Analysis of Polymorphism rs1333049 (Located at 9P21.3) in the White Population of Western Siberia and Associations with Clinical and Biochemical Markers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Ethics approval and consent to participate
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CHD | coronary heart disease |
CVD | cardiovascular disease |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein cholesterol |
PCR | polymerase chain reaction |
SNV | single-nucleotide variant |
TC | total cholesterol |
TGs | triglycerides |
References
- Chi, J.S.; Li, J.Z.; Jia, J.J.; Zhang, T.; Liu, X.M.; Yi, L. Long Non-coding RNA ANRIL in Gene Regulation and Its Duality in Atherosclerosis. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2017, 37, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Fu, X.; Liu, G.; Bai, X. Genetic Variant rs10757278 on Chromosome 9p21 Contributes to Myocardial Infarction Susceptibility. Int. J. Mol. Sci. 2015, 16, 11678–11688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karvanen, J.; Silander, K.; Kee, F.; Tiret, L.; Salomaa, V.; Kuulasmaa, K.; Wiklund, P.G.; Virtamo, J.; Saarela, O.; Perret, C.; et al. The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet. Epidemiol. 2009, 33, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Dandona, S.; McPherson, R.; Allayee, H.; Hazen, S.L.; Wells, G.A.; Roberts, R.; Stewart, A.F.R. Two chromosome 9p21 haplotype blocks distinguish between coronary artery disease and myocardial infarction risk. Circ. Cardiovasc. Genet. 2013, 6, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, S.; Kumar, S.; Agarwal, V.; Misra, D.P.; Rai, M.K.; Kapoor, A. The association of polymorphic variants, rs2267788, rs1333049 and rs2383207 with coronary artery disease, its severity and presentation in North Indian population. Gene 2018, 648, 89–96. [Google Scholar] [CrossRef]
- Rivera, N.V.; Carreras-Torres, R.; Roncarati, R.; Viviani-Anselmi, C.; De Micco, F.; Mezzelani, A.; Koch, W.; Hoppmann, P.; Kastrati, A.; Stewart, A.F.R.; et al. Assessment of the 9p21.3 locus in severity of coronary artery disease in the presence and absence of type 2 diabetes. BMC Med. Genet. 2013, 14, 11. [Google Scholar] [CrossRef]
- Abid, K.; Mili, D.; Kenani, A. Polymorphism on Chromosome 9p21.3 Is Associated with Severity and Early-Onset CAD in Type 2 Diabetic Tunisian Population. Dis. Markers 2015, 2015, 792679. [Google Scholar] [CrossRef]
- Wu, Z.; Sheng, H.; Su, X.; Gao, X.; Lu, L.; Jin, W. Mediating Effect of Diabetes Mellitus on the Association Between Chromosome 9p21.3 Locus and Myocardial Infarction Risk: A Case-Control Study in Shanghai, China. Front Endocrinol. (Lausanne) 2018, 9, 362. [Google Scholar] [CrossRef]
- Patel, R.S.; Schmidt, A.F.; Tragante, V.; McCubrey, R.O.; Holmes, M.V.; Howe, L.J.; Direk, K.; Åkerblom, A.; Leander, K.; Virani, S.S.; et al. Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events. Circ. Genom. Precis Med. 2019, 12, e002471. [Google Scholar] [CrossRef]
- Maksimov, V.N.; Orlov, P.S.; Ivanova, A.A.; Lozhkina, N.G.; Kuimov, A.D.; Savchenko, S.V.; Novoselov, V.P.; Voevoda, M.I.; Malyutina, S.K. Complex evaluation of the significance of populational genetic markers associated with myocardial infarction and risk factors. Rus. J. Cardiol. 2017, 150, 33–41. [Google Scholar] [CrossRef]
- Goncharova, I.A.; Makeeva, O.A.; Markov, A.V.; Tarasenko, N.V.; Sleptsov, A.A.; Puzyrev, V.P. Genes for Fibrogenesis in the Determination of Susceptibility to Myocardial Infarction. Mol. Biol. [Mosk] 2016, 50, 94–105. [Google Scholar] [CrossRef]
- Peasey, A.; Bobak, M.; Kubinova, R.; Malyutina, S.K.; Pajak, A.; Tamosiunas, A.; Pikhart, H.; Nicholson, A.; Marmot, M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and Design of the HAPIEE study. BMC Public Health 2006, 6, 255. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006, 1. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Holme, J.; Anthony, J. SNP Genotyping: The KASP Assay. In Crop Breeding; Delphine, F., Whitford, R., Eds.; Springer: New York, NY, USA, 2014; pp. 75–86. [Google Scholar]
- Gafarov, V.; Gafarova, A. Who programs: “register acute myocardial infarction”, “Monica”—dynamics acute cardiovascular accident at years 1977–2009 in general population aged 25–64 years in Russia. Rus. J. Cardiol. 2016, 132, 129–134. [Google Scholar] [CrossRef]
- Helgadottir, A.; Thorleifsson, G.; Manolescu, A.; Gretarsdottir, S.; Blondal, T.; Jonasdottir, A.; Jonasdottir, A.; Sigurdsson, A.; Baker, A.; Palsson, A.; et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 2007, 316, 1491–1493. [Google Scholar] [CrossRef] [PubMed]
- McPherson, R.; Pertsemlidis, A.; Kavaslar, N.; Stewart, A.; Roberts, R.; Cox, D.R.; Hinds, D.A.; Pennacchio, L.A.; Tybjaerg-Hansen, A.; Folsom, A.R.; et al. A common allele on chromosome 9 associated with coronary heart disease. Science 2007, 316, 1488–1491. [Google Scholar] [CrossRef]
- Krimpenfort, P.; Ijpenberg, A.; Song, J.Y.; van der Valk, M.; Nawijn, M.; Zevenhoven, J.; Berns, A. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007, 448, 943–946. [Google Scholar] [CrossRef]
- Guo, Y.; Garcia-Barrio, M. Experimental Biology for the Identification of Causal Pathways in Atherosclerosis. Cardiovasc. Drugs Ther. 2016, 30, 1–11. [Google Scholar] [CrossRef]
- Khera, A.; Emdin, C.; Drake, I.; Natarajan, P.; Bick, A.G.; Cook, N.R.; Chasman, D.I.; Baber, U.; Mehran, R.; Rader, D.J.; et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N. Engl. J. Med. 2016. [Google Scholar] [CrossRef]
- Stenlund, H.; Lönnberg, G.; Jenkins, P.; Norberg, M.; Persson, M.; Messner, T.; Boman, K.; Pearson, T.; Wall, S.; Nyström, L.; et al. Fewer deaths from cardiovascular disease than expected from the Systematic Coronary Risk Evaluation chart in a Swedish population. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 321–324. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Wilson, P.W.; Larson, M.G.; Beiser, A.; Leip, E.P.; D’Agostino, R.B.; Levy, D. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am. J. Cardiol. 2004, 94, 20–24. [Google Scholar] [CrossRef]
- Ripatti, S.; Tikkanen, E.; Orho-Melander, M.; Havulinna, A.S.; Silander, K.; Sharma, A.; Guiducci, C.; Perola, M.; Jula, A.; Sinisalo, J.; et al. A multilocus genetic risk score for coronary heart disease: Case-control and prospective cohort analyses. Lancet 2010, 376, 1393–1400. [Google Scholar] [CrossRef]
- Thanassoulis, G.; Peloso, G.M.; Pencina, M.J.; Hoffmann, U.; Fox, C.S.; Cupples, L.A.; Levy, D.; D’Agostino, R.B.; Hwang, S.-J.; O’Donnell, C.J. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: The Framingham Heart Study. Circ. Cardiovasc. Genet. 2012, 5, 113–121. [Google Scholar] [CrossRef]
- Brautbar, A.; Pompeii, L.A.; Dehghan, A.; Ngwa, J.S.; Nambi, V.; Virani, S.S.; Rivadeneira, F.; Uitterlinden, A.G.; Hofman, A.; Witteman, J.C.; et al. A genetic risk score based on direct associations with coronary heart disease improves coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC), but not in the Rotterdam and Framingham Offspring, Studies. Atherosclerosis 2012, 223, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Mega, J.L.; Stitziel, N.O.; Smith, J.G.; Chasman, D.I.; Caulfield, M.J.; Devlin, J.J.; Nordio, F.; Hyde, C.L.; Cannon, C.P.; Sacks, F.M.; et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet 2015, 385, 2264–2271. [Google Scholar] [CrossRef]
- Tada, H.; Melander, O.; Louie, J.Z.; Catanese, J.J.; Rowland, C.M.; Devlin, J.J.; Kathiresan, S.; Shiffman, D. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur. Heart J. 2016, 37, 561–567. [Google Scholar] [CrossRef]
- Westermair, A.L.; Munz, M.; Schaich, A.; Nitsche, S.; Willenborg, B.; Venegas, L.M.; Willenborg, C.; Schunkert, H.; Schweiger, U.; Erdmann, J. Association of Genetic Variation at AQP4 Locus with Vascular Depression. Biomolecules 2018, 8, 164. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Netti, L.; Pucci, M.; De Marchis, M.; Palmirotta, R.; Volterrani, M.; Mancone, M.; Fedele, F. Diabetes Mellitus and Ischemic Heart Disease: The Role of Ion Channels. Int. J. Mol. Sci. 2018, 19, 802. [Google Scholar] [CrossRef]
- Foroughmand, A.M.; Nikkhah, E.; Galehdari, H.; Jadbabaee, M.H. Association study between coronary artery disease and rs1333049 and rs10757274 polymorphisms at 9p21 locus in south-west Iran. Cell J. 2015, 17, 89–98. [Google Scholar]
- Severino, P.; D’Amato, A.; Netti, L.; Pucci, M.; Infusino, F.; Maestrini, V.; Mancone, M.; Fedele, F. Myocardial Ischemia and Diabetes Mellitus: Role of Oxidative Stress in the Connection between Cardiac Metabolism and Coronary Blood Flow. J. Diabetes Res. 2019, 2019, 9489826. [Google Scholar] [CrossRef]
- Ellis, K.L.; Pilbrow, A.P.; Frampton, C.M.; Doughty, R.N.; Whalley, G.A.; Ellis, C.J.; Palmer, B.R.; Skelton, L.; Yandle, T.G.; Palmer, S.C.; et al. A Common Variant at Chromosome 9P21.3 Is Associated with Age of Onset of Coronary Disease but Not Subsequent Mortality. Circ. Cardiovasc. Genet. 2010, 3, 286–293. [Google Scholar] [CrossRef]
- Pignataro, P.; Pezone, L.; Di Gioia, J.; Franco, D.; Iaccarino, G.; Iolascon, A.; Ciccarelli, M.; Capasso, M. Association Study Between Coronary Artery Disease and rs1333049 Polymorphism at 9p21.3 Locus in Italian Population. J. Cardiovasc. Trans. Res. 2017, 10, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Osmak, G.; Titov, B.; Matveeva, N.A.; Bashinskaya, V.V.; Shakhnovich, R.M.; Sukhinina, T.S.; Kukava, N.G.; Ruda, M.Y.; Favorova, O.O. Impact of 9p21.3 region and atherosclerosis-related genes’ variants on longterm recurrent hard cardiac events after a myocardial infarction. Gene 2018, 647, 283–288. [Google Scholar] [CrossRef]
- Yang, J.; Gu, L.; Guo, X.; Huang, J.; Chen, Z.; Huang, G.; Kang, Y.; Zhang, X.; Long, J.; Su, L. LncRNA ANRIL Expression and ANRIL Gene Polymorphisms Contribute to the Risk of Ischemic Stroke in the Chinese Han Population. Cell. Mol. Neurobiol. 2018, 38, 1253–1269. [Google Scholar] [CrossRef]
- Bressler, J.; Folsom, A.R.; Couper, D.J.; Volcik, K.A.; Boerwinkle, E. Genetic variants identified in a european genome-wide association study that were found to predict incident coronary heart disease in the atherosclerosis risk in communities study. Am. J. Epidemiol. 2010, 171, 14–23. [Google Scholar] [CrossRef]
- Jansen, M.D.; Knudsen, G.P.; Myhre, R.; Høiseth, G.; Mørland, J.; Næss, Ø.; Tambs, K.; Magnus, P. Genetic variants in loci 1p13 and 9p21 and fatal coronary heart disease in a Norwegian case-cohort study. Mol. Biol Rep. 2014, 41, 2733–2743. [Google Scholar] [CrossRef]
Sample Availability: The datasets of this study are available from the corresponding author upon reasonable request. |
Males | Females | Both Sexes | |
---|---|---|---|
Number of subjects | 1270 | 1459 | 2729 |
Age, years | 56.7 ± 0.2 | 56.6 ± 0.2 | 56.7 ± 0.1 |
TC, mg/dL | 241.5 ± 1.4 | 258.8 ± 1.5 | 250.8 ± 1.1 |
HDL-C, mg/dL | 58.2 ± 0.4 | 61.4 ± 0.5 | 59.9 ± 0.3 |
LDL-C, mg/dL | 119.1 ± 1.3 | 131.8 ± 1.3 | 125.9 ± 0.9 |
TGs, mg/dL | 141.5 ± 2.2 | 144.4 ± 2.2 | 143.1 ± 1.6 |
Index of atherogenicity | 2.9 ± 0.04 | 3.0 ± 0.04 | 2.9 ± 0.03 |
Fasting glucose, mmol/L | 5.8 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.1 |
Body mass index, kg/m2 | 26.7 ± 0.1 | 29.8 ± 0.2 | 28.3 ± 0.1 |
Waist circumference, cm | 95.4 ± 0.4 | 92.3 ± 0.4 | 93.8 ± 0.3 |
Systolic blood pressure, mmHg | 143.5 ± 0.7 | 143.8 ± 0.7 | 143.7 ± 0.5 |
Diastolic blood pressure, mmHg | 90.4 ± 0.4 | 89.9 ± 0.4 | 89.9 ± 0.3 |
Heart rate, bpm | 72.3 ± 0.4 | 72.0 ± 0.3 | 72.1 ± 0.2 |
Males | Females | Both Sexes | |
% n = 1270 | % n = 1459 | % n = 2729 | |
Genotypes | |||
C/C | 0.21 n = 271 | 0.22 n = 322 | 0.22 n = 593 |
C/G | 0.53 n = 670 | 0.49 n = 712 | 0.51 n = 1382 |
G/G | 0.26 n = 329 | 0.29 n = 425 | 0.27 n = 754 |
Alleles | |||
C | 0.48 | 0.465 | 0.47 |
G | 0.52 | 0.535 | 0.53 |
Indicator of compliance with Hardy–Weinberg equilibrium | |||
χ2 | 4.17 | 0.53 | 0.73 |
Sex | Genotype | TC, mg/dL | HDL-C, mg/dL | LDL-C, mg/dL | TGs, mg/dL | Atherogenic index | Fasting glucose, mmol/L | Body–mass index, kg/m2 | Systolic blood pressure, mmHg | Diastolic blood pressure, mmHg | Heart rate, bpm |
Male | C/C | 232.9 ± 3.1 | 58.1 ± 0.9 | 111.3 ± 2.7 | 140.0 ± 4.8 | 2.77 ± 0.08 | 5.57 ± 0.14 | 26.7 ± 0.3 | 143.5 ± 1.4 | 90.6 ± 0.8 | 71.9 ± 0.8 |
C/G | 242.5 ± 1.9 | 58.2 ± 0.6 | 119.7 ± 1.7 | 142.8 ± 3.1 | 2.90 ± 0.05 | 5.87 ± 0.09 | 26.4 ± 0.2 | 143.0 ± 0.9 | 90.1 ± 0.5 | 72.0 ± 0.5 | |
G/G | 246.3 ± 2.8 | 58.4 ± 0.9 | 124.4 ± 2.5 | 140.2 ± 4.4 | 2.96 ± 0.08 | 5.77 ± 0.12 | 27.2 ± 0.3 | 144.5 ± 1.2 | 90.7 ± 0.7 | 73.3 ± 0.7 | |
p | 0.004 * | 0.954 | 0.002 * | 0.835 | 0.229 | 0.190 | 0.061 | 0.620 | 0.785 | 0.296 | |
Female | C/C | 265.1 ± 3.1 | 61.8 ± 1.1 | 133.5 ± 2.8 | 152.6 ± 4.6 | 3.00 ± 0.08 | 6.00 ± 0.14 | 29.9 ± 0.3 | 144.1 ± 1.3 | 90.4 ± 0.7 | 72.8 |
C/G | 257.1 ± 2.1 | 61.5 ± 0.7 | 130.9 ± 1.9 | 142.3 ± 3.1 | 2.95 ± 0.06 | 5.66 ± 0.09 | 29.7 ± 0.2 | 143.2 ± 0.9 | 89.4 ± 0.5 | 72.3 | |
G/G | 257.1 ± 2.7 | 60.9 ± 0.9 | 131.9 ± 2.4 | 141.9 ± 4.0 | 2.92 ± 0.07 | 5.70 ± 0.12 | 29.7 ± 0.3 | 144.6 ± 1.2 | 90.4 ± 0.6 | 71.9 | |
p | 0.080 | 0.787 | 0.302 | 0.133 | 0.744 | 0.116 | 0.811 | 0.615 | 0.404 | 0.605 | |
Both sexes | C/C | 250.3 ± 2.2 | 60.0 ± 0.7 | 123.3 ± 1.9 | 147.0 ± 3.4 | 2.90 ± 0.06 | 5.81 ± 0.10 | 28.4 ± 0.2 | 143.9 ± 1.0 | 90.5 ± 0.6 | 72.4 ± 0.5 |
C/G | 250.4 ± 1.5 | 59.9 ± 0.5 | 125.7 ± 1.3 | 142.6 ± 2.2 | 2.93 ± 0.04 | 5.76 ± 0.06 | 28.2 ± 0.1 | 143.1 ± 0.6 | 89.8 ± 0.4 | 72.1 ± 0.3 | |
G/G | 251.8 ± 1.9 | 59.7 ± 0.6 | 128.2 ± 1.7 | 140.9 ± 2.9 | 2.94 ± 0.05 | 5.73 ± 0.09 | 28.5 ± 0.2 | 144.5 ± 0.9 | 90.5 ± 0.5 | 72.6 ± 0.5 | |
p | 0.825 | 0.937 | 0.173 | 0.386 | 0.896 | 0.835 | 0.350 | 0.397 | 0.348 | 0.770 |
Sex | Genotype | Population | Myocardial Infarction | OR(95% CI) | P | ||
---|---|---|---|---|---|---|---|
n | % | n | % | ||||
Male | C/C | 250 | 20.7 | 21 | 33.9 | 1.96(1.14–3.38) | 0.017 * |
C/G | 644 | 53.3 | 26 | 41.9 | 0.63(0.38–1.06) | 0.09 | |
G/G | 314 | 26 | 15 | 24.2 | 0.91(0.5–1.65) | 0.882 | |
Female | C/C | 302 | 21.6 | 18 | 32.1 | 1.72(0.97–3.06) | 0.07 |
C/G | 687 | 49 | 25 | 44.6 | 0.84(0.49–1.43) | 0.589 | |
G/G | 412 | 29.4 | 13 | 23.2 | 0.73(0.39–1.36) | 0.37 | |
Both sexes | C/C | 554 | 21.2 | 39 | 33.1 | 1.83(1.23–2.72) | 0.004 * |
C/G | 1330 | 51 | 51 | 43.2 | 0.73(0.51–1.06) | 0.11 | |
G/G | 726 | 27.8 | 28 | 23.7 | 0.81(0.52–1.24) | 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakhtshneider, E.; Orlov, P.; Semaev, S.; Ivanoshchuk, D.; Malyutina, S.; Gafarov, V.; Ragino, Y.; Voevoda, M. Analysis of Polymorphism rs1333049 (Located at 9P21.3) in the White Population of Western Siberia and Associations with Clinical and Biochemical Markers. Biomolecules 2019, 9, 290. https://doi.org/10.3390/biom9070290
Shakhtshneider E, Orlov P, Semaev S, Ivanoshchuk D, Malyutina S, Gafarov V, Ragino Y, Voevoda M. Analysis of Polymorphism rs1333049 (Located at 9P21.3) in the White Population of Western Siberia and Associations with Clinical and Biochemical Markers. Biomolecules. 2019; 9(7):290. https://doi.org/10.3390/biom9070290
Chicago/Turabian StyleShakhtshneider, Elena, Pavel Orlov, Sergey Semaev, Dinara Ivanoshchuk, Sofia Malyutina, Valery Gafarov, Yuliya Ragino, and Mikhail Voevoda. 2019. "Analysis of Polymorphism rs1333049 (Located at 9P21.3) in the White Population of Western Siberia and Associations with Clinical and Biochemical Markers" Biomolecules 9, no. 7: 290. https://doi.org/10.3390/biom9070290
APA StyleShakhtshneider, E., Orlov, P., Semaev, S., Ivanoshchuk, D., Malyutina, S., Gafarov, V., Ragino, Y., & Voevoda, M. (2019). Analysis of Polymorphism rs1333049 (Located at 9P21.3) in the White Population of Western Siberia and Associations with Clinical and Biochemical Markers. Biomolecules, 9(7), 290. https://doi.org/10.3390/biom9070290