiology Based on Current Evidence" Journal of Clinical Medicine 9, no. 4: 967. https://doi.org/10.3390/jcm9040967