Deciphering Paleoceanographic Shifts Inferred from the Foraminiferal Record of the Western Svalbard Slope (Bellsund Drift) over the Past Century
Abstract
:1. Introduction
1.1. Oceanographic Settings
1.2. Temperature and Sea Ice Record in the Fram Strait from Satellite Monitoring
2. Materials and Methods
2.1. Sediment Dating and Age Model
2.2. Geochemistry: X-ray Fluorescence (XRF) Core Scan Analysis
2.3. Micropaleontological Analysis
3. Results
3.1. Chronology and Sedimentation Rate
3.2. Geochemistry
3.3. Planktic Foraminifera
3.4. Benthic Foraminifera
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebesco, M.; Wåhlin, A.; Laberg, J.S.; Schauer, U.; Beszczynska-Möller, A.; Lucchi, R.G.; Noormets, R.; Accettella, D.; Zarayskaya, Y.; Diviacco, P. Quaternary contourite drifts of the Western Spitsbergen margin. Deep Sea Res. Part I Oceanogr. Res. Pap. 2013, 79, 156–168. [Google Scholar] [CrossRef]
- Werner, A. Holocene moraine chronology, Spitsbergen, Svalbard: Lichenometric evidence for multiple Neoglacial advances in the Arctic. Holocene 1993, 3, 128–137. [Google Scholar] [CrossRef]
- Svendsen, J.I.; Mangerud, J. Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene 1997, 7, 45–57. [Google Scholar] [CrossRef]
- Werner, K.; Spielhagen, R.F.; Bauch, D.; Hass, H.C.; Kandiano, E.; Zamelczyk, K. Atlantic Water advection to the eastern Fram Strait—Multiproxy evidence for late Holocene variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 264–276. [Google Scholar] [CrossRef]
- Quadfasel, D.; Rudels, B.; Kurz, K. Outflow of dense water from a Svalbard fjord into the Fram Strait. Deep Sea Res. Part A Oceanogr. Res. Pap. 1988, 35, 1143–1150. [Google Scholar] [CrossRef]
- Nilsen, F.; Skogseth, R.; Vaardal-Lunde, J.; Inall, M. A simple shelf circulation model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. J. Phys. Oceanogr. 2016, 46, 1209–1230. [Google Scholar] [CrossRef]
- Langehaug, H.R.; Falck, E. Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait. Prog. Oceanogr. 2012, 96, 57–76. [Google Scholar] [CrossRef]
- Rudels, B.; Friedrich, H.J.; Quadfasel, D. The Arctic circumpolar boundary current. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 1023–1062. [Google Scholar] [CrossRef]
- Karcher, M.J.; Gerdes, R.; Kauker, F.; Köberle, C. Arctic warming: Evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean. J. Geophys. Res. Ocean. 2003, 108, 1–16. [Google Scholar] [CrossRef]
- Schauer, U.; Fahrbach, E.; Osterhus, S.; Rohardt, G. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J. Geophys. Res. Ocean. 2004, 109, C06026. [Google Scholar] [CrossRef]
- Kinnard, C.; Zdanowicz, C.M.; Fisher, D.A.; Isaksson, E.; de Vernal, A.; Thompson, L.G. Reconstructed changes in Arctic Sea ice over the past 1,450 years. Nature 2011, 479, 509–512. [Google Scholar] [CrossRef]
- Müller, J.; Werner, K.; Stein, R.; Fahl, K.; Moros, M.; Jansen, E. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat. Sci. Rev. 2012, 47, 1–14. [Google Scholar] [CrossRef]
- Wang, Q.; Wekerle, C.; Wang, X.; Danilov, S.; Koldunov, N.; Sein, D.; Sidorenko, D.; von Appen, W.J.; Jung, T. Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic Sea ice decline. Geophys. Res. Lett. 2020, 47, e2019GL086682. [Google Scholar] [CrossRef]
- Tuerena, R.E.; Hopkins, J.; Buchanan, P.J.; Ganeshram, R.S.; Norman, L.; von Appen, W.J.; Tagliabue, A.; Doncila, A.; Graeve, M.; Ludwichowski, K.U.; et al. An Arctic strait of two halves: The changing dynamics of nutrient uptake and limitation across the Fram Strait. Global Biogeochem. Cycles 2021, 35, e2021GB006961. [Google Scholar] [CrossRef]
- Hofmann, Z.; von Appen, W.J.; Wekerle, C. Seasonal and mesoscale variability of the two Atlantic Water recirculation pathways in Fram Strait. J. Geophys. Res. Oceans 2021, 126, e2020JC017057. [Google Scholar] [CrossRef]
- Ślubowska, M.A.; Koç, N.; Rasmussen, T.L.; Klitgaard-Kristensen, D. Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern Svalbard continental margin, 80 °N. Paleoceanography 2005, 20, PA4014. [Google Scholar] [CrossRef]
- Vinje, T. Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J. Clim. 2001, 14, 255–267. [Google Scholar] [CrossRef]
- Divine, D.V.; Dick, C. Historical variability of sea ice edge position in the Nordic Seas. J. Geophys. Res. Ocean. 2006, 111, 1–14. [Google Scholar] [CrossRef]
- Spielhagen, R.F.; Werner, K.; Sørensen, S.A.; Zamelczyk, K.; Kandiano, E.; Budeus, G.; Husum, K.; Marchitto, T.M.; Hald, M. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 2011, 331, 450–453. [Google Scholar] [CrossRef]
- Tesi, T.; Muschitiello, F.; Mollenhauer, G.; Miserocchi, S.; Langone, L.; Ceccarelli, C.; Panieri, G.; Chiggiato, J.; Nogarotto, A.; Hefter, J.; et al. Rapid Atlantification along the Fram Strait at the beginning of the 20th century. Sci. Adv. 2021, 7, eabj2946. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic Sea ice cover. Geophys. Res. Lett. 2008, 35, L01703. [Google Scholar] [CrossRef]
- Lucchi, R.G.; Kovacevic, V.; Aliani, S.; Caburlotto, A.; Celussi, M.; Corgnati, L.; Cosoli, S.; Deponte, D.; Ersdal, E.A.; Fredriksson, S.; et al. PREPARED: Present and Past Flow Regime on Contourite Drifts West of Spitsbergen; EUROFLEETS-2 Cruise Summary Report, R/V G.O. Sars Cruise No. 191, 05/06/2014–15/06/2014; Tromsø, Norway, 2014; p. 89. Available online: https://www.researchgate.net/publication/266556598_PREPARED_Present_and_past_flow_regime_On_contourite_drifts_west_of_Spitsbergen (accessed on 18 March 2024). [CrossRef]
- Kirchner, G. 210Pb as a tool for establishing sediment chronologies: Examples of potentials and limitations of conventional dating models. J. Environ. Radioact. 2011, 102, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Stuiver, M.; Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 1993, 35, 215–230. [Google Scholar] [CrossRef]
- Heaton, T.J.; Köhler, P.; Butzin, M.; Bard, E.; Reimer, R.W.; Austin, W.E.N.; Bronk Ramsey, C.; Hughen, K.A.; Kromer, B.; Reimer, P.J.; et al. Marine20-the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 2020, 62, 779–820. [Google Scholar] [CrossRef]
- Mangerud, J.; Bondevik, S.; Gulliksen, S.; Hufthammerd, A.K.; Høisætere, T. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quat. Sci. Rev. 2006, 25, 23–24, 3228–3245. [Google Scholar] [CrossRef]
- Bondevik, S.; Mangerud, J.; Birks, H.H.; Gulliksen, S.; Reimer, P. Changes in North Atlantic radiocarbon reservoir ages during the Allerød and Younger Dryas. Science 2006, 312, 1514–1517. [Google Scholar] [CrossRef]
- Wu, L.; Wilson, D.J.; Wang, R.; Yin, X.; Chen, Z.; Xiao, W.; Huang, M. Evaluating Zr/Rb ratio from XRF scanning as an indicator of grain-size variations of glaciomarine sediments in the Southern Ocean. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009350. [Google Scholar] [CrossRef]
- Olsen, J.; Anderson, N.J.; Knudsen, M.F. Variability of the North Atlantic Oscillation over the past 5200 years. Nat. Geosci. 2012, 5, 808–812. [Google Scholar] [CrossRef]
- Lucchi, R.G.; Camerlenghi, A.; Rebesco, M.; Colmenero-Hidalgo, E.; Sierro, F.J.; Sagnotti, L.; Giorgetti, G. Postglacial sedimentary processes on the Storfjorden and Kveithola trough mouth fans: Significance of extreme glacimarine sedimentation. Glob. Planet Change 2013, 111, 309–326. [Google Scholar] [CrossRef]
- Thomson, J.; Croudace, I.W.; Rothwell, R.G. A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units. In: Rothwell RG (ed) New Techniques in Sediment Core Analysis. Geol. Soc. Spec. Publ. 2006, 267, 65–77. [Google Scholar] [CrossRef]
- Itambi, A.C.; Von Dobeneck, T.; Adegbie, A.T. Millennial-scale precipitation changes over Central Africa during the late Quaternary and Holocene: Evidence in sediments from the Gulf of Guinea. J. Quat. Sci. 2010, 25, 267–279. [Google Scholar] [CrossRef]
- Caley, T.; Malaizé, B.; Zaragosi, S.; Rossignol, L.; Bourget, J.; Eynaud, F.; Martinez, P.; Giraudeau, J.; Charlier, K.; Ellouz-Zimmermann, N. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 2011, 308, 433–444. [Google Scholar] [CrossRef]
- Darling, K.F.; Kucera, M.; Kroon, D.; Wade, C.M. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography 2006, 21, 1–14. [Google Scholar] [CrossRef]
- Hemleben, C.; Spindler, M.; Anderson, O.R. Modern Planktonic Foraminifera; Springer Science Business Media: New York, NY, USA, 2012; pp. 1–362. [Google Scholar]
- Altuna, N.E.B.; Pieńkowski, A.J.; Eynaud, F.; Thiessen, R. The morphotypes of Neogloboquadrina pachyderma: Isotopic signature and distribution patterns in the Canadian Arctic Archipelago and adjacent regions. Mar. Micropaleontol. 2018, 142, 13–24. [Google Scholar] [CrossRef]
- Ellis, B.E.; Messina, A.R. Catalogue of Foraminifera American Museum of Natural History; Special Publications: New York, NY, USA, 1940. [Google Scholar]
- Loeblich, A.R.; Tappan, H.N. Studies of Arctic foraminifera. Smithson. Misc. Collect. 1953, 121, 7. [Google Scholar]
- Loeblich, A.R.; Tappan, H. Foraminiferal Genera and Their Classification; Van Nostrand Reinhold Co.: New York, NY, USA, 1987; pp. 1–2114. [Google Scholar]
- Loeblich, A.R., Jr.; Tappan, H. Foraminiferal Genera and Their Classification; Springer: New York, NY, USA, 2015; pp. 1–846. [Google Scholar]
- Feyling-Hanssen, R.W.; Jørgensen, J.A.; Knudsen, K.L.; Lykke-Andersen, A.L. Late Quaternary Foraminifera from Vendsyssel, Denmark and Sandnes, Norway. Bull. Geol. Soc. Den. 1971, 21, 67–317. [Google Scholar]
- Gabel, B. Die Foraminiferen der Nordsee. Helgoländer Wiss. Meeresunters. 1971, 22, 1–65. [Google Scholar] [CrossRef]
- Knudsen, K.L. Foraminiferer i Kvartær stratigrafi: Laboratorie-og fremstillingsteknik samt udvalgte eksempler. Geol. Tidsskr. 1998, 3, 1–25. [Google Scholar]
- Wollenburg, J.E.; Mackensen, A. Living benthic foraminifers from the central Arctic Ocean: Faunal composition, standing stock and diversity. Mar. Micropaleontol. 1998, 34, 153–185. [Google Scholar] [CrossRef]
- Holbourn, A.; Henderson, A.S.; MacLeod, N. Atlas of Benthic Foraminifera; John Wiley & Sons, Ltd.: Hoboken, NJ, USA; London, UK, 2013; Volume 654, pp. 1–656. [Google Scholar]
- Setoyama, E.; Kaminski, M.A. Neogene benthic foraminifera from the southern Bering Sea (IODP Expedition 323). Palaeontol. Electron. 2015, 18, 1–30. Available online: https://palaeo-electronica.org/content/2015/1264-bering-benthic-forams (accessed on 18 March 2024). [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. Available online: https://palaeo-electronica.org/2001_1/past/past.pdf (accessed on 18 March 2024).
- Carstens, J.; Hebbeln, D.; Wefer, G. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait). Mar. Micropaleontol. 1997, 29, 257–269. [Google Scholar] [CrossRef]
- Bé, A.W.H.; Tolderlund, D.S. Distribution and Ecology of Living Planktonic Foraminifera in Surface Waters of the Atlantic and Indian Oceans. In The Micropaleontology of the Oceans; Funnell, B.M., Riedel, W.R., Eds.; Cambridge University Press: Cambridge, UK, 1971; pp. 105–149. [Google Scholar]
- Kohfeld, K.E.; Fairbanks, R.G.; Smith, S.L.; Walsh, I.D. Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from Northeast Water Polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 1996, 11, 679–699. [Google Scholar] [CrossRef]
- Simstich, J.; Sarnthein, M.; Erlenkeuser, H. Paired δ18O signals of Neogloboquadrina pachyderma(s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas. Mar. Micropaleontol. 2003, 48, 107–125. [Google Scholar] [CrossRef]
- Schiebel, R.; Hemleben, C. Modern planktic foraminifera. Paläontologische Z. 2005, 79, 135–148. [Google Scholar] [CrossRef]
- Volkmann, R. Planktic foraminifers in the outer Laptev Sea and the Fram Strait—Modern distribution and ecology. J. Foraminifer. Res. 2000, 30, 157–176. [Google Scholar] [CrossRef]
- Schiebel, R.; Waniek, J.; Bork, M.; Hemleben, C. Planktic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients. Deep Sea Res. Part I Oceanogr. Res. Pap. 2001, 48, 721–740. [Google Scholar] [CrossRef]
- Husum, K.; Hald, M. Arctic planktic foraminiferal assemblages: Implications for subsurface temperature reconstructions. Mar. Micropaleontol. 2012, 96, 38–47. [Google Scholar] [CrossRef]
- Lagoe, M.B. Recent benthic foraminifera from the central Arctic Ocean. J. Foraminifer. Res. 1977, 7, 106–129. [Google Scholar] [CrossRef]
- Mackensen, A.; Hald, M. Cassidulina teretis Tappan and C. laevigata d’Orbigny; their modern and late Quaternary distribution in northern seas. J. Foraminifer. Res. 1988, 18, 16–24. [Google Scholar] [CrossRef]
- Lagoe, M.B. Recent benthonic foraminiferal biofacies in the Arctic Ocean. Micropaleontology 1979, 25, 214–224. [Google Scholar] [CrossRef]
- Jennings, A.E.; Weiner, N.J. Environmental change in eastern Greenland during the last 1300 years: Evidence from foraminifera and lithofacies in Nansen Fjord, 68 N. Holocene 1996, 6, 179–191. [Google Scholar] [CrossRef]
- Lubinski, D.J.; Polyak, L.; Forman, S.L. Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: Foraminifera and stable isotopes. Quat. Sci. Rev. 2001, 20, 1851–1879. [Google Scholar] [CrossRef]
- Wollenburg, J.E.; Knies, J.; Mackensen, A. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 204, 209–238. [Google Scholar] [CrossRef]
- Jennings, A.E.; Weiner, N.J.; Helgadottir, G.; Andrews, J.T. Modern foraminiferal faunas of the southwestern to northern Iceland shelf: Oceanographic and environmental controls. J. Foraminifer. Res. 2004, 34, 180–207. [Google Scholar] [CrossRef]
- Sejrup, H.P.; Fjaeran, T.; Hald, M.; Beck, L.; Hagen, J.; Miljeteig, I.; Morvik, I.; Norvik, O. Benthonic foraminifera in surface samples from the Norwegian continental margin between 62 degrees N and 65 degrees N. J. Foraminifer. Res. 1981, 11, 277–295. [Google Scholar] [CrossRef]
- Mackensen, A.; Sejrup, H.P.; Jansen, E. The distribution of living benthic foraminifera on the continental slope and rise off southwest Norway. Mar. Micropaleontol. 1985, 9, 275–306. [Google Scholar] [CrossRef]
- Hald, M.; Korsun, S. Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. J. Foraminifer. Res. 1997, 27, 101–122. [Google Scholar] [CrossRef]
- Korsun, S.; Hald, M. Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European Arctic. J. Foraminifer. Res. 2000, 30, 251–271. [Google Scholar] [CrossRef]
- Polyak, L.; Korsun, S.; Febo, L.A.; Stanovoy, V.; Khusid, T.; Hald, M.; Paulsen, B.E.; Lubinski, D.J. Benthic foraminiferal assemblages from the southern Kara Sea, a river-influenced Arctic marine environment. J. Foraminifer. Res. 2002, 32, 252–273. [Google Scholar] [CrossRef]
- Steinsund, P.I.; Polyak, L.; Hald, M.; Mikhailov, V.; Korsun, S. Distribution of Calcareous Benthic Foraminifera in Recent Sediments of the Barents and Kara Sea. Benthic Foraminifera in Surface Sediments of the Barents and Kara Seas: Modern and Late Quaternary Application. Ph.D. Thesis, Department of Geology, Institute of Biology and Geology, University of Tromsø, Tromsø, Norway, 1994. [Google Scholar]
- Belanger, P.E.; Streeter, S.S. Distribution and ecology of benthic foraminifera in the Norwegian-Greenland Sea. Mar. Micropaleontol. 1980, 5, 401–428. [Google Scholar] [CrossRef]
- Bauch, H.A.; Erlenkeuser, H.; Spielhagen, R.F.; Struck, U.; Matthiessen, J.; Thiede, J.; Heinemeier, J. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. Quat. Sci. Rev. 2001, 20, 659–678. [Google Scholar] [CrossRef]
- Gooday, A.J. Deep-sea benthic foraminiferal species which exploit phytodetritus: Characteristic features and controls on distribution. Mar. Micropaleontol. 1993, 22, 187–205. [Google Scholar] [CrossRef]
- Thomas, E.; Booth, L.; Maslin, M.; Shackleton, N.J. Northeastern Atlantic benthic foraminifera during the last 45,000 years: Changes in productivity seen from the bottom up. Paleoceanography 1995, 10, 545–562. [Google Scholar] [CrossRef]
- Osterman, L.E.; Poore, R.Z.; Foley, K.M. Distribution of Benthic Foraminifers (>125 mm) in the Surface Sediments of the Arctic Ocean; Bulletin 2164; U. S. Geological Survey: Reston, VA, USA, 1999. [CrossRef]
- Altenbach, A.V.; Sarnthein, M. Productivity Record in Benthic foraminifera. In Productivity of the Ocean: Present and Past; Berger, W.H., Smetacek, W.S., Wefer, G., Eds.; John Wiley and Sons: Berlin, Germany, 1989; pp. 8–255. [Google Scholar]
- Pados, T.; Spielhagen, R.F. Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean. Polar Res. 2014, 33, 22483. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Alekseev, G.V.; Timokhov, L.A.; Bhatt, U.S.; Colony, R.L.; Simmons, H.L.; Walsh, D.; Walsh, J.E.; Zakharov, V.F. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J. Clim. 2004, 17, 4485–4497. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Comiso, J.C.; Hall, D.K. Climate trends in the Arctic as observed from space. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.R.; Osborn, T.J.; Hurrell, J.W.; Meincke, J.; Blindheim, J.; Adlandsvik, B.; Vinje, T.; Alekseev, G.; Maslowski, W. The Arctic Ocean response to the North Atlantic oscillation. J. Clim. 2000, 13, 2671–2696. [Google Scholar] [CrossRef]
- Valchev, B. On the potential of small benthic foraminifera as paleoecological indicators: Recent advances. Ann. UMG 2003, 46, 51–56. [Google Scholar]
- Chylek, P.; Folland, C.K.; Lesins, G.; Dubey, M.K.; Wang, M. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2009, 36, L14801. [Google Scholar] [CrossRef]
- Quadfasel, D.; SY, A.; Wells, D.; Tunik, A. Warming in the Arctic. Nature. 1991, 350, 385. [Google Scholar] [CrossRef]
- Steele, M.; Boyd, T. Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. Ocean. 1998, 103, 10419–10435. [Google Scholar] [CrossRef]
- Greco, M.; Werner, K.; Zamelczyk, K.; Rasmussen, T.L.; Kucera, M. Decadal trend of plankton community change and habitat shoaling in the Arctic gateway recorded by planktonic foraminifera. Glob. Change Biol. 2021, 28, 1798–1808. [Google Scholar] [CrossRef]
- Kaufman, D.S.; Schneider, D.P.; McKay, N.P.; Ammann, C.M.; Bradley, R.S.; Briffa, K.R.; Miller, G.H.; Otto-Bliesner, B.L.; Overpeck, J.T.; Vinther, B.M.; et al. Recent warming reverses long-term Arctic cooling. Science 2009, 325, 1236–1239. [Google Scholar] [CrossRef]
Core Code | Type of Sampler | Coordinates | Water Depth (m) | Maximum Sediment Recovered (cm) |
---|---|---|---|---|
GS191-02BC | Box-corer | 76° 31.30′ N 12° 44.29′ E | 1647 | 25 |
Main Species | Environmental Conditions | Refs. | |
---|---|---|---|
Planktic species | Neogloboquadrina pachyderma (Ehrenberg, 1861) | Polar species. Related to Arctic and polar surface waters. | [48,49,50,51,52] |
Neogloboquadrina incompta (Cifelli, 1961), Globigerina bulloides d’Orbigny, 1826, Globigerinita glutinata (Egger, 1893) | Subpolar species related to Atlantic water. Seasonal peak abundances in late summer. | [48,49,51,53,54] | |
Turborotalita quinqueloba (Natland, 1938) | Subpolar species. Arctic water and related to the Arctic and polar fronts. Near-surface dweller. In areas influenced by warm Atlantic water. | [48,49,51,52,53,55] | |
Benthic species | Cassidulina laevigata d’Orbigny, 1826 | Warm, high-salinity bottom water of Atlantic origin and sandy substrates. | [56,57] |
Cassidulina neoteretis Seidenkrantz, 1995 | Cool transformed surface Atlantic water. Stable salinity. Seasonal ice-free conditions. High seasonal productivity. Warm bottom conditions. Epifaunal–shallow infaunal species. | [44,57,58,59,60,61,62] | |
Cassidulina reniforme Nørvang, 1945 | Arctic–polar species. Cold and salty. Locally related to glaciomarine environments. Associated with E. clavatum. Epifaunal–shallow infaunal. | [63,64,65,66,67,68] | |
Cibicidoides wuellerstorfi (Schwager, 1866) | Associated with Arctic waters and Arctic/polar fronts. High-energy environments. Bottom current activity. Epifaunal in coarser sediments and attached to hard substrates. | [44,63,64,69,70] | |
Epistominella exigua (Brady, 1884) | Opportunistic species, feeds on fresh phytodetritus. Epifaunal. | [44,71,72] | |
Oridorsalis tener (Brady, 1884) | Related to low productivity. Deep water species, 2000–3000 m | [44,73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamboa Sojo, V.M.; Morigi, C.; Langone, L.; Lucchi, R.G. Deciphering Paleoceanographic Shifts Inferred from the Foraminiferal Record of the Western Svalbard Slope (Bellsund Drift) over the Past Century. J. Mar. Sci. Eng. 2024, 12, 559. https://doi.org/10.3390/jmse12040559
Gamboa Sojo VM, Morigi C, Langone L, Lucchi RG. Deciphering Paleoceanographic Shifts Inferred from the Foraminiferal Record of the Western Svalbard Slope (Bellsund Drift) over the Past Century. Journal of Marine Science and Engineering. 2024; 12(4):559. https://doi.org/10.3390/jmse12040559
Chicago/Turabian StyleGamboa Sojo, Viviana M., Caterina Morigi, Leonardo Langone, and Renata G. Lucchi. 2024. "Deciphering Paleoceanographic Shifts Inferred from the Foraminiferal Record of the Western Svalbard Slope (Bellsund Drift) over the Past Century" Journal of Marine Science and Engineering 12, no. 4: 559. https://doi.org/10.3390/jmse12040559