Cryptic Genetic Variation in Evolutionary Developmental Genetics
Abstract
:1. Introduction
1.1. Robustness, Plasticity and Lability
1.2. Incompleteness of Standard Models
2. The Quantitative Genetics of Developmental Systems
2.1. The Infinitesimal Model Dominates
2.2. Selection is Generally from Standing Variation
2.3. Pleiotropy is Ubiquitous
2.4. Conditional Neutrality Harbors Cryptic Variation
2.5. Developmental Systems are Canalized
2.6. Developmental System “Drift”
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gibson, G.; Dworkin, I. Uncovering cryptic genetic variation. Nat. Rev. Genet. 2004, 5, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Paaby, A.B.; Rockman, M.V. Cryptic genetic variation: Evolution’s hidden substrate. Nat. Rev. Genet. 2014, 15, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. The correlations between relatives on the supposition of mendelian inheritance. Philos. Trans. R. Soc. Edin. 1918, 52, 399–433. [Google Scholar] [CrossRef]
- Orr, H.A. The distribution of fitness effects among beneficial mutations in fisher’s geometric model of adaptation. J. Theor. Biol. 2006, 238, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. The Neutral Theory of Molecular Evolution; Cambridge University Press: New York, NY, USA, 1983; p. 367. [Google Scholar]
- Wright, S. Evolution and the Genetics of Populations. Volume 1: Genetics and Biometric Foundations; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Wagner, A. Robustness and Evolvability in Living Systems; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Parsons, P.A. Fluctuating asymmetry: A biological monitor of environmental and genomic stress. Heredity 1992, 68, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Raff, R.A. The Shape of Life: Genes, Development, and the Evolution of Animal Form; University of Chicago Press: Chicago, IL, USA, 1996; p. 520. [Google Scholar]
- Arthur, W. The emerging conceptual framework of evolutionary developmental biology. Nature 2002, 415, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S.A. The Origins of Order: Self Organization and Selection in Evolution; Oxford University Press: New York, NY, USA, 1993; p. 709. [Google Scholar]
- West-Eberhard, M.J. Developmental Plasticity and Evolution; Oxford University Press: New York, NY, USA, 2003; p. 794. [Google Scholar]
- Barlow, G.W. The Cichlid Fishes: Nature’s Grand Experiment in Evolution; Perseus Pub.: Cambridge, MA, USA, 2000; p. 335. [Google Scholar]
- Gerhart, J.; Kirschner, M. Cells, Embryos, and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability; Blackwell Science: Boston, MA, USA, 1997; p. 642. [Google Scholar]
- Slack, J.M.; Holland, P.W.; Graham, C.F. The zootype and the phylotypic stage. Nature 1993, 361, 490–492. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.; Schierenberg, E. Evolution of embryonic development in nematodes. EvoDevo 2011. [Google Scholar] [CrossRef] [PubMed]
- Sommer, R.J.; Tautz, D. Involvement of an orthologue of the Drosophila pair-rule gene hairy in segment formation of the short germ-band embryo of Tribolium (Coleoptera). Nature 1993, 361, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.Z.; Bergman, C.; Patel, N.H.; Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 2000, 403, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J. The Structure of Evolutionary Theory; Belknap Press of Harvard University Press: Cambridge, MA, USA, 2002; p. 1433. [Google Scholar]
- Goldschmidt, R.B. The Material Basis of Evolution; Yale University Press: New Haven, CT, USA, 1940; p. 436. [Google Scholar]
- Visscher, P.M.; McEvoy, B.; Yang, J. From galton to gwas: Quantitative genetics of human height. Genet. Res. 2010, 92, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Barrett, R.D.; Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008, 23, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Siegal, M.L.; Leu, J.Y. On the nature and evolutionary impact of phenotypic robustness mechanisms. Ann. Rev. Ecol. Evol. Syst. 2014, 45, 496–517. [Google Scholar] [CrossRef] [PubMed]
- Rockman, M.V. The QTN program and the alleles that matter for evolution: All that’s gold does not glitter. Evolution 2012, 66, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Stern, D.L.; Orgogozo, V. The loci of evolution: How predictable is genetic evolution? Evolution 2008, 62, 2155–2177. [Google Scholar] [CrossRef] [PubMed]
- Endler, J.A. Natural Selection in the Wild; Princeton University Press: Princeton, NJ, USA, 1986; p. 336. [Google Scholar]
- White, S.; Doebley, J. Of genes and genomes and the origin of maize. Trends Genet. 1998, 14, 327–332. [Google Scholar] [CrossRef]
- Druet, T.; Ahariz, N.; Cambisano, N.; Tamma, N.; Michaux, C.; Coppieters, W.; Charlier, C.; Georges, M. Selection in action: Dissecting the molecular underpinnings of the increasing muscle mass of Belgian Blue Cattle. BMC Genom. 2014. [Google Scholar] [CrossRef] [PubMed]
- Ffrench-Constant, R.H. The molecular genetics of insecticide resistance. Genetics 2013, 194, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Moose, S.P.; Dudley, J.W.; Rocheford, T.R. Maize selection passes the century mark: A unique resource for 21st century genomics. Trends Plant Sci. 2004, 9, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Lewontin, R.C.; Hubby, J.L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 1966, 54, 595–609. [Google Scholar] [PubMed]
- Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.R.; Esko, T.; Yang, J.; Vedantam, S.; Pers, T.H.; Gustafsson, S.; Chu, A.Y.; Estrada, K.; Luan, J.; Kutalik, Z.; et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 2014, 46, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.R.; Quignon, P.; Li, L.; Schoenebeck, J.J.; Degenhardt, J.D.; Lohmueller, K.E.; Zhao, K.; Brisbin, A.; Parker, H.G.; vonHoldt, B.M.; et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010, 8, e1000451. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M. Genomic selection: Prediction of accuracy and maximisation of long term response. Genetica 2009, 136, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Adrion, J.R.; Hahn, M.W.; Cooper, B.S. Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends Genet. 2015, 31, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.D.; Kelley, J.L.; Elyashiv, E.; Melton, S.C.; Auton, A.; McVean, G.; Sella, G.; Przeworski, M. Classic selective sweeps were rare in recent human evolution. Science 2011, 331, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Pickrell, J.K.; Coop, G. The genetics of human adaptation: Hard sweeps, soft sweeps, and polygenic adaptation. Curr. Biol. 2010, 20, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Bergland, A.O.; Behrman, E.L.; O’Brien, K.R.; Schmidt, P.S.; Petrov, D.A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 2014, 10, e1004775. [Google Scholar] [CrossRef] [PubMed]
- Paaby, A.B.; Bergland, A.O.; Behrman, E.L.; Schmidt, P.S. A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation. Evolution 2014, 68, 3395–3409. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, E.; Duvernell, D.D.; Matzkin, L.M.; Duan, Y.; Zhu, C.T.; Verrelli, B.C.; Eanes, W.F. Single-locus latitudinal clines and their relationship to temperate adaptation in metabolic genes and derived alleles in Drosophila melanogaster. Genetics 2004, 168, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.G.; Zhang, X.S. On the pleiotropic structure of the genotype-phenotype map and the evolvability of complex organisms. Genetics 2012, 190, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Paaby, A.B.; Rockman, M.V. The many faces of pleiotropy. Trends Genet. 2013, 29, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.P.; Zhang, J. The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nat. Rev. Genet. 2011, 12, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liao, B.Y.; Zhang, J. Genomic patterns of pleiotropy and the evolution of complexity. Proc. Natl. Acad. Sci. USA 2010, 107, 18034–18039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wagner, G.P. On the definition and measurement of pleiotropy. Trends Genet. 2013, 29, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.T.; Willis, J.H.; Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 2011, 27, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics. Proc. Natl. Acad. Sci. USA 1991, 88, 5969–5973. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Alvarez, O.A.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.; Hazendonk, E.; Prins, P.; Plasterk, R.H.; Jansen, R.C.; et al. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet. 2006, 2, e222. [Google Scholar] [CrossRef] [PubMed]
- De Jager, P.L.; Hacohen, N.; Mathis, D.; Regev, A.; Stranger, B.E.; Benoist, C. ImmVar project: Insights and design considerations for future studies of "healthy" immune variation. Semin. Immunol. 2015, 27, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Fairfax, B.P.; Knight, J.C. Genetics of gene expression in immunity to infection. Curr. Opin. Immunol. 2014, 30, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Ongen, H.; Andersen, C.L.; Bramsen, J.B.; Oster, B.; Rasmussen, M.H.; Ferreira, P.G.; Sandoval, J.; Vidal, E.; Whiffin, N.; Planchon, A.; et al. Putative cis-regulatory drivers in colorectal cancer. Nature 2014, 512, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Wittkopp, P.J.; Haerum, B.K.; Clark, A.G. Regulatory changes underlying expression differences within and between Drosophila species. Nat. Genet. 2008, 40, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.G.; Goddard, M.E.; Visscher, P.M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 2008, 4, e1000008. [Google Scholar] [CrossRef] [PubMed]
- Sangster, T.A.; Lindquist, S.; Queitsch, C. Under cover: Causes, effects and implications of hsp90-mediated genetic capacitance. BioEssays 2004, 26, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, S.L.; Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 1998, 396, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Waddington, C.H. Genetic assimilation of an acquired character. Evolution 1953, 7, 118–126. [Google Scholar] [CrossRef]
- Gibson, G.; Hogness, D.S. Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 1996, 271, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.B.; Uppendahl, L.D.; Traficante, M.K.; Levy, S.F.; Siegal, M.L. Histone variant HTZ1 shows extensive epistasis with, but does not increase robustness to, new mutations. PLoS Genet. 2013, 9, e1003733. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.; Wagner, G. Canalization in evolutionary genetics: A stabilizing theory? BioEssays 2000, 22, 372–380. [Google Scholar] [CrossRef]
- Hermisson, J.; Wagner, G.P. The population genetic theory of hidden variation and genetic robustness. Genetics 2004, 168, 2271–2284. [Google Scholar] [CrossRef] [PubMed]
- Dun, R.B.; Fraser, A.S. Selection for an invariant character; vibrissa number in the house mouse. Nature 1958, 181, 1018–1019. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.; van Helden, S. Is function of the Drosophila homeotic gene ultrabithorax canalized? Genetics 1997, 147, 1155–1168. [Google Scholar] [PubMed]
- Gibson, G.; Wemple, M.; van Helden, S. Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster. Genetics 1999, 151, 1081–1091. [Google Scholar] [PubMed]
- Yang, J.; Loos, R.J.; Powell, J.E.; Medland, S.E.; Speliotes, E.K.; Chasman, D.I.; Rose, L.M.; Thorleifsson, G.; Steinthorsdottir, V.; Magi, R.; et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 2012, 490, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nettleton, J.A.; Follis, J.L.; Ngwa, J.S.; Smith, C.E.; Ahmad, S.; Tanaka, T.; Wojczynski, M.K.; Voortman, T.; Lemaitre, R.N.; Kristiansson, K.; et al. Gene x dietary pattern interactions in obesity: Analysis of up to 68 317 adults of european ancestry. Hum. Mol. Genet. 2015, 24, 4728–4738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Q.; Qi, L. Sugar-sweetened beverages, genetic risk, and obesity. N. Engl. J. Med. 2013, 368, 286–287. [Google Scholar] [CrossRef] [PubMed]
- Marigorta, U.M.; Gibson, G. A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects. Front. Genet. 2014. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G. Decanalization and the origin of complex disease. Nat. Rev. Genet. 2009, 10, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Polaczyk, P.J.; Gasperini, R.; Gibson, G. Naturally occurring genetic variation affects Drosophila photoreceptor determination. Dev. Genes Evol. 1998, 207, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Paaby, A.B.; White, A.G.; Riccardi, D.D.; Gunsalus, K.C.; Piano, F.; Rockman, M.V. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation. Elife 2015. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, K.; Nishimura, N.; Currey, M.; Hurwit, D.; Cresko, W.A. Cryptic genetic variation and body size evolution in threespine stickleback. Evolution 2011, 65, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.D.; Marks, M.E.; Peichel, C.L.; Blackman, B.K.; Nereng, K.S.; Jonsson, B.; Schluter, D.; Kingsley, D.M. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 2004, 428, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Felix, M.A. Cryptic quantitative evolution of the vulva intercellular signaling network in Caenorhabditis. Curr. Biol. 2007, 17, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Rohner, N.; Jarosz, D.F.; Kowalko, J.E.; Yoshizawa, M.; Jeffery, W.R.; Borowsky, R.L.; Lindquist, S.; Tabin, C.J. Cryptic variation in morphological evolution: Hsp90 as a capacitor for loss of eyes in cavefish. Science 2013, 342, 1372–1375. [Google Scholar] [CrossRef] [PubMed]
- Hulse, A.M.; Cai, J.J. Genetic variants contribute to gene expression variability in humans. Genetics 2013, 193, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.P.; Yuan, D.C.; Gruber, J.D.; Duveau, F.; Wittkopp, P.J. Selection on noise constrains variation in a eukaryotic promoter. Nature 2015, 521, 344–347. [Google Scholar] [CrossRef] [PubMed]
- True, J.R.; Haag, E.S. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 2001, 3, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Coghlan, A. Nematode genome evolution. The C. elegans Research Community, WormBook 2005. Available online: http://www.wormbook.org/chapters/www_genomevol/genomevol.html (accessed on 12 March 2016).
- Wang, X.; Sommer, R.J. Antagonism of lin-17/frizzled and lin-18/ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biol. 2011, 9, e1001110. [Google Scholar] [CrossRef] [PubMed]
- Verster, A.J.; Ramani, A.K.; McKay, S.J.; Fraser, A.G. Comparative rnai screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet. 2014, 10, e1004077. [Google Scholar] [CrossRef] [PubMed]
- Chari, S.; Dworkin, I. The conditional nature of genetic interactions: The consequences of wild-type backgrounds on mutational interactions in a genome-wide modifier screen. PLoS Genet. 2013, 9, e1003661. [Google Scholar] [CrossRef] [PubMed]
- Gasch, A.P.; Payseur, B.A.; Pool, J.E. The power of natural variation for model organism biology. Trends Genet. 2016, 32, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.Y.; Kelsey, K.J.; Wolfner, M.F.; Clark, A.G. Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in Drosophila. Hum. Mol. Genet. 2016, 25, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.Y.; Wang, X.; Riccardi, D.; Wolfner, M.F.; Clark, A.G. The genetic architecture of the genome-wide transcriptional response to ER stress in the mouse. PLoS Genet. 2015, 11, e1004924. [Google Scholar] [CrossRef] [PubMed]
- Rockman, M.V. Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 2008, 456, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Fievet, B.T.; Rodriguez, J.; Naganathan, S.; Lee, C.; Zeiser, E.; Ishidate, T.; Shirayama, M.; Grill, S.; Ahringer, J. Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy. Nat. Cell Biol. 2013, 15, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Seydoux, G. ‘Goldilocks’ suppressor screen identifies web of polarity regulators. Nat. Cell Biol. 2013, 15, 9–10. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paaby, A.B.; Gibson, G. Cryptic Genetic Variation in Evolutionary Developmental Genetics. Biology 2016, 5, 28. https://doi.org/10.3390/biology5020028
Paaby AB, Gibson G. Cryptic Genetic Variation in Evolutionary Developmental Genetics. Biology. 2016; 5(2):28. https://doi.org/10.3390/biology5020028
Chicago/Turabian StylePaaby, Annalise B., and Greg Gibson. 2016. "Cryptic Genetic Variation in Evolutionary Developmental Genetics" Biology 5, no. 2: 28. https://doi.org/10.3390/biology5020028
APA StylePaaby, A. B., & Gibson, G. (2016). Cryptic Genetic Variation in Evolutionary Developmental Genetics. Biology, 5(2), 28. https://doi.org/10.3390/biology5020028