Next Issue
Volume 8, March
Previous Issue
Volume 7, September
 
 

Biomolecules, Volume 7, Issue 4 (December 2017) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1419 KiB  
Review
Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health
by Zohaib Khurshid, Mustafa Naseem, Faris Yahya I. Asiri, Maria Mali, Rabia Sannam Khan, Haafsa Arshad Sahibzada, Muhammad Sohail Zafar, Syed Faraz Moin and Erum Khan
Biomolecules 2017, 7(4), 80; https://doi.org/10.3390/biom7040080 - 05 Dec 2017
Cited by 40 | Viewed by 8420
Abstract
Cathelicidins are a group of oral antimicrobial peptides that play multiple vital roles in the human body, such as their antimicrobial (broad spectrum) role against oral microbes, wound healing, and angiogenesis, with recent evidences about their role in cancer regulation. Cathelicidins are present [...] Read more.
Cathelicidins are a group of oral antimicrobial peptides that play multiple vital roles in the human body, such as their antimicrobial (broad spectrum) role against oral microbes, wound healing, and angiogenesis, with recent evidences about their role in cancer regulation. Cathelicidins are present in humans and other mammals as well. By complex interactions with the microenvironment, it results in pro-inflammatory effects. Many in vitro and in vivo experiments have been conducted to ultimately conclude that these unique peptides play an essential role in innate immunity. Peptides are released in the precursor form (defensins), which after cleavage results in cathelicidins formation. Living in the era where the major focus is on non-invasive and nanotechnology, this ultimately leads to further advancements in the field of salivaomics. Based on current spotlight innovations, we have highlighted the biochemistry, mode of action, and the importance of cathelicidins in the oral cavity. Full article
Show Figures

Graphical abstract

601 KiB  
Review
Is Antimicrobial Photodynamic Therapy Effective as an Adjunct to Scaling and Root Planing in Patients with Chronic Periodontitis? A Systematic Review
by Betsy Joseph, Presanthila Janam, Subhash Narayanan and Sukumaran Anil
Biomolecules 2017, 7(4), 79; https://doi.org/10.3390/biom7040079 - 24 Nov 2017
Cited by 39 | Viewed by 7054
Abstract
The aim of this systematic review was to investigate whether antimicrobial photodynamic therapy (aPDT) as either a primary mode of treatment or an adjunct to non-surgical treatment was more effective than scaling and root planing (SRP) alone in treating chronic periodontitis in terms [...] Read more.
The aim of this systematic review was to investigate whether antimicrobial photodynamic therapy (aPDT) as either a primary mode of treatment or an adjunct to non-surgical treatment was more effective than scaling and root planing (SRP) alone in treating chronic periodontitis in terms of clinical attachment level (CAL) gain and probing depth (PD) reduction. The focused question was developed using the Patient, Intervention, Comparison, and Outcome (PICO) format, and two authors independently searched the Medline, EMBASE, Cochrane Library, Web of Science, Google Scholar, and Scopus databases for relevant studies from January 2008 to December 2016. Twenty studies included in this systematic review were randomized clinical trials (RCTs) or quasi-RCTs of aPDT compared to placebo, no intervention, or non-surgical treatment in an adult population. Basic study characteristics, photosensitizing agents and wavelengths used in aPDT, frequency of aPDT application, effect of aPDT on clinical parameters, antimicrobial effect of aPDT in chronic periodontitis, effect of immunological parameters following aPDT and patient-based outcome measures were collected from the studies. Although there was a wide range of heterogeneity in the included studied, they all indicated that aPDT has the potential to be an effective adjunct in the treatment of chronic periodontitis. Long-term, multicenter studies with larger sample sizes are needed before aPDT can be recommended as an effective treatment modality. Full article
Show Figures

Figure 1

6060 KiB  
Article
The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo
by Tatiana P. Sankova, Iurii A. Orlov, Andrey N. Saveliev, Demid A. Kirilenko, Polina S. Babich, Pavel N. Brunkov and Ludmila V. Puchkova
Biomolecules 2017, 7(4), 78; https://doi.org/10.3390/biom7040078 - 03 Nov 2017
Cited by 5 | Viewed by 4013
Abstract
There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high [...] Read more.
There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed. Full article
Show Figures

Figure 1

1255 KiB  
Review
Evolutionary Conservation of the Components in the TOR Signaling Pathways
by Hisashi Tatebe and Kazuhiro Shiozaki
Biomolecules 2017, 7(4), 77; https://doi.org/10.3390/biom7040077 - 01 Nov 2017
Cited by 78 | Viewed by 8527
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that controls multiple cellular processes upon various intracellular and extracellular stimuli. Since its first discovery, extensive studies have been conducted both in yeast and animal species including humans. Those studies have revealed that [...] Read more.
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that controls multiple cellular processes upon various intracellular and extracellular stimuli. Since its first discovery, extensive studies have been conducted both in yeast and animal species including humans. Those studies have revealed that TOR forms two structurally and physiologically distinct protein complexes; TOR complex 1 (TORC1) is ubiquitous among eukaryotes including animals, yeast, protozoa, and plants, while TOR complex 2 (TORC2) is conserved in diverse eukaryotic species other than plants. The studies have also identified two crucial regulators of mammalian TORC1 (mTORC1), Ras homolog enriched in brain (RHEB) and RAG GTPases. Of these, RAG regulates TORC1 in yeast as well and is conserved among eukaryotes with the green algae and land plants as apparent exceptions. RHEB is present in various eukaryotes but sporadically missing in multiple taxa. RHEB, in the budding yeast Saccharomyces cerevisiae, appears to be extremely divergent with concomitant loss of its function as a TORC1 regulator. In this review, we summarize the evolutionarily conserved functions of the key regulatory subunits of TORC1 and TORC2, namely RAPTOR, RICTOR, and SIN1. We also delve into the evolutionary conservation of RHEB and RAG and discuss the conserved roles of these GTPases in regulating TORC1. Full article
(This article belongs to the Special Issue TOR Signaling Pathway)
Show Figures

Figure 1

2337 KiB  
Review
Revealing Accessibility of Cryptic Protein Binding Sites within the Functional Collagen Fibril
by Cody L. Hoop, Jie Zhu, Ana Monica Nunes, David A. Case and Jean Baum
Biomolecules 2017, 7(4), 76; https://doi.org/10.3390/biom7040076 - 01 Nov 2017
Cited by 21 | Viewed by 6408
Abstract
Fibrillar collagens are the most abundant proteins in the extracellular matrix. Not only do they provide structural integrity to all of the connective tissues in the human body, but also their interactions with multiple cell receptors and other matrix molecules are essential to [...] Read more.
Fibrillar collagens are the most abundant proteins in the extracellular matrix. Not only do they provide structural integrity to all of the connective tissues in the human body, but also their interactions with multiple cell receptors and other matrix molecules are essential to cell functions, such as growth, repair, and cell adhesion. Although specific binding sequences of several receptors have been determined along the collagen monomer, processes by which collagen binding partners recognize their binding sites in the collagen fibril, and the critical driving interactions, are poorly understood. The complex molecular assembly of bundled triple helices within the collagen fibril makes essential ligand binding sites cryptic or hidden from the molecular surface. Yet, critical biological processes that require collagen ligands to have access to interaction sites still occur. In this contribution, we will discuss the molecular packing of the collagen I fibril from the perspective of how collagen ligands access their known binding regions within the fibril, and we will present our analysis of binding site accessibility from the fibril surface. Understanding the basis of these interactions at the atomic level sets the stage for developing drug targets against debilitating collagen diseases and using collagen as drug delivery systems and new biomaterials. Full article
(This article belongs to the Special Issue Functional Amyloids)
Show Figures

Figure 1

11293 KiB  
Article
The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli
by Daniel R. Smith, Janet E. Price, Peter E. Burby, Luz P. Blanco, Justin Chamberlain and Matthew R. Chapman
Biomolecules 2017, 7(4), 75; https://doi.org/10.3390/biom7040075 - 31 Oct 2017
Cited by 45 | Viewed by 10760
Abstract
Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional [...] Read more.
Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli. Full article
(This article belongs to the Special Issue Functional Amyloids)
Show Figures

Figure 1

1524 KiB  
Review
Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis
by Pratiek N. Matkar, Ramya Ariyagunarajah, Howard Leong-Poi and Krishna K. Singh
Biomolecules 2017, 7(4), 74; https://doi.org/10.3390/biom7040074 - 02 Oct 2017
Cited by 27 | Viewed by 8875
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, [...] Read more.
Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review. Full article
Show Figures

Graphical abstract

11901 KiB  
Review
Peptidylprolyl Isomerases as In Vivo Carriers for Drugs That Target Various Intracellular Entities
by Andrzej Galat
Biomolecules 2017, 7(4), 72; https://doi.org/10.3390/biom7040072 - 29 Sep 2017
Cited by 1 | Viewed by 4632
Abstract
Analyses of sequences and structures of the cyclosporine A (CsA)-binding proteins (cyclophilins) and the immunosuppressive macrolide FK506-binding proteins (FKBPs) have revealed that they exhibit peculiar spatial distributions of charges, their overall hydrophobicity indexes vary within a considerable level whereas their points isoelectric (pIs) [...] Read more.
Analyses of sequences and structures of the cyclosporine A (CsA)-binding proteins (cyclophilins) and the immunosuppressive macrolide FK506-binding proteins (FKBPs) have revealed that they exhibit peculiar spatial distributions of charges, their overall hydrophobicity indexes vary within a considerable level whereas their points isoelectric (pIs) are contained from 4 to 11. These two families of peptidylprolyl cis/trans isomerases (PPIases) have several distinct functional attributes such as: (1) high affinity binding to some pharmacologically-useful hydrophobic macrocyclic drugs; (2) diversified binding epitopes to proteins that may induce transient manifolds with altered flexibility and functional fitness; and (3) electrostatic interactions between positively charged segments of PPIases and negatively charged intracellular entities that support their spatial integration. These three attributes enhance binding of PPIase/pharmacophore complexes to diverse intracellular entities, some of which perturb signalization pathways causing immunosuppression and other system-altering phenomena in humans. Full article
Show Figures

Graphical abstract

1053 KiB  
Review
Why are Functional Amyloids Non-Toxic in Humans?
by Matthew P. Jackson and Eric W. Hewitt
Biomolecules 2017, 7(4), 71; https://doi.org/10.3390/biom7040071 - 22 Sep 2017
Cited by 63 | Viewed by 8142
Abstract
Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic [...] Read more.
Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses. Full article
(This article belongs to the Special Issue Functional Amyloids)
Show Figures

Figure 1

4115 KiB  
Review
The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides
by Létitia Jean, Alex C. Foley and David J. T. Vaux
Biomolecules 2017, 7(4), 70; https://doi.org/10.3390/biom7040070 - 22 Sep 2017
Cited by 9 | Viewed by 5805
Abstract
Hydrogels are water-swollen and viscoelastic three-dimensional cross-linked polymeric network originating from monomer polymerisation. Hydrogel-forming polypeptides are widely found in nature and, at a cellular and organismal level, they provide a wide range of functions for the organism making them. Amyloid structures, arising from [...] Read more.
Hydrogels are water-swollen and viscoelastic three-dimensional cross-linked polymeric network originating from monomer polymerisation. Hydrogel-forming polypeptides are widely found in nature and, at a cellular and organismal level, they provide a wide range of functions for the organism making them. Amyloid structures, arising from polypeptide aggregation, can be damaging or beneficial to different types of organisms. Although the best-known amyloids are those associated with human pathologies, this underlying structure is commonly used by higher eukaryotes to maintain normal cellular activities, and also by microbial communities to promote their survival and growth. Amyloidogenesis occurs by nucleation-dependent polymerisation, which includes several species (monomers, nuclei, oligomers, and fibrils). Oligomers of pathological amyloids are considered the toxic species through cellular membrane perturbation, with the fibrils thought to represent a protective sink for toxic species. However, both functional and disease-associated amyloids use fibril cross-linking to form hydrogels. The properties of amyloid hydrogels can be exploited by organisms to fulfil specific physiological functions. Non-physiological hydrogelation by pathological amyloids may provide additional toxic mechanism(s), outside of membrane toxicity by oligomers, such as physical changes to the intracellular and extracellular environments, with wide-spread consequences for many structural and dynamic processes, and overall effects on cell survival. Full article
(This article belongs to the Special Issue Functional Amyloids)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop