Essential Oils in the Treatment of Various Types of Acne—A Review
Abstract
:1. Introduction
2. Essential Oils with Potential Anti-Acne Effects
2.1. Tea Tree Essential Oil
2.2. Eucalyptus Essential Oil
2.3. Myrtle Essential Oil
2.4. Lavender Essential Oil
2.5. Oregano Essential Oil
2.6. Thyme Essential Oil
2.7. Lemon Essential Oil
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanclemente, G.; Burgos, C.; Nova, J.; Hernández, F.; González, C.; Reyes, M.I.; Cirugía, N.; Arévalo, A.; Meléndez, E.; Colmenares, J.; et al. The impact of skin diseases on quality of life: A multicenter study. Actas Dermo-Sifiliográficas 2017, 108, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Fox, L.; Csongradi, C.; Aucamp, M.; Du Plessis, J.; Gerber, M. Treatment modalities for acne. Molecules 2016, 21, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaenglein, A.L. Acne vulgaris. N. Engl. J. Med. 2018, 379, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Cong, T.X.; Hao, D.; Wen, X.; Li, X.H.; He, G.; Jiang, X. From pathogenesis of acne vulgaris to anti-acne agents. Arch. Dermatol. Res. 2019, 311, 337–349. [Google Scholar] [CrossRef]
- Zaenglein, A.L.; Pathy, A.L.; Schlosser, B.J.; Alikhan, A.; Baldwin, H.E.; Berson, D.S.; Bowe, W.P.; Graber, E.M.; Harper, J.C.; Kang, S. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol. 2016, 74, 945–973. [Google Scholar] [CrossRef] [Green Version]
- Mazzarello, V.; Donadu, M.G.; Ferrari, M.; Piga, G.; Usai, D.; Zanetti, S.; Sotgiu, M.A. Treatment of acne with a combination of propolis, tea tree oil, and Aloe vera compared to erythromycin cream: Two double-blind investigations. Clin. Pharmacol. Adv. Appl. 2018, 10, 175. [Google Scholar] [CrossRef] [Green Version]
- Najafi-Taher, R.; Jafarzadeh kohneloo, A.; Eslami Farsani, V.; Mehdizade Rayeni, N.; Moghimi, H.R.; Ehsani, A.; Amani, A. A topical gel of tea tree oil nanoemulsion containing adapalene versus adapalene marketed gel in patients with acne vulgaris: A randomized clinical trial. Arch. Dermatol. Res. 2022, 314, 673–679. [Google Scholar] [CrossRef]
- Placek, W.; Wolska, H. Rosacea—New data on pathogenesis and treatment. Dermatol. Rev. Przegląd Dermatol. 2016, 103, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tang, K.; Wang, Y.; Fang, R.; Sun, Q. Rosacea treatment: Review and update. Dermatol. Ther. 2021, 11, 13–24. [Google Scholar] [CrossRef]
- Śmietańska, N.; Faruga-Lewicka, W.; Kardas, M. Czynniki wpływające na przebieg trądziku różowatego. Aesth. Cosmetol. Med. 2022, 11, 161–166. [Google Scholar] [CrossRef]
- Surgiel-Gemza, A.; Gemza, K. Trądzik różowaty–metody terapii oraz ocena skuteczności zastosowania kwasu azelainowego i laktobionowego. Kosmetol. Estet. 2018, 7, 543–550. [Google Scholar]
- Chudek, E.; Urtnowska-Joppek, K. Postępowanie w terapii trądziku różowatego Cz. I–Profesjonalna pielęgnacja gabinetowa. Kosmetol. Estet. 2019, 8, 441–445. [Google Scholar]
- Batista, A.S.F.; Ana, P. Types of Acne and Associated Therapy: A Review. Amr. Res. J. Pharm. 2016, 2016, 1–9. [Google Scholar]
- Orchard, A.; van Vuuren, S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid. Based Complement. Altern. Med. 2017, 2017, 4517971. [Google Scholar] [CrossRef] [Green Version]
- Lamlertthon, S.; Luangnarumitchai, S.; Tiyaboonchai, W. Antimicrobial activity of essentials oils against five strains of Propionibacterium acnes. Mahidol Univ. J. Pharma Sci. 2007, 34, 60–64. [Google Scholar]
- Daud, F.S.; Pande, G.; Joshi, M.; Pathak, R.; Wankhede, S. A study of antibacterial effect of some selected essential oils and medicinal herbs against acne causing bacteria. Int. J. Pharm. Sci. Invent. 2013, 2, 27–34. [Google Scholar]
- Garbusińska, A.; Mertas, A.; Szliszka, E.; Król, W. Aktywność przeciwdrobnoustrojowa olejku z drzewa herbacianego (Tea Tree Oil) w badaniach in vitro. Cz. II. Post. Fitoter. 2011, 3, 175–184. [Google Scholar]
- Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S.; et al. River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants 2021, 10, 2105. [Google Scholar] [CrossRef]
- Hammer, K.A. Treatment of acne with tea tree oil (melaleuca) products: A review of efficacy, tolerability and potential modes of action. Int. J. Antimicrob. Agents 2015, 45, 106–110. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plant Res. 2011, 5, 4147–4156. [Google Scholar]
- Liao, M.; Xiao, J.J.; Zhou, L.J.; Yao, X.; Tang, F.; Hua, R.M.; Cao, H.Q. Chemical composition, insecticidal and biochemical effects of Melaleuca alternifolia essential oil on the Helicoverpa armigera. J. Appl. Entomol. 2017, 141, 721–728. [Google Scholar] [CrossRef] [Green Version]
- Labib, R.M.; Ayoub, I.M.; Michel, H.E.; Mehanny, M.; Kamil, V.; Hany, M.; Mohamed, A. Appraisal on the wound healing potential of Melaleuca alternifolia and Rosmarinus officinalis L. essential oil-loaded chitosan topical preparations. PLoS ONE 2019, 14, e0219561. [Google Scholar] [CrossRef] [PubMed]
- Sevik, R.; Akarca, G.; Kilinc, M.; Ascioglu, Ç. Chemical Composition of Tea Tree (Melaleuca alternifolia) (Maiden & Betche) Cheel Essential Oil and Its Antifungal Effect on Foodborne Molds Isolated from Meat Products. J. Essent. Oil Bear. Plants 2021, 24, 561–570. [Google Scholar] [CrossRef]
- Capetti, F.; Marengo, A.; Cagliero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Adulteration of Essential Oils: A Multitask Issue for Quality Control. Three Case Studies: Lavandula angustifolia Mill., Citrus limon (L.) Osbeck and Melaleuca alternifolia (Maiden & Betche) Cheel. Molecules 2021, 26, 5610. [Google Scholar] [CrossRef]
- Borotová, P.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Tvrdá, E.; Kačániová, M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants 2022, 11, 558. [Google Scholar] [CrossRef]
- Wyszkowska-Kolatko, M.; Koczurkiewicz, P.; Wójcik, K.; Pękala, E. Rośliny lecznicze w terapii chorób skóry. Post. Fitoter. 2015, 3, 184–192. [Google Scholar]
- Wyszkowska-Kolatko, M.; Koczurkiewicz-Adamczyk, P.; Pękala, E. Badania in vitro nad cytotoksycznością olejku z drzewa herbacianego. Post. Fitoter. 2016, 3, 159–166. [Google Scholar]
- Ahmad, S.; Afsana; Popli, H. A review on efficacy and tolerability of tea tree oil for acne. J. Drug Deliv. Ther. 2019, 9, 609–612. [Google Scholar] [CrossRef]
- Bisht, A.; Hemrajani, C.; Rathore, C.; Dhiman, T.; Rolta, R.; Upadhyay, N.; Nidhi, P.; Gupta, G.; Dua, K.; Chellappan, D.K.; et al. Hydrogel composite containing azelaic acid and tea tree essential oil as a therapeutic strategy for Propionibacterium and testosterone-induced acne. Drug Deliv. Transl. Res. 2022, 12, 2501–2517. [Google Scholar] [CrossRef]
- Lee, C.J.; Chen, L.W.; Chen, L.G.; Chang, T.L.; Huang, C.W.; Huang, M.C.; Wang, C.C. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J. Food Drug Anal. 2013, 21, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Kaźmierska, A.D.; Bolesławska, I.; Przysławski, J. Wpływ diety oraz fitoterapii w leczeniu trądziku pospolitego. Farm. Pol. 2020, 76, 373–380. [Google Scholar] [CrossRef]
- Aldora, K.; Ardiana, D.; Narayana, E. The role of Tea tree oil as a skin antimicrobial: A literature study. Med. Health Sci. J. 2021, 5, 26–33. [Google Scholar] [CrossRef]
- Dos Santos, A.J.; Kronka, M.S.; Fortunato, G.V.; Lanza, M.R. Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review. Curr. Opin. Electrochem. 2021, 26, 100674. [Google Scholar] [CrossRef]
- Mazzarello, V.; Gavini, E.; Rassu, G.; Donadu, M.G.; Usai, D.; Piu, G.; Pomponi, V.; Sucato, F.; Zanetti, S.; Montesu, M.A. Clinical Assessment of New Topical Cream Containing Two Essential Oils Combined with Tretinoin in the Treatment of Acne. Clin. Cosmet. Investig. Dermatol. 2020, 13, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Bisht, A.; Hemrajani, C.; Upadhyay, N.; Nidhi, P.; Rolta, R.; Rathore, C.; Dua, K.; Chellappan, D.K.; Dev, K.; Sourirajan, A.; et al. Azelaic acid and Melaleuca alternifolia essential oil co-loaded vesicular carrier for combinational therapy of acne. Ther. Deliv. 2021, 13, 13–29. [Google Scholar] [CrossRef]
- Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef] [Green Version]
- Benabdesslem, Y.; Hache, K.; Mébarki, M. Chemical Composition of the Essential Oil from the Leaves of Eucalyptus globulus Labill. Growing in Southwest Algeria. J. Essent. Oil Bear. Plants 2020, 23, 1154–1160. [Google Scholar] [CrossRef]
- Topiar, M.; Sajfrtova, M.; Pavela, R.; Machalova, Z. Comparison of fractionation techniques of CO2 extracts from Eucalyptus globulus—Composition and insecticidal activity. J. Supercrit. Fluids 2015, 97, 202–210. [Google Scholar] [CrossRef]
- Vieira, M.; Bessa, L.J.; Martins, M.R.; Arantes, S.; Teixeira, A.P.S.; Mendes, Â.; Belo, A.D.F. Chemical Composition, Antibacterial, Antibiofilm and Synergistic Properties of Essential Oils from Eucalyptus globulus Labill. and Seven Mediterranean Aromatic Plants. Chem. Biodivers. 2017, 14, e1700006. [Google Scholar] [CrossRef]
- Almas, I.; Innocent, E.; Machumi, F.; Kisinza, W. Chemical composition of essential oils from Eucalyptus globulus and Eucalyptus maculata grown in Tanzania. Sci. Afr. 2021, 12, e00758. [Google Scholar] [CrossRef]
- Moreira, P.; Sousa, F.J.; Matos, P.; Brites, G.S.; Gonçalves, M.J.; Cavaleiro, C.; Figueirinha, A.; Salgueiro, L.; Batista, M.T.; Branco, P.C.; et al. Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves. Pharmaceutics 2022, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, Y.; Kassahun, A.; Tedla, A.; Feleke, G.; Abebe, A.A. Investigation of Essential Oil Composition Variation with Age of Eucalyptus globulus Growing in Ethiopia. Nat. Prod. Chem. Res. 2019, 7, 360. [Google Scholar] [CrossRef]
- Abdossi, V.; Moghaddam, E.Y.; Hadipanah, A. Chemical Composition of Eucalyptus globulus grown in Iran. Biol. Forum 2015, 7, 322–324. [Google Scholar]
- Jerbi, A.; Derbali, A.; Elfeki, A.; Kammoun, M. Essential oil composition and biological activities of Eucalyptus globulus leaves extracts from Tunisia. J. Essent. Oil Bear. Plants 2017, 20, 438–448. [Google Scholar] [CrossRef]
- Göger, G.; Karaca, N.; Büyükkiliç, B.; Demirci, B.; Demirci, F. In vitro antimicrobial, antioxidant and anti-inflammatory evaluation of Eucalyptus globulus essential oil. Nat. Volatiles Essent. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- González-Burgos, E.; Liaudanskas, M.; Viškelis, J.; Žvikas, V.; Janulis, V.; Gómez-Serranillos, M.P. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J. Food Drug Anal. 2018, 26, 1293–1302. [Google Scholar] [CrossRef]
- Bhatt, D.; Sachan, A.K.; Jain, S.; Barik, R. Studies on inhibitory effect of Eucalyptus oil on sebaceous glands for the management of acne. Indian J. Nat. Prod. Resour. 2011, 2, 345–349. [Google Scholar]
- Athikomkulchai, S.; Watthanachaiyingcharoen, R.; Tunvichien, S.; Vayumhasuwan, P.; Karnsomkiet, P.; Sae-Jong, P.; Ruangrungsi, N. The development of anti-acne products from Eucalyptus globulus and Psidium guajava oil. J. Health Res. 2008, 22, 109–113. [Google Scholar]
- Bey-Ould Si Said, Z.; Haddadi-Guemghar, H.; Boulekbache-Makhlouf, L.; Rigou, P.; Remini, H.; Adjaoud, A.; Madani, K. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind. Crops Prod. 2016, 89, 167–175. [Google Scholar] [CrossRef]
- Assaggaf, H.M.; Naceiri Mrabti, H.; Rajab, B.S.; Attar, A.A.; Hamed, M.; Sheikh, R.A.; Omari, N.E.; Menyiy, N.E.; Belmehdi, O.; Mahmud, S.; et al. Singular and Combined Effects of Essential Oil and Honey of Eucalyptus Globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and In Vivo Findings. Molecules 2022, 27, 5121. [Google Scholar] [CrossRef]
- Sumbul, S.; Ahmad, M.A.; Asif, M.; Akhtar, M. Myrtus communis Linn—A review. Indian J. Nat. Prod. Resour. 2011, 2, 395–402. [Google Scholar]
- Mulas, M.; Melis, R.A.M. Essential oil composition of myrtle (Myrtus communis) leaves. J. Herbs Spices Med. Plants 2011, 17, 21–34. [Google Scholar] [CrossRef]
- Giuliani, C.; Bottoni, M.; Milani, F.; Todero, S.; Berera, P.; Maggi, F.; Santagostini, L.; Fico, G. Botanic Garden as a Factory of Molecules: Myrtus communis L. subsp. communis as a Case Study. Plants 2022, 11, 754. [Google Scholar] [CrossRef] [PubMed]
- Beni, A.S.; Shahmokhtar, M.K.; Masoumias, A.; Khajehsharifi, H. Phytochemical and biological studies of some myrtus (Myrtus communis L.) populations of south west region of Zagros (Iran). Nat. Prod. Chem. Res. 2017, 5, 290. [Google Scholar] [CrossRef]
- Ghnaya, A.B.; Chograni, H.; Messoud, C.; Boussaid, M. Comparative chemical composition and antibacterial activities of Myrtus communis L. essential oils isolated from Tunisian and Algerian population. J. Plant Pathol. Microb. 2013, 4, 7. [Google Scholar] [CrossRef]
- El Hartiti, H.; El Mostaphi, A.; Barrahi, M.; Ben Ali, A.; Chahboun, N.; Amiyare, R.; Zarrouk, A.; Bourkhiss, B.; Ouhssine, M. Chemical composition and antibacterial activity of the essential oil of Myrtus communis leaves. Karbala Int. J. Mod. Sci. 2020, 6, 3. [Google Scholar] [CrossRef]
- Sen, A.; Kurkçuoglu, M.; Yıldırım, A.; Dogan, A.; Bitis, L.; Baser, K.H.C. Chemical and biological profiles of essential oil from different parts of Myrtus communis L. subsp. communis from Turkey. Agric. Conspec. Sci. 2020, 85, 71–78. [Google Scholar]
- Usai, M.; Marchetti, M.; Culeddu, N.; Mulas, M. Chemical composition of myrtle (Myrtus communis L.) berries essential oils as observed in a collection of genotypes. Molecules 2018, 23, 2502. [Google Scholar] [CrossRef] [Green Version]
- Snoussi, A.; Essaidi, I.; Koubaier, H.B.H.; Chaabouni, M.M.; Bouzouita, N. Chemical composition and antioxidant activity of essential oils and ethanol extracts of Myrtus communis L. organs (berries, leaves and floral buds). J. Société Chim. Tunis. 2012, 14, 69–76. [Google Scholar]
- Dejam, M.; Farahmand, Y. Essential oil content and composition of myrtle (Myrtus communis L.) leaves from South of Iran. J. Essent. Oil Bear. Plants 2017, 20, 869–872. [Google Scholar] [CrossRef]
- Bekhechi, C.; Watheq Malti, C.E.; Boussaïd, M.; Achouri, I.; Belilet, K.; Gibernau, M.; Casanova, J.; Tomi, F. Composition and chemical variability of Myrtus communis leaf oil from Northwestern Algeria. Nat. Prod. Commun. 2019, 14, 1934578X19850030. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudvand, H.; Ezzatkhah, F.; Sharififar, F.; Sharifi, I.; Dezaki, E.S. Antileishmanial and cytotoxic effects of essential oil and methanolic extract of Myrtus communis L. Korean J. Parasitol. 2015, 53, 21. [Google Scholar] [CrossRef] [PubMed]
- Khosropour, P.; Sajjadi, S.E.; Talebi, A.; Minaiyan, M. Anti-inflammatory effect of Myrtus communis hydroalcoholic extract and essential oil on acetic acid–induced colitis in rats. J. Rep. Pharm. Sci. 2019, 8, 204. [Google Scholar] [CrossRef]
- Aleksic, V.; Knezevic, P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res. 2014, 169, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Cianciosi, D.; Forbes-Hernández, T.Y. Myrtle (Myrtus communis L.) berries, seeds, leaves, and essential oils: New undiscovered sources of natural compounds with promising health benefits. Food Front. 2020, 1, 276–295. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β- Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.-N.; Chang, C.-C.; Ng, C.-C.; Wang, C.-Y.; Shyu, Y.-T.; Chang, T.-L. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant. Foods Hum. Nutr. 2008, 63, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Jang, H.H.; Lee, S.N.; Kim, Y.S.; An, S. Effects of the myrtle essential oil on the acne skin—Clinical trials for Korean women. Biomed. Dermatol. 2018, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Erbaş, S.; Baydar, H. Effects of harvest time and drying temperature on essential oil content and composition in lavandin (Lavandula × intermedia Emerice x Loisel.). Turk. J. Field Crops 2008, 13, 24–31. [Google Scholar]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential oils of Lavandula genus: A systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Bombarda, I.; Dupuy, N.; le van Da, J.P.; Gaydou, E.M. Comparative chemometric analyses of geographic origins and compositions of lavandin var. Grosso essential oils by mid infrared spectroscopy and gas chromatography. Anal. Chim. Acta 2008, 613, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Jeliazkova, E. Distillation time effect on lavender essential oil yield and composition. J. Oleo Sci. 2013, 62, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, U. The influence of the lavender and lavendine drying method on the plant material quality. J. Res. Appl. Agric. Eng. 2012, 57, 83–85. [Google Scholar]
- Adaszyńska, M.; Swarcewicz, M.; Dzięcioł, M.; Dobrowolska, A. Comparison of chemical composition and antibacterial activity of lavender varieties from Poland. Nat. Prod. Res. 2013, 27, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Kuş, Ç.; Duru, M.E. Effects of post-harvest drying times of Lavandula angustifolia and L. intermedia species on chemical components of their essential oils. Avrupa Bilim Teknol. Derg. 2021, 21, 501–505. [Google Scholar] [CrossRef]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; García-Garví, J.M.; Carbonell-Barrachina, Á.A.; Szumny, A. Determination of various drying methods impact on odour quality of true lavender (Lavandula angustifolia Mill.) flowers. Molecules 2019, 24, 2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirjalili, M.H.; Salehi, P.; Vala, M.M.; Ghorbanpour, M. The effect of drying methods on yield and chemical constituents of the essential oil in Lavandula angustifolia Mill. (Lamiaceae). Plant Physiol. Rep. 2019, 24, 96–103. [Google Scholar] [CrossRef]
- Moon, T.; Cavanagh, H.M.A.; Wilkinson, J.M. Antifungal activity of Australian grown Lavandula spp. essential oils against Apergillus nidulans, Trichophyton mentagrophytes, Leptosphaeria maculans and Sclerotinia sclerotiorum. J. Essent. Oil Res. 2007, 19, 171–175. [Google Scholar] [CrossRef]
- Śmigielski, K.; Raj, A.; Krosowiak, K.; Gruska, R. Chemical composition of the essential oil of Lavandula angustifolia cultivated in Poland. J. Essent. Oil Bear. Plants 2009, 12, 338–347. [Google Scholar] [CrossRef]
- Herraiz-Peñalver, D.; Cases, M.Á.; Varela, F.; Navarrete, P.; Sánchez-Vioque, R.; Usano-Alemany, J. Chemical characterization of Lavandula latifolia Medik. essential oil from Spanish wild populations. Biochem. Syst. Ecol. 2013, 46, 59–68. [Google Scholar] [CrossRef]
- Glinka, R.; Glinka, M. Cosmetic Recipe with Elements of Cosmetology; MA Publishing: Lodz, Poland, 2008; pp. 70–73. [Google Scholar]
- Jianu, C.; Pop, G.; TGruia, A.; Horhat, F.G. Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in Western Romania. Int. J. Agric. Bio. 2013, 15, 772–776. [Google Scholar]
- Wijayadi, L.J. The Role of Herbal Plant Essential Oils in the Treatment of Acne Vulgaris. Sci. Midwifery 2022, 10, 3096–3103. [Google Scholar] [CrossRef]
- Jäger, W.; Buchbauer, G.; Jirovetz, L.; Fritzer, M. Percutaneous absorption of lavender oil from a massage oil. J. Soc. Cosmet. Chem. 1992, 43, 49–54. [Google Scholar]
- Cavanagh, H.M.A.; Wilkinson, J.M. Biological activities of lavender essential oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, M.; Głowacka, A.; Kowalczyk, E.; Wiktorowska-Owczarek, A.; Jóźwiak-Bębenista, M.; Łysakowska, M. The biological activities of cinnamon, geranium and lavender essential oils. Molecules 2014, 19, 20929–20940. [Google Scholar] [CrossRef] [PubMed]
- Białoń, M.; Krzyśko-Łupicka, T.; Nowakowska-Bogdan, E.; Wieczorek, P.P. Chemical composition of two different lavender essential oils and their effect on facial skin microbiota. Molecules 2019, 24, 3270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules 2010, 15, 3200–3210. [Google Scholar] [CrossRef] [PubMed]
- Juliano, C.; Marchetti, M.; Pisu, M.L.; Usai, M. In Vitro Antimicrobial Activity of Essential Oils from Sardinian Flora against Cutibacterium (Formerly Propionibacterium) acnes and Its Enhancement by Chitosan. Sci. Pharm. 2018, 86, 40. [Google Scholar] [CrossRef] [Green Version]
- Mączka, W.; Duda-Madej, A.; Grabarczyk, M.; Wińska, K. Natural Compounds in the Battleagainst Microorganisms—Linalool. Molecules 2022, 27, 6928. [Google Scholar] [CrossRef]
- Silva, V.A.; Sousa, J.P.; Guerra, F.Q.S.; Pessôa, H.L.F.; Freitas, A.F.R.; Coutinho, H.D.M.; Alves, L.B.N.; Lima, E.O. Antibacterial Activity of the Monoterpene Linalool: Alone and in Association with Antibiotics Against Bacteria of Clinical Importance. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 1022–1026. [Google Scholar]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D.; Zych, S. Antibacterial activity of lavender essential oil and linalool combined with gentamicin on selected bacterial strains. Med. Weter 2020, 76, 115–118. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Lai, W.-L.; Chuang, K.-C.; Lee, M.-H.; Tsai, Y.-C. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med. Mycol. 2020, 51, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaoui-Ismaili, O.; Vernet-Maury, E.; Dittrnar, A.; Delhomme, G.; Chanel, J. Odor hedonics: Connection with emotional response estimated by autonomic parameters. Chem. Senses 1997, 22, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.Y.; Shin, S. Antimicrobial and improvement effects of tea tree and lavender oils on acne lesions. J. Converg. Inf. Technol. 2013, 8, 339. [Google Scholar]
- Skoufogianni, E.; Solomou, A.D.; Danalatos, N.G. Ecology, Cultivation and Utilization of the Aromatic Greek Oregano (Origanum vulgare L.): A Review. Not. Bot. Horti. Agrobo. 2019, 47, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S.; Shakeri, A.; Iranshahi, M.; Boozari, M. A Review of the Phytochemistry and Antimicrobial Properties of Origanum vulgare L. and Subspecies. Iran J. Pharm. Res. 2021, 20, 268–285. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Burton, D.; Parra, F.; López, J.; Muñoz, P.; Escobar, H.; Parra, C. Antioxidant and Antibacterial Capacities of Origanum vulgare L. Essential Oil from the Arid Andean Region of Chile and its Chemical Characterization by GC-MS. Metabolites 2020, 10, 414. [Google Scholar] [CrossRef]
- Lukas, B.; Schmiderer, C.; Novak, J. Essential oil diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry 2015, 119, 32–40. [Google Scholar] [CrossRef]
- Taleb, M.H.; Abdeltawab, N.F.; Shamma, R.N.; Abdelgayed, S.S.; Mohamed, S.S.; Farag, M.A.; Ramadan, M.A. Origanum vulgare L. essential oil as a potential anti-acne topical nanoemulsion—In vitro and in vivo study. Molecules 2018, 23, 2164. [Google Scholar] [CrossRef] [Green Version]
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.-M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C.; et al. A recent insight regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil. Int. J. Mol. Sci. 2020, 21, 9653. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Blanco, A.R.; Cannatelli, M.A.; Enea, V.; Flamini, G.; Morelli, I.; Roccaro, A.S.; Alonzo, V. Susceptibility of Methicillin-Resistant Staphylococci to Oregano Essential Oil, Carvacrol and Thymol. Fed. Eur. Microbiol. Soc. 2004, 230, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bora, L.; Avram, S.; Pavel, I.Z.; Muntean, D.; Liga, S.; Buda, V.; Gurgus, D.; Danciu, C. An up-to-date review regarding cutaneous benefits of Origanum vulgare L. essential oil. Antibiotics 2022, 11, 549. [Google Scholar] [CrossRef] [PubMed]
- Avola, R.; Granata, G.; Geraci, C.; Napoli, E.; Graziano, A.C.E.; Cardile, V. Oregano (Origanum vulgare L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model. Food Chem. Toxicol. 2020, 144, 111586. [Google Scholar] [CrossRef] [PubMed]
- Cianfaglione, K.; Bartolucci, F.; Ciaschetti, G.; Conti, F.; Pirone, G. Characterization of Thymus vulgaris subsp. vulgaris community by using a multidisciplinary approach: A case study from Central Italy. Sustainability 2022, 14, 3981. [Google Scholar] [CrossRef]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life Sci. 2014, 7, 56. [Google Scholar]
- Boskovic, M.; Zdravkovic, N.; Ivanovic, J.; Janjic, J.; Djordjevic, J.; Starcevic, M.; Baltic, M.Z. Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Sci. 2015, 5, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Dúranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačániová, M. Thymus vulgaris essential oil and its biological activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef]
- Aljabeili, H.S.; Barakat, H.; Abdel-Rahman, H.A. Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food Sci. Nutr. 2018, 9, 433. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamed, F.M.; Abdeltawab, N.F.; ElRakaiby, M.T.; Shamma, R.N.; Moneib, N.A. Antibacterial and Anti-Inflammatory Activities of Thymus vulgaris Essential Oil Nanoemulsion on Acne Vulgaris. Microorganisms 2022, 10, 1874. [Google Scholar] [CrossRef]
- Dauqan, E.M.; Abdullah, A. Medicinal and functional values of thyme (Thymus vulgaris L.) herb. J. Appl. Biol. Biotechnol. 2017, 5, 017–022. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Van Vuuren, S.; Viljoen, A. Unravelling the complex antimicrobial interactions of essential oils—The case of Thymus vulgaris (Thyme). Molecules 2014, 19, 2896–2910. [Google Scholar] [CrossRef] [PubMed]
- Malabadi, R.B.; Kolkar, K.P.; Meti, N.T.; Chalannavar, R.K. Role of botanical essential oils as a therapy for controlling coronavirus (SARS-CoV-2) disease (COVID-19). Int. J. Res. Sci. Innov. 2021, 8, 105–118. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevao-Silva, C.F.; Carvalho, M.D.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid. Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, G.E.M.; Méndez, G.L.; Fortich, M.D.R.O. In vitro antibacterial activity of nineteen essential oils against acne-associated bacteria. Rev. Cuba. Farm. 2015, 49, 103–116. [Google Scholar]
- Gonçalves, G.M.S.; Silvana Mariana Srebernich, S.M.; Neura Bragagnolo, N.; Madalozzo, E.S.; Merhi, V.L.; Pires, D.C. Study of the composition of Thymus vulgaris essential oil, developing of topic formulations and evaluation of antimicrobial efficacy. J. Med. Plant Res. 2013, 7, 1736–1745. [Google Scholar] [CrossRef]
- Proškovcová, M.; Čonková, E.; Váczi, P.; Harčárová, M.; Malinovská, M. Antibiofilm activity of selected plant essential oils from the Lamiaceae family against Candida albicans clinical isolates. Ann. Agric. Environ. Med. 2021, 28, 260–266. [Google Scholar] [CrossRef]
- Cabarkapa, I.; Čolović, R.; Đuragić, O.; Popović, S.; Kokić, B.; Milanov, D.; Pezo, L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling 2019, 35, 361–375. [Google Scholar] [CrossRef]
- Palazzolo, E.; Laudicina, V.A.; Germanà, M.A. Current and potential use of citrus essential oils. Curr. Org. Chem. 2013, 17, 3042–3049. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) phenomenon—A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Crescimanno, F.G.; De Pasquale, F.; Germana, M.A.; Bazan, E.; Palazzolo, E. Annual variation of essential oils in the leaves of four lemon [Citrus limon (L.) Burm. f.] cultivars. In Citriculture, Proceedings of the Sixth International Citrus Congress: Middle East, Tel Aviv, Israel, 6–11 March 1988; Goren, R., Mendel, K., Goren, N., Eds.; Balaban: Rehovot, Israel, 1989. [Google Scholar]
- Frassinetti, S.; Caltavuturo, L.; Cini, M.; Della Croce, C.M.; Maserti, B.E. Antibacterial and antioxidant activity of essential oils from Citrus spp. J. Essent. Oil Res. 2011, 23, 27–31. [Google Scholar] [CrossRef]
- Amorim, J.L.; Simas, D.L.R.; Pinheiro, M.M.G.; Moreno, D.S.A.; Alviano, C.S.; da Silva, A.J.R.; Dias Fernandes, P. Anti-inflammatory properties and chemical characterization of the essential oils of four Citrus species. PLoS ONE 2016, 11, e0153643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dosoky, N.S.; Setzer, W.N. Biological activities and safety of Citrus spp. essential oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, S.; Zhao, C.; Zhang, Z.; Nie, D.; Tang, W.; Li, Y. The chemical composition and antibacterial and antioxidant activities of five citrus essential oils. Molecules 2022, 27, 7044. [Google Scholar] [CrossRef] [PubMed]
- Espina, L.; Somolinos, M.; Ouazzou, A.A.; Condon, S.; Garcia-Gonzalo, D.; Pagán, R. Inactivation of Escherichia coli O157: H7 in fruit juices by combined treatments of citrus fruit essential oils and heat. Int. J. Food Microbiol. 2012, 159, 9–16. [Google Scholar] [CrossRef]
- Hamdan, D.; Ashour, M.L.; Mulyaningsih, S.; El-Shazly, A.; Wink, M. Chemical composition of the essential oils of variegated pink-fleshed lemon (Citrus x limon L. Burm. f.) and their anti-inflammatory and antimicrobial activities. Z. Nat. C 2013, 68, 275–284. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Wang, Y.; Chen, F.; Yu, Z.; Wang, L.; Chen, S.; Guo, M. Effect of citrus lemon oil on growth and adherence of Streptococcus mutans. World J. Microbiol. Biotechnol. 2013, 29, 1161–1167. [Google Scholar] [CrossRef]
- Erasto, P.; Viljoen, A.M. Limonene-a review: Biosynthetic, ecological and pharmacological relevance. Nat. Prod. Comm. 2008, 3, 1934578X0800300728. [Google Scholar] [CrossRef] [Green Version]
- Aliyah; Himawan, A.; Rante, H.; Ningsih, D.R. GC-MS analysis and antimicrobial activity determination of Citrus medica L. var proper leaf essential oil from South Sulawesi against skin pathogen microorganism. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 259, p. 012001. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Chen, W.; Sun, Z. Antimicrobial activity and mechanism of limonene against Staphylococcus aureus. J. Food Saf. 2021, 41, e12918. [Google Scholar] [CrossRef]
- Fitri, N.; Fatimah, I.; Chabib, L.; Fajarwati, F.I. Formulation of antiacne serum based on lime peel essential oil and in vitro antibacterial activity test against Propionibacterium acnes. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; Volume 1, p. 020123. [Google Scholar] [CrossRef] [Green Version]
- Dawid-Pać, R. Medicinal plants used in treatment of inflammatory skin diseases. Adv. Dermatol. Allergol. 2013, 30, 170–177. [Google Scholar] [CrossRef]
Compound | Content (%) | References |
---|---|---|
Terpinen-4-ol | 17.3–48.0 | [20,21,22,23,24,25] |
γ-terpinene | 10.8–23.1 | [20,21,22,23,24,25] |
α-pinene | 1.0–21.6 | [20,21,22,23,24,25] |
α-terpinene | 2.6–11.3 | [20,21,23,24,25] |
Limonene | 1.6–9.4 | [23,24,25] |
α-terpineol | 1.5–8.0 | [20,21,22,23,24,25] |
1,8-cineole | 0.0–15.0 | [20,21,22,23,24,25] |
ρ-cymene | 0.5–8.0 | [20,21,22,23,24,25] |
α-terpinolene | 1.5–6.4 | [20,21,22,23,24,25] |
Compound | Content (%) | References |
---|---|---|
1,8-cineole | 11.3–76.6 | [37,39,40,41,42,43,44,45] |
p-cymene | 8.8–20.2 | [37,40,41,44,45] |
α-pinene | 5.6–20.1 | [39,40,41,42,43,44,45] |
D-limonene | 6.2 | [41,42,45] |
γ-terpinene | 8.9 | [40,41,44] |
α-terpineol acetate | 4.8 | [40,41,45] |
Alloaromadendrene | 4.0 | [43] |
Compound | Content (%) | References |
---|---|---|
α-pinene | 19.4–59.0 | [55,56,59,60,61] |
1,8-cineole | 13.2–61.0 | [55,56,59,60,61] |
Myrtenyl acetate | 8.3–21.3 | [56,62] |
α-limonene | 3.2–19.8 | [55,61] |
Linalool | 1.7–12.7 | [59,60] |
Linalyl acetate | 8.6 | [60] |
α-terpynyl acetate | 4.6 | [60] |
Compound | Content (%) | References |
---|---|---|
Linalool | 8.9–53.4 | [70,74,75,76,79] |
Linalyl acetate | 14.2–56.7 | [70,75,76,79] |
1,8-cineole | 10.15–28.3 | [70,75,79] |
Camphor | 0.5–28 | [70,75,79] |
Caryophyllene | 4.7–24.12 | [70,75,79,82] |
Borneol | 2.0–14.7 | [70,75,79,82] |
cis-β-ocimene | 0.36–3.9 | [70,75,79] |
Lavandulyl acetate | 4.4–8.62 | [70,75,79] |
Terpinen-4-ol | 3.4–10.2 | [70,74,75,76,79,82] |
α-terpineol | 0.32–9.17 | [70,79,82] |
β-farnesene | 0.67–4.5 | [70,75,79] |
Compound | Content (%) | References |
---|---|---|
Carvacrol | 3.1–92.9 | [96,98,99,101,102] |
β-citronellol | 72.7–85.3 | [102] |
Linalool | 0.3–84.7 | [99,102] |
Pulegone | 44.3–77.5 | [101] |
α-terpineol | 0.1–52.8 | [99,102] |
cis-sabinene hydrate | 0.3–46.6 | [96,98,99] |
γ-terpinene | 0.2–34.2 | [97,98,99,101,102] |
Linalyl acetate | 0.3–33.0 | [98,99] |
Caryophyllene oxide | 0.1–32.9 | [97,98,99,102] |
p-cymene | 0.1–26.0 | [96,98,99,101,102] |
β-caryophyllene | 0.4–25.1 | [98,99,101,102] |
Terpinen-4-ol | 16.3–24.9 | [101,102] |
1,8-cineole | 1.5–20.8 | [99,100,101,102] |
Germacrene D | 2.4–20.6 | [99] |
cis-β-terpineol | 16.5 | [102] |
Thymol | 0.2–15.9 | [96,98,99,101,102] |
cis-β-ocimene | 0.1–15.6 | [99] |
α-terpinene | 0.1–15.1 | [99,102] |
Carvacrol methyl ether | 0.1–13.7 | [98,99] |
Sabinene | 0.5–12.5 | [96,98,99,102] |
α-himachalene | 12.2 | [102] |
Humulene | 7.7–11.5 | [102] |
β-pinene | 0.3–11.7 | [98,102] |
Eugenol methyl ether | 9.8 | [102] |
o-cymene | 5.9–8.9 | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzyńska-Wierdak, R.; Pietrasik, D.; Walasek-Janusz, M. Essential Oils in the Treatment of Various Types of Acne—A Review. Plants 2023, 12, 90. https://doi.org/10.3390/plants12010090
Nurzyńska-Wierdak R, Pietrasik D, Walasek-Janusz M. Essential Oils in the Treatment of Various Types of Acne—A Review. Plants. 2023; 12(1):90. https://doi.org/10.3390/plants12010090
Chicago/Turabian StyleNurzyńska-Wierdak, Renata, Dominika Pietrasik, and Magdalena Walasek-Janusz. 2023. "Essential Oils in the Treatment of Various Types of Acne—A Review" Plants 12, no. 1: 90. https://doi.org/10.3390/plants12010090