Effect of Methyl Jasmonate on the Growth and Biosynthesis of C13- and C14-Hydroxylated Taxoids in the Cell Culture of Yew (Taxus wallichiana Zucc.) of Different Ages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Culture Conditions
2.2. Elicitation of Young and Old Cultures with Methyl Jasmonate (MeJ)
2.3. Growth Assessment
2.4. Analysis of Taxoid Diterpenoids in Cell Biomass
2.5. Statistical Analysis
3. Results
3.1. Effect of MeJ on the Growth and Biosynthetic Characteristics of the «Young» (1.5-Year-Old) Suspension Cell Culture of T. wallichiana in Flasks and Bioreactors
3.1.1. Effect of MeJ on the Growth of the «Young» Suspension Cell Culture in Flasks and Bioreactors
3.1.2. Effect of MeJ on Accumulation of Taxoid Diterpenoids in the «Young» Suspension Cell Culture in Flasks and Bioreactors
3.2. Effect of MeJ on the Growth and Byosynthetic Characteristics of the «Old» (6-Year-Old) Suspension Cell Culture of Taxus wallichiana in Flasks and Bioreactors
3.2.1. Effect of MeJ on the Growth of the «Old» Suspension Cell Culture in Flasks and Bioreactors
3.2.2. Effect of MeJ on Accumulation of Taxoid Diterpenoids in the «Old» Suspension Cell Culture in Flasks and Bioreactors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howat, S.; Park, B.; Oh, I.S.; Jin, Y.-W.; Lee, E.-K.; Loake, G.J. Paclitaxel: Biosynthesis, production and future prospects. New Biotechnol. 2014, 31, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Cusido, R.M.; Onrubia, M.; Sabater-Jara, A.B.; Moyano, E.; Bonfill, M.; Goossens, A.; Angeles Pedreño, M.; Palazon, J. A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol. Adv. 2014, 32, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Tabata, H. Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr. Drug Targets 2014, 7, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem. 2011, 46, 23–34. [Google Scholar] [CrossRef]
- Onrubia, M.; Cusido, R.M.; Ramirez, K.; Hernandez-Vazquez, L.; Moyano, E.; Bonfill, M.; Palazon, J. Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: Paclitaxel and its derivatives. Curr. Med. Chem. 2013, 20, 880–891. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dandin, V.S.; Zhong, J.-J.; Paek, K.-Y. Strategies for enhanced production of plant secondary metabolites from cell and organ cultures. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Paek, K.-Y., Murthy, H.N., Zhong, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 471–508. [Google Scholar]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.; Palazon, J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef] [Green Version]
- Farmer, E.E.; Ryan, C.A. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 1990, 87, 7713–7716. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef]
- Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2007, 100, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liu, B.; Liu, L.; Song, S. Jasmonate action in plant growth and development. J. Exp. Bot. 2017, 68, 1349–1359. [Google Scholar] [CrossRef] [Green Version]
- Gundlach, H.; Müller, M.J.; Kutchan, T.M.; Zenk, M.H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 1992, 89, 2389–2393. [Google Scholar] [CrossRef] [Green Version]
- Nosov, A.M. Application of cell technologies for production of plant-derived bioactive substances of plant origin. Appl. Biochem. Microbiol. 2012, 48, 609–624. [Google Scholar] [CrossRef]
- Cusido, R.M.; Vidal, H.; Gallego, A.; Abdoli, M.; Palazon, J. Biotechnological production of taxanes: A molecular approach. In Recent Advances in Pharmaceutical Sciences III; Transworld Research Network: Trivandrum, India, 2013; pp. 91–107. [Google Scholar]
- Yukimune, Y.; Tabata, H.; Higashi, Y.; Hara, Y. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat. Biotechnol. 1996, 14, 1129–1132. [Google Scholar] [CrossRef]
- Exposito, O.; Syklowska-Baranek, K.; Moyano, E.; Onrubia, M.; Bonfill, M.; Palazon, J.; Cusido, R.M. Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate. Biotechnol. Prog. 2010, 26, 1145–1153. [Google Scholar] [CrossRef]
- Senger, R.S.; Phisalaphong, M.; Karim, M.N.; Linden, J.C. Development of a culture sub-population induction model: Signaling pathways synergy and taxanes production by Taxus canadensis. Biotechnol. Prog. 2006, 22, 1671–1682. [Google Scholar] [CrossRef]
- Bonfill, M.; Bentebibel, S.; Moyano, E.; Palazón, J.; Cusidó, R.M.; Eibl, R.; Piñol, M.T. Paclitaxel and baccatin III production induced by methyl jasmonate in free and immobilized cells of Taxus baccata. Biol. Plant. 2007, 51, 647–652. [Google Scholar] [CrossRef]
- McKee, M.C.; Wilson, S.A.; Roberts, S.C. The interface amongst conserved and specialized pathways in non-paclitaxel and paclitaxel accumulating Taxus cultures. Metabolites 2021, 11, 688. [Google Scholar] [CrossRef]
- Kochkin, D.V.; Demidova, E.V.; Globa, E.B.; Nosov, A.M. Profiling of taxoid compounds in plant cell cultures of different species of yew (Taxus spp.). Molecules 2023, 28, 2178. [Google Scholar] [CrossRef]
- Kochkin, D.V.; Globa, E.B.; Demidova, E.V.; Gaisinsky, V.V.; Galishev, B.A.; Kolotyrkina, N.G.; Kuznetsov, V.V.; Nosov, A.M. Occurrence of 14-hydroxylated taxoids in the plant in vitro cell cultures of different yew species (Taxus spp.). Dokl. Biochem. Biophys. 2017, 476, 337–339. [Google Scholar] [CrossRef]
- Kochkin, D.V.; Globa, E.B.; Demidova, E.V.; Gaisinsky, V.V.; Kuznetsov, V.V.; Nosov, A.M. Detection of taxuyunnanin C in suspension cell culture of taxuscanadensis. Dokl. Biochem. Biophys. 2019, 485, 129–131. [Google Scholar] [CrossRef]
- Globa, E.B.; Demidova, E.V.; Gaysinskiy, V.V.; Kochkin, D.V. Obtainment and characterization of callus and suspension cell culture of Taxus wallichiana Zucc. Vestn. Sev.-Vostochn. Fed. Univ. M.K. Ammosova 2018, 2, 18–25. (In Russian) [Google Scholar]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Globa, E.B.; Demidova, E.V.; Turkin, V.V.; Makarova, S.S.; Nosov, A.M. Callus and suspension culture introduction of four yew species: Taxus canadensis, T. baccata, T. cuspidata and T. media. Biotechnologia 2009, 3, 54–59. [Google Scholar]
- Madhusudanan, K.P.; Chattopadhyay, S.K.; Tripathi, V.K.; Sashidhara, K.V.; Kukreja, A.K.; Jain, S.P. LC-ESI-MS analysis of taxoids from the bark of Taxus wallichiana. Biomed. Chromatogr. 2002, 16, 343–355. [Google Scholar] [CrossRef]
- Zhao, C.F.; Yu, L.J.; Li, L.Q.; Xiang, F. Simultaneous identification and determination of major taxoids from extracts of Taxus chinensis cell cultures. Z. Nat. C 2007, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Song, G.H.; Zhao, C.F.; Zhang, M.; Fu, C.H.; Zhang, H.; Yu, L.J. Correlation analysis of the taxane core functional group modification, enzyme expression, and metabolite accumulation profiles under methyl jasmonate treatment. Biotechnol. Prog. 2014, 30, 269–280. [Google Scholar] [CrossRef]
- Baloglu, E.; Kingston, D.G.I. The taxane diterpenoids. J. Nat. Prod. 1999, 62, 1448–1472. [Google Scholar] [CrossRef]
- Menhard, B.; Eisenreich, W.; Hylands, P.J.; Bacher, A.; Zenk, M.H. Taxoids from cell cultures of Taxus chinensis. Phytochemistry 1998, 49, 113–125. [Google Scholar] [CrossRef]
- Ketchum, R.E.B.; Rithner, C.D.; Qiu, D.; Kim, Y.S.; Williams, R.M.; Croteau, R.B. Taxus metabolomics: Methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures. Phytochemistry 2003, 62, 901–909. [Google Scholar] [CrossRef]
- Elmer, W.H.; Mattina, M.J.I.; MacEachern, G.J. Sensitivity of plant pathogenic fungi to taxane extracts from ornamental yews. Phytopathology 1994, 84, 1179–1185. [Google Scholar] [CrossRef]
- Talbot, N.J. Plant immunity: A little help from fungal friends. Curr. Biol. 2015, 25, R1074–R1076. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.M.; Yousef, G.G.; Grace, M.H.; Rogers, R.B.; Gorelick-Feldman, J.; Raskin, I.; Lila, M.A. In vitro production of metabolism-enhancing phytoecdysteroids from Ajuga turkestanica. Plant Cell Tissue Organ Cult. 2008, 93, 73–83. [Google Scholar] [CrossRef]
- Hu, F.X.; Zhong, J.J. Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochem. 2008, 43, 113–118. [Google Scholar] [CrossRef]
- Mirjalili, N.; Linden, J.C. Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata: Ethylene interaction and induction models. Biotechnol. Progr. 1996, 12, 110–118. [Google Scholar] [CrossRef]
- Linden, J.C.; Phisalaphong, M. Oligosaccharides potentiate methyl jasmonate induced production of paclitaxel in Taxus canadensis. Plant Sci. 2000, 158, 41–51. [Google Scholar] [CrossRef]
- Ketchum, R.E.; Gibson, D.M.; Croteau, R.B.; Shuler, M.L. The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyljasmonate. Biotechnol. Bioeng. 1999, 62, 97–105. [Google Scholar] [CrossRef]
- Osuna, L.; Tapia, N.; Cusidó, R.; Palazón, J.; Bonfill, M.; Zamilpa, A.; López-Upton, J.; Cruz-Sosa, F. Taxane production induced by methyl jasmonate in free and immobilized cell cultures of Mexican yew (Taxus globosa Schltdl). Acta Physiol. Plant 2015, 37, 199. [Google Scholar] [CrossRef]
Growth Parameter | ||||||
---|---|---|---|---|---|---|
I | µ, day−1 | τ, Days | Mmax, g/L | Y | P, g/(L × day) | |
«Young» culture (experiment performed in 2017) | ||||||
Calculation based on FW | 16.9 | 0.22 | 3.1 | 173.2 | n/a | n/a |
Calculation based on DW | 10.2 | 0.21 | 3.3 | 12.7 | 0.33 | 0.39 |
Calculation based on the cell number | 5.3 | 0.17 | 4.1 | n/a | n/a | n/a |
«Old» culture (experiment performed in 2021) | ||||||
Calculation based on FW | 4.4 | 0.27 | 2.6 | 168.2 | n/a | n/a |
Calculation based on DW | 4.9 | 0.25 | 2.8 | 10.5 | 0.29 | 0.44 |
Growth Cycle * | Growth Parameter | |||||
---|---|---|---|---|---|---|
I | µ, day−1 | τ, Days | Mmax, g/L | Y | P, g/(L × day) | |
«Young» culture, 20-L bioreactor (experiment performed in 2017) | ||||||
1 | 4.6 | 0.26 | 2.7 | 11.7 | 0.32 | 0.32 |
2 | 4.3 | 0.21 | 3.3 | 10.5 | 0.30 | 0.30 |
3 (MeJ elicitation) | 3.1 | 0.19 | 3.6 | 17.5 | 0.39 | 0.62 |
«Old» culture, 75-L bioreactor (experiment performed in 2021) | ||||||
4 | 4.0 | 0.21 | 3.3 | 13.1 | 0.33 | 0.26 |
5 | 3.7 | 0.13 | 5.8 | 11.5 | 0.28 | 0.29 |
6 (MeJ elicitation) | 3.2 | 0.16 | 4.9 | 9.47 | 0.21 | 0.28 |
Variant | Days of Culture | Taxoid Content, mg/gDW | ||
---|---|---|---|---|
Yunnanxane 1 (C14-OH Taxoid) | Taxuyunnanine C 1 (C14-OH Taxoid) | Paclitaxel (C13-OH Taxoid) | ||
Flasks, control | 28 | 0.77 | 0.53 | 0.02 |
31 | 1.22 | 0.56 | 0.05 | |
Flasks, MeJ | 28 | 0.95 | 0.51 | 0.19 |
31 | 1.02 | 0.65 | 0.18 | |
20-L bioreactor, control | 14 | 0.04 | 0.13 | - |
28 | 0.12 | 0.02 | - | |
45 | 0.08 | 0.09 | - | |
20-L bioreactor, MeJ (48 days of culture) | 48 | 0.13 | 0.12 | - |
52 | 0.15 | 0.13 | 0.06 | |
55 | 0.27 | 0.23 | 0.11 | |
77 | 0.36 | 0.34 | 0.15 | |
Tree bark 2 | - | - | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demidova, E.; Globa, E.; Klushin, A.; Kochkin, D.; Nosov, A. Effect of Methyl Jasmonate on the Growth and Biosynthesis of C13- and C14-Hydroxylated Taxoids in the Cell Culture of Yew (Taxus wallichiana Zucc.) of Different Ages. Biomolecules 2023, 13, 969. https://doi.org/10.3390/biom13060969
Demidova E, Globa E, Klushin A, Kochkin D, Nosov A. Effect of Methyl Jasmonate on the Growth and Biosynthesis of C13- and C14-Hydroxylated Taxoids in the Cell Culture of Yew (Taxus wallichiana Zucc.) of Different Ages. Biomolecules. 2023; 13(6):969. https://doi.org/10.3390/biom13060969
Chicago/Turabian StyleDemidova, Elena, Elena Globa, Andrey Klushin, Dmitry Kochkin, and Alexander Nosov. 2023. "Effect of Methyl Jasmonate on the Growth and Biosynthesis of C13- and C14-Hydroxylated Taxoids in the Cell Culture of Yew (Taxus wallichiana Zucc.) of Different Ages" Biomolecules 13, no. 6: 969. https://doi.org/10.3390/biom13060969