Preterm Birth and Its Long-Term Effects: Methylation to Mechanisms
Abstract
:1. Introduction
2. Overview of Pregnancy
3. Types of Preterm Birth
4. Proposed Mechanisms of PTB
5. Consequences of PTB
6. DNA Methylation Studies of PTB
Tissue | Design | N | Outcome | Reference |
---|---|---|---|---|
Myometrium | Candidate gene | 53 | PTB | [109] |
Cervical swab | LINE-1 & candidate gene | 80 | Gestational length | [110] |
Amnion | HumanMethylation27 | 121 | PTB & labor | [111] |
Placenta | HumanMethylation27 | 206 | Smoking & gestational age | [42] |
Cord blood | Candidate gene | 181 | PTB & infection | [112] |
Cord blood | HumanMethylation450 | 50 | PTB & gestational age | [113] |
Cord & maternal blood | LINE-1 | 2393 | PTB | [114] |
Whole blood at 19 years | Candidate gene | 113 | SGA | [104] |
Blood spots | Candidate gene | 49 | Bacterial sepsis | [115] |
Cord blood | Illumina Cancer Panel 1 | 178 | Child growth | [116] |
Blood spots at birth & 18 years | HumanMethylation450 | 24 | PTB | [117] |
7. DNA Methylation Studies of Long Term Outcomes of PTB
8. Recommendations for Future Studies
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hamilton, B.E.; Martin, J.A.; Ventura, S.J. Births: Preliminary data for 2012. Natl. Vital Stat. Rep. 2013, 62, 1–20. [Google Scholar] [PubMed]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.E.; Alderdice, F.A.; Holmes, V.A.; Johnston, L. Early childhood development of late-preterm infants: A systematic review. Pediatrics 2011, 127, 1111–1124. [Google Scholar] [PubMed]
- Woythaler, M.A.; McCormick, M.C.; Smith, V.C. Late preterm infants have worse 24-month neurodevelopmental outcomes than term infants. Pediatrics 2011, 127, e622–e629. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, A.T.; Cleves, M.A.; Casey, P.H.; Cradock, M.M.; Anand, K.J. Cognitive and behavioral outcomes of school-aged children who were born preterm: A meta-analysis. JAMA 2002, 288, 728–737. [Google Scholar] [PubMed]
- Kerkhof, G.F.; Willemsen, R.H.; Leunissen, R.W.; Breukhoven, P.E.; Hokken-Koelega, A.C. Health profile of young adults born preterm: Negative effects of rapid weight gain in early life. J. Clin. Endocrinol. Metab. 2012, 97, 4498–4506. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.; Fewtrell, M.; Cole, T.J.; Lucas, A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 2003, 361, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A.; Cooper, C.; Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 2008, 359, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef] [PubMed]
- De Boo, H.A.; Harding, J.E. The developmental origins of adult disease (Barker) hypothesis. Aust. N. Z. J. Obstet. Gynaecol. 2006, 46, 4–14. [Google Scholar]
- Feinberg, A.P. Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wu, J. Epigenetic regulation in mammalian preimplantation embryo development. Reprod. Biol. Endocrinol. 2009. [Google Scholar] [CrossRef]
- Menon, R. Spontaneous preterm birth, a clinical dilemma: Etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet. Gynecol. Scand. 2008, 87, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Understanding premature birth and assuring healthy outcomes. Preterm Birth Causes, Consequences, and Prevention; Behrman, R.E., Butler, A.S., Eds.; National Academies Press (US): Washington, DC, USA, 2007. [Google Scholar]
- Ananth, C.V.; Vintzileos, A.M. Epidemiology of preterm birth and its clinical subtypes. J. Matern. Fetal Neonatal Med. 2006, 19, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Moutquin, J.M. Classification and heterogeneity of preterm birth. BJOG 2003, 110, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Committee on Practice Bulletins-Obstetrics TACoO, Gynecologists. Practice bulletin No. 130: Prediction and prevention of preterm birth. Obstet. Gynecol. 2012, 120, 964–973. [Google Scholar]
- Practice bulletins No. 139: Premature rupture of membranes. Obstet. Gynecol. 2013, 122, 918–930.
- Mittendorf, R.; Williams, M.A.; Berkey, C.S.; Cotter, P.F. The length of uncomplicated human gestation. Obstet. Gynecol. 1990, 75, 929–932. [Google Scholar] [PubMed]
- Jukic, A.M.; Baird, D.D.; Weinberg, C.R.; McConnaughey, D.R.; Wilcox, A.J. Length of human pregnancy and contributors to its natural variation. Hum. Reprod. 2013, 28, 2848–2855. [Google Scholar] [CrossRef] [PubMed]
- ACOG Committee Opinion No 579: Definition of term pregnancy. Obstet. Gynecol. 2013, 122, 1139–1140.
- Carlin, A.; Alfirevic, Z. Physiological changes of pregnancy and monitoring. Best Pract. Res. Clin. Obstet. Gynaecol. 2008, 22, 801–823. [Google Scholar] [CrossRef] [PubMed]
- Murphy, V.E.; Smith, R.; Giles, W.B.; Clifton, V.L. Endocrine regulation of human fetal growth: The role of the mother, placenta, and fetus. Endocr. Rev. 2006, 27, 141–169. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Audette, M.C.; Petropoulos, S.; Gibb, W.; Matthews, S.G. Placental drug transporters and their role in fetal protection. Placenta 2012, 33, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Bryant-Greenwood, G.D. The extracellular matrix of the human fetal membranes: Structure and function. Placenta 1998, 19, 1–11. [Google Scholar]
- Jaffe, R.; Jauniaux, E.; Hustin, J. Maternal circulation in the first-trimester human placenta—Myth or reality? Am. J. Obstet. Gynecol. 1997, 176, 695–705. [Google Scholar]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012. [Google Scholar] [CrossRef]
- Arck, P.C.; Hecher, K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat. Med. 2013, 19, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Arzuaga, B.H.; Lee, B.H. Limits of human viability in the United States: A medicolegal review. Pediatrics 2011, 128, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.K.; Draper, E.S.; Manktelow, B.N.; Dorling, J.S.; Field, D.J. Socioeconomic inequalities in very preterm birth rates. Arch. Dis. Child Fetal Neonatal. Ed. 2007, 92, F11–F14. [Google Scholar] [PubMed]
- Oberlander, T.F.; Weinberg, J.; Papsdorf, M.; Grunau, R.; Misri, S.; Devlin, A.M. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 2008, 3, 97–106. [Google Scholar] [CrossRef] [PubMed]
- McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonte, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 2009, 12, 342–348. [Google Scholar] [CrossRef] [PubMed]
- McKay, J.A.; Wong, Y.K.; Relton, C.L.; Ford, D.; Mathers, J.C. Maternal folate supply and sex influence gene-specific DNA methylation in the fetal gut. Mol. Nutr. Food Res. 2011, 55, 1717–1723. [Google Scholar] [PubMed]
- Hoyo, C.; Murtha, A.P.; Schildkraut, J.M.; Jirtle, R.L.; Demark-Wahnefried, W.; Forman, M.R.; Iversen, E.S.; Kurtzberg, J.; Overcash, F.; Huang, Z.; et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 2011, 6, 928–936. [Google Scholar] [PubMed]
- McKay, J.A.; Waltham, K.J.; Williams, E.A.; Mathers, J.C. Folate depletion during pregnancy and lactation reduces genomic DNA methylation in murine adult offspring. Genes Nutr. 2011, 6, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Maloney, C.A.; Hay, S.M.; Rees, W.D. Folate deficiency during pregnancy impacts on methyl metabolism without affecting global DNA methylation in the rat fetus. Br. J. Nutr. 2007, 97, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- McKay, J.A.; Xie, L.; Harris, S.; Wong, Y.K.; Ford, D.; Mathers, J.C. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice. Mol. Nutr. Food Res. 2011, 55, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Flom, J.; Ferris, J.; Gonzalez, K.; Santella, R.; Terry, M. Prenatal tobacco smoke exposure and genomewide methylation in adulthood. Cancer Epidemiol. Biomark. Prev. 2011, 20, 720. [Google Scholar] [CrossRef]
- Sun, Y.V.; Smith, A.K.; Conneely, K.N.; Chang, Q.; Li, W.; Lazarus, A.; Smith, J.A.; Almli, L.M.; Binder, E.B.; Klengel, T.; et al. Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum. Genet. 2013, 132, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Joubert, B.R.; Haberg, S.E.; Nilsen, R.M.; Wang, X.; Vollset, S.E.; Murphy, S.K.; Huang, Z.; Hoyo, C.; Midttun, O.; Cupul-Uicab, L.A.; et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ. Health Perspect. 2012, 120, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Breton, C.V.; Byun, H.M.; Wenten, M.; Pan, F.; Yang, A.; Gilliland, F.D. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am. J. Respir. Crit. Care Med. 2009, 180, 462–467. [Google Scholar] [PubMed]
- Maccani, J.Z.; Koestler, D.C.; Houseman, E.A.; Marsit, C.J.; Kelsey, K.T. Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics 2013, 5, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.V.; Lazarus, A.; Smith, J.A.; Chuang, Y.H.; Zhao, W.; Turner, S.T.; Kardia, S.L. Gene-specific DNA methylation association with serum levels of C-reactive protein in african americans. PLoS One 2013, 8, e73480. [Google Scholar] [CrossRef] [PubMed]
- Gottlicher, M.; Minucci, S.; Zhu, P.; Kramer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; lo Coco, F.; Nervi, C.; Pelicci, P.G.; et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001, 20, 6969–6978. [Google Scholar] [CrossRef] [PubMed]
- Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 2001, 276, 36734–36741. [Google Scholar] [CrossRef] [PubMed]
- Eyal, S.; Yagen, B.; Sobol, E.; Altschuler, Y.; Shmuel, M.; Bialer, M. The activity of antiepileptic drugs as histone deacetylase inhibitors. Epilepsia 2004, 45, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.K.; Conneely, K.N.; Newport, D.J.; Kilaru, V.; Schroeder, J.W.; Pennell, P.B.; Knight, B.T.; Cubells, J.C.; Stowe, Z.N.; Brennan, P.A. Prenatal antiepileptic exposure associates with neonatal DNA methylation differences. Epigenetics 2012, 7, 458–463. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians Gynecologists. Task Force on Hypertension in P Hypertension in pregnancy. Report of the American college of obstetricians and gynecologists’ task force on hypertension in pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar]
- Mercer, B.M. Preterm premature rupture of the membranes. Obstet. Gynecol. 2003, 101, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Lyell, D.J.; Pullen, K.; Fuh, K.; Zamah, A.M.; Caughey, A.B.; Benitz, W.; El-Sayed, Y.Y. Daily compared with 8-h gentamicin for the treatment of intrapartum chorioamnionitis: A randomized controlled trial. Obstet. Gynecol. 2010, 115, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Pennington, K.A.; Schlitt, J.M.; Jackson, D.L.; Schulz, L.C.; Schust, D.J. Preeclampsia: Multiple approaches for a multifactorial disease. Dis. Model Mech. 2012, 5, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, A.; Rapiti, S.; Carrara, S.; Cavaliere, A.; Ermito, S.; Dinatale, A.; Imbruglia, L.; Recupero, S.; la Galia, T.; Pappalardo, E.M.; et al. Obstetric management in Rh alloimmunizated pregnancy. J. Prenat. Med. 2009, 3, 25–27. [Google Scholar] [PubMed]
- Rodriguez, A.O.; Chew, H.; Cress, R.; Xing, G.; McElvy, S.; Danielsen, B.; Smith, L. Evidence of poorer survival in pregnancy-associated breast cancer. Obstet. Gynecol. 2008, 112, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Simhan, H.N.; Canavan, T.P. Preterm premature rupture of membranes: Diagnosis, evaluation and management strategies. BJOG 2005, 112, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Latendresse, G. Perinatal genomics: Current research on genetic contributions to preterm birth and placental phenotype. Annu. Rev. Nurs. Res. 2011, 29, 331–351. [Google Scholar] [CrossRef] [PubMed]
- York, T.P.; Eaves, L.J.; Neale, M.C.; Strauss, J.F., 3rd. The contribution of genetic and environmental factors to the duration of pregnancy. Am. J. Obstet. Gynecol. 2014, 210, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Mulder, E.J.; de Medina, P.G.R.; Huizink, A.C.; van den Bergh, B.R.; Buitelaar, J.K.; Visser, G.H. Prenatal maternal stress: Effects on pregnancy and the (unborn) child. Early Hum. Dev. 2002, 70, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Shinkawa, O.; Yoshinaga, K. Placental corticotropin-releasing hormone may be a stimulator of maternal pituitary adrenocorticotropic hormone secretion in humans. J. Clin. Investig. 1989, 84, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Mastorakos, G.; Ilias, I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann. NY Acad. Sci. 2003, 997, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, P.D.; Garite, T.J.; Porto, M.; Glynn, L.; Chicz-DeMet, A.; Dunkel-Schetter, C.; Sandman, C.A. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: A prospective investigation. Am. J. Obstet. Gynecol. 2004, 191, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- McLean, M.; Bisits, A.; Davies, J.; Woods, R.; Lowry, P.; Smith, R. A placental clock controlling the length of human pregnancy. Nat. Med. 1995, 1, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, F.; Sawchenko, P.E.; Rivier, J.; Vale, W. Evidence for local stimulation of ACTH secretion by corticotropin-releasing factor in human placenta. Nature 1987, 328, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Margioris, A.N.; Grino, M.; Rabin, D.; Chrousos, G.P. Human placenta and the hypothalamic-pituitary-adrenal axis. Adv. Exp. Med. Biol. 1988, 245, 389–398. [Google Scholar] [PubMed]
- Smith, R.; Mesiano, S.; Chan, E.C.; Brown, S.; Jaffe, R.B. Corticotropin-releasing hormone directly and preferentially stimulates dehydroepiandrosterone sulfate secretion by human fetal adrenal cortical cells. J. Clin. Endocrinol. Metab. 1998, 83, 2916–2920. [Google Scholar] [PubMed]
- Fencl, M.D.; Stillman, R.J.; Cohen, J.; Tulchinsky, D. Direct evidence of sudden rise in fetal corticoids late in human gestation. Nature 1980, 287, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Muglia, L.; Jacobson, L.; Dikkes, P.; Majzoub, J.A. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 1995, 373, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Dole, N.; Savitz, D.A.; Hertz-Picciotto, I.; Siega-Riz, A.M.; McMahon, M.J.; Buekens, P. Maternal stress and preterm birth. Am. J. Epidemiol. 2003, 157, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, I.; Zaragoza, D.B.; Guilbert, L.; Robertson, S.A.; Mitchell, B.F.; Olson, D.M. Inflammatory processes in preterm and term parturition. J. Reprod. Immunol. 2008, 79, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Janicki-Deverts, D.; Doyle, W.J.; Miller, G.E.; Frank, E.; Rabin, B.S.; Turner, R.B. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl. Acad. Sci. USA 2012, 109, 5995–5999. [Google Scholar] [CrossRef] [PubMed]
- Corwin, E.J.; Guo, Y.; Pajer, K.; Lowe, N.; McCarthy, D.; Schmiege, S.; Weber, M.; Pace, T.; Stafford, B. Immune dysregulation and glucocorticoid resistance in minority and low income pregnant women. Psychoneuroendocrinology 2013, 38, 1786–1796. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.L.; Emberly, E.; Fraser, H.B.; Neumann, S.M.; Chen, E.; Miller, G.E.; Kobor, M.S. Factors underlying variable DNA methylation in a human community cohort. Proc. Natl. Acad. Sci. USA 2012, 109, 17253–17260. [Google Scholar] [CrossRef] [PubMed]
- Tehranifar, P.; Wu, H.C.; Fan, X.; Flom, J.D.; Ferris, J.S.; Cho, Y.H.; Gonzalez, K.; Santella, R.M.; Terry, M.B. Early life socioeconomic factors and genomic DNA methylation in mid-life. Epigenetics 2013, 8, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, G.; Noll, A.; Schlebusch, H.; Mallmann, P.; Ruecker, A.V. Shifts in the TH1/TH2 balance during human pregnancy correlate with apoptotic changes. Biochem. Biophys. Res. Commun. 1998, 245, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Cardenas, I. The immune system in pregnancy: A unique complexity. Am. J. Reprod. Immunol. 2010, 63, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Sykes, L.; MacIntyre, D.A.; Yap, X.J.; Teoh, T.G.; Bennett, P.R. The Th1:Th2 dichotomy of pregnancy and preterm labour. Mediat. Inflamm. 2012. [Google Scholar] [CrossRef]
- Berger, A. Th1 and Th2 responses: What are they? BMJ 2000, 321, 424. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwenhoven, A.L.V.; Heineman, M.J.; Faas, M.M. The immunology of successful pregnancy. Hum. Reprod. Update 2003, 9, 347–357. [Google Scholar]
- Mor, G.; Cardenas, I.; Abrahams, V.; Guller, S. Inflammation and pregnancy: The role of the immune system at the implantation site. Ann. NY Acad. Sci. 2011, 1221, 80–87. [Google Scholar] [CrossRef]
- Olson, D.M. The role of prostaglandins in the initiation of parturition. Best Pract. Res. Clin. Obstet. Gynaecol. 2003, 17, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Unal, E.R.; Cierny, J.T.; Roedner, C.; Newman, R.; Goetzl, L. Maternal inflammation in spontaneous term labor. Am. J. Obstet. Gynecol. 2011, 204, e221–e225. [Google Scholar]
- Shynlova, O.; Lee, Y.H.; Srikhajon, K.; Lye, S.J. Physiologic uterine inflammation and labor onset: Integration of endocrine and mechanical signals. Reprod. Sci. 2013, 20, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.S.; Romero, R.; Hillier, S.L.; Eschenbach, D.A.; Sweet, R.L. A review of premature birth and subclinical infection. Am. J. Obstet. Gynecol. 1992, 166, 1515–1528. [Google Scholar] [CrossRef] [PubMed]
- Jeffcoat, M.K.; Geurs, N.C.; Reddy, M.S.; Cliver, S.P.; Goldenberg, R.L.; Hauth, J.C. Periodontal infection and preterm birth: Results of a prospective study. J. Am. Dent. Assoc. 2001, 132, 875–880. [Google Scholar] [PubMed]
- Mussalli, G.M.; Blanchard, R.; Brunnert, S.R.; Hirsch, E. Inflammatory cytokines in a murine model of infection-induced preterm labor: Cause or effect? J. Soc. Gynecol. Investig. 1999, 6, 188–195. [Google Scholar] [CrossRef]
- Forslund, M.; Bjerre, I. Growth and development in preterm infants during the first 18 months. Early Hum. Dev. 1985, 10, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Euser, A.M.; de Wit, C.C.; Finken, M.J.; Rijken, M.; Wit, J.M. Growth of preterm born children. Horm. Res. 2008, 70, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Itabashi, K.; Mishina, J.; Tada, H.; Sakurai, M.; Nanri, Y.; Hirohata, Y. Longitudinal follow-up of height up to five years of age in infants born preterm small for gestational age; comparison to full-term small for gestational age infants. Early Hum. Dev. 2007, 83, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.H.; Ji, C.Y.; Shan, J.P. A Longitudinal Study on the Catch-Up Growth of Preterm and Term Infants of Low, Appropriate, and High Birth Weight. Asia Pac. J. Public Health 2013. [Google Scholar] [CrossRef]
- Knops, N.B.; Sneeuw, K.C.; Brand, R.; Hille, E.T.; den Ouden, A.L.; Wit, J.M.; Verloove-Vanhorick, S.P. Catch-up growth up to ten years of age in children born very preterm or with very low birth weight. BMC Pediatr. 2005. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.D.; Barros, F.C.; Bhargava, S.K.; Hao, W.; Horta, B.L.; Lee, N.; Kuzawa, C.W.; Martorell, R.; Ramji, S.; Stein, A.; et al. Birth status, child growth, and adult outcomes in low- and middle-income countries. J. Pediatr. 2013, 163, 1740–1746. [Google Scholar] [PubMed]
- Vucetic, Z.; Kimmel, J.; Totoki, K.; Hollenbeck, E.; Reyes, T.M. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010, 151, 4756–4764. [Google Scholar] [CrossRef] [PubMed]
- Gallou-Kabani, C.; Gabory, A.; Tost, J.; Karimi, M.; Mayeur, S.; Lesage, J.; Boudadi, E.; Gross, M.S.; Taurelle, J.; Vige, A.; et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010, 5, e14398. [Google Scholar]
- Sohi, G.; Marchand, K.; Revesz, A.; Arany, E.; Hardy, D.B. Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol. Endocrinol. 2011, 25, 785–798. [Google Scholar] [CrossRef] [PubMed]
- El Marroun, H.; Zeegers, M.; Steegers, E.A.; van der Ende, J.; Schenk, J.J.; Hofman, A.; Jaddoe, V.W.; Verhulst, F.C.; Tiemeier, H. Post-term birth and the risk of behavioural and emotional problems in early childhood. Int. J. Epidemiol. 2012, 41, 773–781. [Google Scholar]
- Moore, G.P.; Lemyre, B.; Barrowman, N.; Daboval, T. Neurodevelopmental outcomes at 4 to 8 years of children born at 22 to 25 weeks’ gestational age: A meta-analysis. JAMA Pediatr. 2013, 167, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Wocadlo, C.; Rieger, I. Motor impairment and low achievement in very preterm children at eight years of age. Early Hum. Dev. 2008, 84, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Moster, D.; Lie, R.T.; Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 2008, 359, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Saigal, S.; Doyle, L.W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008, 371, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Novakovic, B.; Yuen, R.K.; Gordon, L.; Penaherrera, M.S.; Sharkey, A.; Moffett, A.; Craig, J.M.; Robinson, W.P.; Saffery, R. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics 2011. [Google Scholar] [CrossRef]
- Schroeder, J.W.; Conneely, K.N.; Cubells, J.C.; Kilaru, V.; Newport, D.J.; Knight, B.T.; Stowe, Z.N.; Brennan, P.A.; Krushkal, J.; Tylavsky, F.A.; et al. Neonatal DNA methylation patterns associate with gestational age. Epigenetics 2011, 6, 1498–1504. [Google Scholar]
- Banister, C.E.; Koestler, D.C.; Maccani, M.A.; Padbury, J.F.; Houseman, E.A.; Marsit, C.J. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 2011, 6, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Tobi, E.W.; Heijmans, B.T.; Kremer, D.; Putter, H.; Delemarre-van de Waal, H.A.; Finken, M.J.; Wit, J.M.; Slagboom, P.E. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 2011, 6, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Conneely, K.N.; Smith, A.K. DNA methylation: An epigenetic risk factor in preterm birth. Reprod. Sci. 2012, 19, 6–13. [Google Scholar] [PubMed]
- Dhobale, M.; Joshi, S. Altered maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy. J. Matern. Fetal Neonatal Med. 2012, 25, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Robins, J.C.; Marsit, C.J.; Padbury, J.F.; Sharma, S.S. Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. Front. Biosci. Elite Ed. 2011, 3, 690–700. [Google Scholar] [PubMed]
- Cutfield, W.S.; Hofman, P.L.; Mitchell, M.; Morison, I.M. Could epigenetics play a role in the developmental origins of health and disease? Pediatr. Res. 2007, 61, 68R–75R. [Google Scholar]
- Mitsuya, K.; Singh, N.; Sooranna, S.R.; Johnson, M.R.; Myatt, L. Epigenetics of human myometrium: DNA methylation of genes encoding contraction-associated proteins in term and preterm labor. Biol. Reprod. 2014. [Google Scholar] [CrossRef]
- Burris, H.H.; Baccarelli, A.A.; Motta, V.; Byun, H.M.; Just, A.C.; Mercado-Garcia, A.; Schwartz, J.; Svensson, K.; Tellez-Rojo, M.M.; Wright, R.O. Association between length of gestation and cervical DNA methylation of PTGER2 and LINE 1-HS. Epigenetics 2014, 9, 1083–1091. [Google Scholar] [CrossRef]
- Kim, J.; Pitlick, M.M.; Christine, P.J.; Schaefer, A.R.; Saleme, C.; Comas, B.; Cosentino, V.; Gadow, E.; Murray, J.C. Genome-Wide analysis of DNA Methylation in human amnion. Sci. World J. 2013. [Google Scholar] [CrossRef]
- Liu, Y.; Hoyo, C.; Murphy, S.; Huang, Z.; Overcash, F.; Thompson, J.; Brown, H.; Murtha, A.P. DNA methylation at imprint regulatory regions in preterm birth and infection. Am. J. Obstet. Gynecol. 2013, 208, 395.e1–395.e7. [Google Scholar]
- Parets, S.E.; Conneely, K.N.; Kilaru, V.; Fortunato, S.J.; Syed, T.A.; Saade, G.; Smith, A.K.; Menon, R. Fetal DNA methylation associates with early spontaneous preterm birth and gestational age. PLoS One 2013, 8, e67489. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.H.; Rifas-Shiman, S.L.; Baccarelli, A.; Tarantini, L.; Boeke, C.E.; Kleinman, K.; Litonjua, A.A.; Rich-Edwards, J.W.; Gillman, M.W. Associations of LINE-1 DNA methylation with preterm birth in a prospective cohort study. J. Dev. Orig. Health Dis. 2012, 3, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Tendl, K.A.; Schulz, S.M.; Mechtler, T.P.; Bohn, A.; Metz, T.; Greber-Platzer, S.; Kasper, D.C.; Herkner, K.R.; Item, C.B. DNA methylation pattern of CALCA in preterm neonates with bacterial sepsis as a putative epigenetic biomarker. Epigenetics 2013, 8, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Relton, C.L.; Groom, A.; St Pourcain, B.; Sayers, A.E.; Swan, D.C.; Embleton, N.D.; Pearce, M.S.; Ring, S.M.; Northstone, K.; Tobias, J.H.; et al. DNA methylation patterns in cord blood DNA and body size in childhood. PLoS One 2012, 7, e31821. [Google Scholar]
- Cruickshank, M.N.; Oshlack, A.; Theda, C.; Davis, P.G.; Martino, D.; Sheehan, P.; Dai, Y.; Saffery, R.; Doyle, L.W.; Craig, J.M. Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Genome Med. 2013. [Google Scholar] [CrossRef]
- Aguilar, H.N.; Mitchell, B.F. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum. Reprod. Update 2010, 16, 725–744. [Google Scholar] [CrossRef] [PubMed]
- Fuchikami, M.; Morinobu, S.; Segawa, M.; Okamoto, Y.; Yamawaki, S.; Ozaki, N.; Inoue, T.; Kusumi, I.; Koyama, T.; Tsuchiyama, K.; et al. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 2011, 6, e23881. [Google Scholar] [CrossRef] [PubMed]
- Mikeska, T.; Bock, C.; Do, H.; Dobrovic, A. DNA methylation biomarkers in cancer: Progress towards clinical implementation. Expert Rev. Mol. Diagn. 2012, 12, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Philibert, R.A.; Beach, S.R.; Lei, M.K.; Brody, G.H. Changes in DNA methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking. Clin. Epigenet. 2013. [Google Scholar] [CrossRef]
- Elovitz, M.A.; Brown, A.G.; Anton, L.; Gilstrop, M.; Heiser, L.; Bastek, J. Distinct cervical microRNAprofiles are present in women destined to have a preterm birth. Am. J. Obstet. Gynecol. 2014, 210, e1–e11. [Google Scholar] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Parets, S.E.; Bedient, C.E.; Menon, R.; Smith, A.K. Preterm Birth and Its Long-Term Effects: Methylation to Mechanisms. Biology 2014, 3, 498-513. https://doi.org/10.3390/biology3030498
Parets SE, Bedient CE, Menon R, Smith AK. Preterm Birth and Its Long-Term Effects: Methylation to Mechanisms. Biology. 2014; 3(3):498-513. https://doi.org/10.3390/biology3030498
Chicago/Turabian StyleParets, Sasha E., Carrie E. Bedient, Ramkumar Menon, and Alicia K. Smith. 2014. "Preterm Birth and Its Long-Term Effects: Methylation to Mechanisms" Biology 3, no. 3: 498-513. https://doi.org/10.3390/biology3030498
APA StyleParets, S. E., Bedient, C. E., Menon, R., & Smith, A. K. (2014). Preterm Birth and Its Long-Term Effects: Methylation to Mechanisms. Biology, 3(3), 498-513. https://doi.org/10.3390/biology3030498