Disease Resistant Fish and Shellfish Are within Reach: A Review
Abstract
:1. Introduction
2. Measurement of Disease Resistance
3. Some Results from Selection Experiments
4. Breeding Programs to Increase Disease Resistance
5. Data Collection
6. Genetic Gains Obtained
Traits | Genetic Gain per Generation, % | Number of Generations Selected | References |
---|---|---|---|
Survival: | |||
Whiteleg shrimp, P. vannamei | 5.7 * | 4 | Gitterle, et al. 2007 [27] |
Blue tilapia, Oreochromis aureus | 8.4 * | 4 | Thodesen, et al 2012 [28] |
Red tilapia, Oreochromis spp. | 5.0 * | 4 | Thodesen, et al. 2013 [29] |
IPN resistance: | |||
Atlantic salmon, Salmo salar | 18.7 | 1 | Storseth, et al. 2007 [30] |
Vibrio salmonicida: | |||
Rainbow trout, Oncorhyncus mykis | 19.0 | 1 | Leeds, et al. 2010 [31] |
White spot, WSSV: | |||
Whiteleg shrimp, P. vannamei | 1.7 * | 4 | Gitterle, et al. 2007 [27] |
Whiteleg shrimp, P. vannamei | 6.3 | 4 | Huang, et al. 2012 [32] |
Taurasyndrom, TVS: | |||
Whiteleg shrimp, P. vannamei | 12.4 * | 1 | Fjalestad, et al. 1997 [33] |
Whiteleg shrimp, P. vannamei | 18.4 * | 1 | Argue, et al. 2002 [34] |
M.sydneyi, parasite: | |||
Oyster, S. glomerata | 11.0 | 2 | Nell and Hand, 2003 [35] |
7. Discussion
Acknowledgments
Conflicts of Interest
References
- FAO. Food Outlook. Biannual Report on Global Food Markets; FAO: Rome, Italy, 2013; p. 133. [Google Scholar]
- Bjørkli, J. Protein and Energy Account in Salmon, Chicken, Pig and Lamb (Protein og Energi Rekneskap Hos Laks, Gris, og Lam). Master Thesis, Agricultural University of Norway, Ås, Akershus, Norway, 2002; p. 41. [Google Scholar]
- Ytrestøyl, T.; Aas, T.S.; Berge, G.M.; Hatlem, B.; Sørensen, M.; Ruyter, B.; Thomassen, M.; Hognes, E.S.; Zigler, E.S.; Sund, V.; et al. Resource Utilisation and Ecoefficiency of Norwegian Salmon Farming in 2010; Nofima Report 53/2011,ISBN: 978–82–7251–945–1; Nofima: Tromsø, Norway, 2011; p. 65. [Google Scholar]
- Thodesen, J.; Grisdale-Helland, B.; Helland, S.J.; Gjerde, B. Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon (Salmo salar). Aquaculture 1999, 189, 237–246. [Google Scholar] [CrossRef]
- FAO. Fishery and AQUACULTURE Statistics. Aquaculture Production; FAO: Rome, Italy, 2012. [Google Scholar]
- Gjedrem, T.; Robinson, N.; Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 2012, 350–353, 117–129. [Google Scholar]
- Rye, M.; Lillevik, K.M.; Gjerde, B. Survival in early life of Atlantic salmon and rainbow trout: Estimate of heritabilities and genetic correlations. Aquaculture 1990, 89, 209–216. [Google Scholar] [CrossRef]
- Kanis, E.; Refstie, T.; Gjedrem, T. A genetic analysis of egg, alevin and fry mortakity in salmon (Salmo salar), sea trout (Salm trutta) and rainbow trout (Salmo gairdneri). Aquqculture 1976, 8, 259–268. [Google Scholar] [CrossRef]
- Chevassus, B.; Dorson, M. Genetics of resistance to disease in fishes. Aquaculture 1990, 85, 83–107. [Google Scholar] [CrossRef]
- Gjedrem, T.; Salte, R.; Gjøen, H.M. Genetic variation in susceptibility of Atlantic salmon to furunculosis. Aquaculture 1991, 97, 1–6. [Google Scholar] [CrossRef]
- Ødegård, J.; Sommer, A.I.; Præbel, A.P. Heritability of resistance to nervous necrosis Atlantic cod (Gadus morhua L.). Aquaculture 2010, 399, 59–64. [Google Scholar] [CrossRef]
- Gjøen, H.M.; Refstie, T.; Ulla, T.; Gjerde, B. Genetic correlation between survival of Atlantic salmon in challenge and field tests. Aquaculture 1997, 157, 277–288. [Google Scholar] [CrossRef]
- Storset, A.; Strand, C.; Wetten, M.; Kjøglum, S.; Ramstad, A. Response to selection for resistance against infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture 2007, 272, 62–68. [Google Scholar] [CrossRef]
- Embody, G.C.; Hyford, C.D. The advantage of rearing brook trout fingerlings from selected breeders. Trans. Am. Fish. Soc. 1925, 55, 135–138. [Google Scholar] [CrossRef]
- Ehlinger, N.F. Selective breeding of trout for resistance to furunculosis. N. Y. Fish Game J. 1977, 24, 25–36. [Google Scholar]
- Schaperclaus, W. Trate de Pisciculture en Etang; Vigot Freres: Paris, France, 1962; Volume 208, pp. 208–227. [Google Scholar]
- Ilyassov, Y.L. Genetic principles of fish selection for disease resistance. In Selection, Hybridization and Genetic Engineering in Aquaculture; Tiewes, K., Ed.; Heenemann Verlagsgesellschaft: Berlin, Germany, 1987; pp. 455–469. [Google Scholar]
- Moav, R.; Wohlfarth, G.W. Two way selection for growth rate in the common carp (Cyrinus carpio L.). Genetics 1976, 82, 83–101. [Google Scholar] [PubMed]
- Hulata, G.; Wohlfarth, G.W.; Halevy, A. Mass selection for growth rate in the Nile tilapia (Oreochromis niloticus). Aquaculture 1986, 57, 177–184. [Google Scholar] [CrossRef]
- Teichert-Coddington, D.R.; Smitherman, R.O. Lack of response by tilapia nilotica to mass selection for rapid early growth. Trans. Am. Fish. Soc. 1988, 117, 297–300. [Google Scholar] [CrossRef]
- Huang, C.M.; Liao, I.C. Response to mass selection for growth rate in Oreochromis niloticus. Aquaculture 1990, 85, 199–205. [Google Scholar] [CrossRef]
- Gjerde, B. Prediction of breeding values. In Selection and Breeding Programs in Aquaculture; Gjedrem, B., Ed.; Springer: Berlin, Germany, 2005; p. 364. [Google Scholar]
- Gjedrem, T.; Olesen, I. Basic statistical parameters. In Selection and Breeding Programs in Aquaculture; Gjedrem, B., Ed.; Springer: Berlin, Germany, 2005; p. 364. [Google Scholar]
- Henryon, M.; Jokumsen, A.; Berg, P.; Lund, I.; Pedersen, P.B.; Olesen, N.J.; Slierendrecht, W.J. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture 2002, 209, 59–76. [Google Scholar] [CrossRef]
- Gitterle, T; Salte, R.; Gjerde, B.; Cock, J.; Johansen, H.; Salazar, M.; Lozano, C.; Rye, M. Genetic (co) variation in resistance to White Spot Syndrome Virus (WSSV) and harvest weight in Penaeus (Litopenaeus) vannamei). Aquaculture 2005, 246, 139–149. [Google Scholar] [CrossRef]
- Ødegård, J.; Baranski, M.; Gjerde, B.; Gjedrem, T. Methodology for genetic evaluation of disease resistance in aquaculture species: Challenges and future prospects. Aquac. Res. 2011, 42, 103–114. [Google Scholar] [CrossRef]
- Gitterle, T.; Johansen, H.; Erazo, C.; Erazo, C.; Lozano, C.; Cock, J.; Salazar, M.; Rye, M. Response to multi trait selection for harvest body weight, overall survival, and resistance to white spot syndrome virus (WSSV) in Penaeus (Litopenaeus). Aquaculture 2007, 272 (Suppl. 1), S262. [Google Scholar] [CrossRef]
- Thodesen (Da-Yong Ma), J.; Rye, M.; Wang, Y.X.; Li, S.J.; Bentsen, H.B.; Gjrdrem, T. Genetic improvement of tilapia in China: Genetic parameters and selection responses in growth, pond survival and cold-water tolerance of Blue tilapia (Oreochromis aureus) after four generations of multi-trait selection. Aquaculture 2012, 396–399, 32–42. [Google Scholar]
- Thodesen (Da-Yong Ma), J.; Rye, M.; Wang, Y.X.; Li, S.J.; Bentsen, H.B.; Gjedrem, T. Genetic improvement of tilapia in China: Genetic parameters and seletion responses in growth, survival and external color traits of red tilapia (Oreochromis spp.) after four generations of multi-trait selection. Aquaculture 2013, 416–417, 354–366. [Google Scholar]
- Storset, A.; Strand, C.; Wetten, M.; Kjøglum, S.; Ramstad, A. Response to selection for resistance against infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture 2007, 272, 62–68. [Google Scholar] [CrossRef]
- Leeds, T.D.; Silverstein, J.T.; Weber, G.M.; Vallejo, R.L.; Palti, Y.; Rexroad, C.N., III; Evenhuis, J.; Hadidi, S.; Welsh, T.J.; Wiens, G.D. Response to selection for bacterial cold water disease resistance in rainbow trout. J. Anim. Sci. 2010, 88, 1936–1946. [Google Scholar]
- Huang, Y.; Yin, Z.; Weng, S.; He, J.; Li, S. Selective breeding and preliminary commercial performance of Penaeus vannamei for resistance to white spot syndrome virus (WSSV). Aquaculture 2012, 364–365, 111–117. [Google Scholar]
- Fjalestad, K.T.; Gjedrem, T.; Carr, W.H.; Sweeney, J.N. The Shrimp Breeding Program. Selective Breeding of Penaeus Vannamei; Report no. 17/97; The Oceanic Institute: Waimanalo, HI, USA, 1997; p. 85. [Google Scholar]
- Argue, B.J.; Arce, S.M.; Moss, S.M. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture 2002, 204, 447–460. [Google Scholar] [CrossRef]
- Nell, J.A.; Hand, R.E. Evaluation of the progeny of second-generation Sydney rock oyster Saccostrea glomerata (Gold, 1850) breeding lines for resistance to QX disease Marteilia sydneyi. Aquaculture 2003, 228, 27–35. [Google Scholar] [CrossRef]
- Kube, P.D.; Taylor, R.S.; Elliot, N.G. Genetic variation in parasite resistance of Atlantic salmon to amoebic gill disease over multiple infections. Aquaculture 2012, 364–365, 165–172. [Google Scholar]
- Kolstad, K.; Heuch, P.A.; Gjerde, B.; Gjedrem, T.; Salte, R. Genetic variation in resistance of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus salmonis. Aquaculture 2005, 247, 145–151. [Google Scholar] [CrossRef]
- Housten, R.D.; Hamilton, A.; Guy, A.D.R.; Tinch, A.E.; Taggart, J.B.; McAndrew, J.B.; Bishop, S.C. Major QTL affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 2008, 178, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Moen, T.; Baranski, M.; Sonesson, A.; Kjøglum, A. Conformation and fine-mapping of a major QTL for resistance in infectious pancreatic necrosis in Atlantic salmon (Salmo salar): Population-level association between markers and trait. BMC Genomics 2009, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Gonen, S.; Baranski, M.; Thorland, I.; Norris, A.; Grove, H.; Arnesen, P.; Bakke, H.; Lien, S.; Bishop, S.C.; Housten, R.D. Mapping and validating of a major QTL affecting the resistance of Atlantic salmon (Salmo salar) to pancreas disease. Heredity 2015. accepted. [Google Scholar]
- Yue, G.H. Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish. 2014, 15, 376–396. [Google Scholar] [CrossRef]
- Neira, R. Breeding in aquaculture species: Genetic improvement program in developing countries. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Lipzig, Germany, 1–6 August 2010; p. 8.
- Rye, M.; Gjerde, B.; Gjedrem, T. Genetic development programs for aquaculture species in developed countries. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Lipzig, Germany, 1–6 August 2010; p. 8.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gjedrem, T. Disease Resistant Fish and Shellfish Are within Reach: A Review. J. Mar. Sci. Eng. 2015, 3, 146-153. https://doi.org/10.3390/jmse3010146
Gjedrem T. Disease Resistant Fish and Shellfish Are within Reach: A Review. Journal of Marine Science and Engineering. 2015; 3(1):146-153. https://doi.org/10.3390/jmse3010146
Chicago/Turabian StyleGjedrem, Trygve. 2015. "Disease Resistant Fish and Shellfish Are within Reach: A Review" Journal of Marine Science and Engineering 3, no. 1: 146-153. https://doi.org/10.3390/jmse3010146
APA StyleGjedrem, T. (2015). Disease Resistant Fish and Shellfish Are within Reach: A Review. Journal of Marine Science and Engineering, 3(1), 146-153. https://doi.org/10.3390/jmse3010146