Environmental Factors Affecting Monoterpene Emissions from Terrestrial Vegetation
Abstract
:1. Introduction
2. Environmental Factors Controlling Biogenic Monoterpene Emission
2.1. Temperature
2.2. Sunlight
2.3. Other Factors
3. Seasonal Influences and Mechanisms Underlying Emission Patterns
4. Analytical Options for Determining Emission Levels of Monoterpenes
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holzinger, R.; Lee, A.; Paw, K.T.; Goldstein, U.A.H. Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos. Chem. Phys. 2005, 5, 67–75. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- McCormick, A.C.; Unsicker, S.B.; Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 2012, 17, 303–310. [Google Scholar] [CrossRef]
- Effah, E.; Holopainen, J.K.; McCormick, A.C. Potential roles of volatile organic compounds in plant competition. Perspect. Plant Ecol. Evol. Syst. 2019, 38, 58–63. [Google Scholar] [CrossRef]
- Kegge, W.; Pierik, R. Biogenic volatile organic compounds and plant competition. Trends Plant Sci. 2010, 15, 126–132. [Google Scholar] [CrossRef]
- Clavijo McCormick, A.; Effah, E.; Najar-Rodriguez, A. Ecological aspects of volatile organic compounds emitted by exotic invasive plants. Front. Ecol. Evol. 2023, 11, 1059125. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Baldwin, I.T.; Halitschke, R.; Paschold, A.; Von Dahl, C.C.; Preston, C.A. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 2006, 311, 812–815. [Google Scholar] [CrossRef]
- Beyaert, I.; Hilker, M. Plant odour plumes as mediators of plant-insect interactions. Biol. Rev. 2014, 89, 68–81. [Google Scholar] [CrossRef]
- Messina, P.; Lathière, J.; Sindelarova, K.; Vuichard, N.; Granier, C.; Ghattas, J.; Cozic, A.; Hauglustaine, D.A. Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmos. Chem. Phys. 2016, 16, 14169–14202. [Google Scholar] [CrossRef]
- Banthorpe, D.V.; Charlwood, B.V.; Francis, M.J. Biosynthesis of monoterpenes. Chem. Rev. 1972, 72, 115–155. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.S.; Croteau, R.B. Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci. 2002, 7, 366–373. [Google Scholar] [CrossRef]
- Pio, C.A.; Valente, A.A. Atmospheric fluxes and concentrations of monoterpenes in resin-tapped pine forests. Atmos. Environ. 1998, 32, 683–691. [Google Scholar] [CrossRef]
- Christensen, C.S.; Hummelshøj, P.; Jensen, N.O.; Larsen, B.; Lohse, C.; Pilegaard, K.; Skov, H. Determination of the terpene flux from orange species and Norway spruce by relaxed eddy accumulation. Atmos. Environ. 2000, 34, 3057–3067. [Google Scholar] [CrossRef]
- Rinne, J.; Bäck, J.; Hakola, H. Biogenic volatile organic compound emissions from the Eurasian taiga: Current knowledge and future directions. Boreal Environ. Res. 2009, 14, 807–826. [Google Scholar]
- Jardine, K.J.; Zorzanelli, R.F.; Gimenez, B.O.; de Oliveira Piva, L.R.; Teixeira, A.; Fontes, C.G.; Robles, E.; Higuchi, N.; Chambers, J.Q.; Martin, S.T. Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin. Phytochemistry 2020, 175, 112366. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.C.; Irmisch, S.; Reinecke, A.; Boeckler, G.A.; Veit, D.; Reichelt, M.; Hansson, B.S.; Gershenzon, J.; Köllner, T.G.; Unsicker, S.B. Herbivore-induced volatile emission in black poplar: Regulation and role in attracting herbivore enemies. Plant Cell Environ. 2014, 37, 1909–1923. [Google Scholar] [CrossRef] [PubMed]
- Tun, K.M.; Minor, M.; Jones, T.; McCormick, A.C. Volatile profiling of fifteen willow species and hybrids and their responses to giant willow aphid infestation. Agronomy 2020, 10, 1404. [Google Scholar] [CrossRef]
- Schnitzler, J.P.; Louis, S.; Behnke, K.; Loivamäki, M. Poplar volatiles–biosynthesis, regulation and (eco) physiology of isoprene and stress-induced isoprenoids. Plant Biol. 2010, 12, 302–316. [Google Scholar] [CrossRef]
- Fiore, A.M.; Naik, V.; Spracklen, D.V.; Steiner, A.; Unger, N.; Prather, M.; Bergmann, D.; Cameron-Smith, P.J.; Cionni, I.; Collins, W.J.; et al. Global air quality and climate. Chem. Soc. Rev. 2012, 41, 6663–6683. [Google Scholar] [CrossRef]
- Kirstine, W.; Galbally, I.; Ye, Y.; Hooper, M. Emissions of volatile organic compounds (primarily oxygenated species) from pasture. J. Geophys. Res. Atmos. 1998, 103, 10605–10619. [Google Scholar] [CrossRef]
- Fukui, Y.; Doskey, P.V. Identification of non-methane organic compound emissions from grassland vegetation. Atmos. Environ. 2000, 34, 2947–2956. [Google Scholar] [CrossRef]
- Wondwosen, B.; Birgersson, G.; Seyoum, E.; Tekie, H.; Torto, B.; Fillinger, U.; Hill, S.R.; Ignell, R. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci Rep. 2016, 6, 37930. [Google Scholar] [CrossRef] [PubMed]
- Wondwosen, B.; Hill, S.R.; Birgersson, G.; Seyoum, E.; Tekie, H.; Ignell, R. A (maize)ing attraction: Gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malar. J. 2017, 16, 39. [Google Scholar] [CrossRef]
- He, Y.; Yue, Y.; Tang, F.; Guo, X.; Wang, J. Chemical compositions and antioxidant capacity of essential oils from different species of the bamboo leaves. Sci Silvae Sin. 2010, 46, 120–128. [Google Scholar]
- Asmare, Y.; Hill, S.R.; Hopkins, R.J.; Tekie, H.; Ignell, R. The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii. Malar. J. 2017, 16, 65. [Google Scholar] [CrossRef]
- Effah, E.; Barrett, D.P.; Peterson, P.G.; Godfrey, A.J.R.; Potter, M.A.; Holopainen, J.K.; Clavijo McCormick, A. Natural variation in volatile emissions of the invasive weed Calluna vulgaris in New Zealand. Plants 2020, 9, 283. [Google Scholar] [CrossRef] [PubMed]
- Effah, E.; Barrett, D.P.; Peterson, P.G.; Wargent, J.J.; Potter, M.A.; Holopainen, J.K.; Clavijo McCormick, A. Herbivory and attenuated UV radiation affect volatile emissions of the invasive weed Calluna vulgaris. Molecules 2020, 25, 3200. [Google Scholar] [CrossRef]
- Karl, T.; Guenther, A.; Turnipseed, A.; Tyndall, G.; Artaxo, P.; Martin, S. Rapid formation of isoprene photo-oxidation products observed in Amazonia. Atmos. Chem. Phys. 2009, 9, 7753–7767. [Google Scholar] [CrossRef]
- Ruuskanen, T.M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, F.; Brilli, G.; Wohlfahrt, G.; Hansel, A. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF. Atmos. Chem. Phys. 2011, 11, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Graus, M.; Eller, A.S.; Fall, R.; Yuan, B.; Qian, Y.; Westra, P.; de Gouw, J.; Warneke, C. Biosphere-atmosphere exchange of volatile organic compounds over C4 biofuel crops. Atmos. Environ. 2013, 66, 161–168. [Google Scholar] [CrossRef]
- Mozaffar, A. Exchanges of Biogenic Volatile Organic Compounds between the Atmosphere and Agricultural Plants/Ecosystems in Controlled and Field Conditions. Ph.D. Thesis, Université de Liège, Liège, Belgique, 2017. [Google Scholar]
- Effah, E.; Tun, K.M.; Rangiwananga, N.; McCormick, A.C. Mānuka clones differ in their volatile profiles: Potential implications for plant defence, pollinator attraction and bee products. Agronomy 2022, 12, 169. [Google Scholar] [CrossRef]
- Kumeroa, F.; Komahan, S.; Sofkova-Bobcheva, S.; Clavijo McCormick, A. Characterization of the volatile profiles of six industrial Hemp (Cannabis sativa L.) cultivars. Agronomy 2022, 12, 2651. [Google Scholar] [CrossRef]
- Noe, S.M.; Penuelas, J.; Niinemets, U. Monoterpene emissions from ornamental trees in urban areas: A case study of Barcelona, Spain. Plant Biol. 2007, 10, 163–169. [Google Scholar] [CrossRef]
- Llusia, J.; Penuelas, J.; Sardans, J.; Owen, S.M.; Niinemets, U. Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: Aliens emit more than natives. Glob. Ecol. Biogeogr. 2010, 19, 863–874. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Loreto, F.; Schnitzler, J.P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Malik, T.G.; Gajbhiye, T.; Pandey, S.K. Some insights into composition and monoterpene emission rates from selected dominant tropical tree species of Central India: Plant-specific seasonal variations. Ecol. Res. 2019, 34, 821–834. [Google Scholar] [CrossRef]
- Feng, Z.; Yuan, X.; Fares, S.; Loreto, F.; Li, P.; Hoshika, Y.; Paoletti, E. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. Plant Cell Environ. 2019, 42, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Nagalingam, S.; Seco, R.; Kim, S.; Guenther, A. Heat stress strongly induces monoterpene emissions in some plants with specialized terpenoid storage structures. Agric. For. Meteorol. 2023, 333, 109400. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Loreto, F.; Reichstein, M. Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 2004, 9, 180–186. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Reichstein, M. A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species. Glob. Biogeochem. Cycles 2002, 16, 1110. [Google Scholar] [CrossRef]
- Dindorf, T.; Kuhn, U.; Ganzeveld, L.; Schebeske, G.; Ciccioli, P.; Holzke, C.; Koble, R.; Seufert, G.; Kesselmeier, J. Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget. J. Geophys. Res. Atmos. 2006, 111, D16305. [Google Scholar] [CrossRef]
- Kuhn, U.; Rottenberger, S.; Biesenthal, T.; Wolf, A.; Schebeske, G.; Ciccioli, P.; Kesselmeier, J. Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with fundamental changes in volatile organic compounds emission composition during early leaf development. Plant Cell Environ. 2004, 27, 1469–1485. [Google Scholar] [CrossRef]
- Ormeno, E.; Mévy, J.P.; Vila, B.; Bousquet-Mélou, A.; Greff, S.; Bonin, G.; Fernandez, C. Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 2007, 67, 276–284. [Google Scholar] [CrossRef]
- He, C.; Murray, F.; Lyons, T. Seasonal variations in monoterpene emissions from Eucalyptus species. Chemosphere Glob. Chang. Sci. 2000, 2, 65–76. [Google Scholar] [CrossRef]
- Rapparini, F.; Baraldi, R.; Facini, O. Seasonal variation of monoterpene emission from Malus domestica and Prunus avium. Phytochem. 2001, 57, 681–687. [Google Scholar] [CrossRef]
- Kim, J.C.; Kim, K.J.; Kim, D.S.; Han, J.S. Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. Chemosphere 2005, 59, 1685–1696. [Google Scholar] [CrossRef]
- Demarcke, M.; Müller, J.F.; Schoon, N.; Van Langenhove, H.; Dewulf, J.; Joó, E.; Steppe, K.; Šimpraga, M.; Heinesch, B.; Aubinet, M.; et al. History effect of light and temperature on monoterpenoid emissions from Fagus sylvatica L. Atmos. Environ. 2010, 44, 3261–3268. [Google Scholar] [CrossRef]
- Geron, C.D.; Arnts, R.R. Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana. Atmos. Environ. 2010, 44, 4240–4251. [Google Scholar] [CrossRef]
- Guenther, A.B.; Zimmerman, P.R.; Harley, P.C.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability model evaluations and sensitivity analyses. J. Geophys. Res. Atmos. 1993, 98, 12609–12617. [Google Scholar] [CrossRef]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Fares, S.; Schnitzhofer, R.; Jiang, X.; Guenther, A.; Hansel, A.; Loreto, F. Observations of diurnal to weekly variations of monoterpene-dominated fluxes of volatile organic compounds from mediterranean forests: Implications for regional modeling. Environ. Sci. Technol. 2013, 47, 11073–11082. [Google Scholar] [CrossRef]
- Benjamin, W. Emission and Abundance of Biogenic Volatile Organic Compounds in Wind-Throw Areas of Upland Spruce Forests in Bavaria. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2012. [Google Scholar]
- Mochizuki, T.; Ikeda, F.; Tani, A. Effect of growth temperature on monoterpene emission rates of Acer palmatum. Sci. Total Environ. 2020, 745, 140886. [Google Scholar] [CrossRef]
- Tingey, D.T.; Manning, M.; Grothaus, L.C.; Burns, W.F. Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol. 1980, 65, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Lamb, B.; Westberg, H.; Allwine, G.; Quarles, T. Biogenic hydrocarbon emissions from deciduous and coniferous trees in the United States. J. Geophys. Res. Atmos. 1985, 90, 2380–2390. [Google Scholar] [CrossRef]
- Juuti, S.; Arey, J.; Atkinson, R. Monoterpene emission rate measurements from a Monterey pine. J. Geophys. Res. Atmos. 1990, 95, 7515–7519. [Google Scholar] [CrossRef]
- Grote, R.; Niinemets, U. Modeling volatile isoprenoid emissions–a story with split ends. Plant Biol. 2008, 10, 8–28. [Google Scholar] [CrossRef]
- Grote, R.; Monson, R.K.; Niinemets, U. Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions; Springer: Dordrecht, The Netherlands, 2013; pp. 315–355. [Google Scholar]
- Bai, J.; Guenther, A.; Turnipseed, A.; Greenberg, J.; Duhl, T. Seasonal and inter-annual variations in whole-ecosystem of isoprene and monoterpene emissions from a temperate mixed forest in Northern China. Atmos. Pollut. Res. 2015, 6, 696–707. [Google Scholar] [CrossRef]
- Copolovici, L.O.; Filella, I.; Llusia, J.; Niinemets, U.; Penuelas, J. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol. 2005, 139, 485–496. [Google Scholar] [CrossRef]
- Song, W.; Staudt, M.; Bourgeois, I.; Williams, J. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature. Biogeosciences 2014, 11, 1435–1447. [Google Scholar] [CrossRef]
- Tingey, D.T.; Turner, D.P.; Weber, J.A. Factors controlling the emissions of monoterpenes and other volatile organic compounds. In Trace Gas Emissions by Plants; Sharkey, T.D., Roy, J., Holland, E.A., Eds.; Academic Press: Cambridge, MA, USA, 1991; pp. 93–119. [Google Scholar]
- Loreto, F.; Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Fabozzi, C.; Tricoli, D. Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L. leaves by 13C labeling. Plant Physiol. 1996, 110, 1317–1322. [Google Scholar] [CrossRef]
- Penuelas, J.; Llusià, J. The complexity of factors driving volatile organic compound emissions by plants. Biol. Plant. 2001, 44, 481–487. [Google Scholar] [CrossRef]
- Niinemets, U.; Kuhn, U.; Monson, R.K.; Penuelas, J.; Staudt, M. The emission factor of volatile isoprenoids: Stress, acclimation, and developmental responses. Biogeosciences 2010, 7, 2203–2223. [Google Scholar] [CrossRef]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant. Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Brilli, F.; Ciccioli, P.; Frattoni, M.; Prestininzi, M.; Spanedda, A.F.; Loreto, F. Constitutive and herbivore-induced monoterpenes emitted by Populus× euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ. 2009, 32, 542–552. [Google Scholar] [CrossRef]
- Kleist, E.; Mentel, T.F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences 2012, 9, 5111–5123. [Google Scholar] [CrossRef]
- Loreto, F.; Pinelli, P.; Manes, F.; Kollist, H. Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol. 2004, 24, 361–367. [Google Scholar] [CrossRef]
- Loreto, F.; Forster, A.; Durr, M.; Csiky, O.; Seufert, G. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex fumigated with selected monoterpenes. Plant Cell Environ. 1998, 21, 101–107. [Google Scholar] [CrossRef]
- Copolovici, L.; Kännaste, A.; Pazouki, L.; Niinemets, Ü. Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J. Plant Physiol. 2012, 169, 664–672. [Google Scholar] [CrossRef]
- Staudt, M.; Seufert, G. Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.). Naturwissenschaften 1995, 82, 89–92. [Google Scholar] [CrossRef]
- Wildermuth, M.C.; Fall, R. Light-dependent isoprene emission (characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts). Plant Physiol. 1996, 112, 171–182. [Google Scholar] [CrossRef]
- Geron, C.; Owen, S.; Guenther, A.; Harley, P.; Greenberg, J.; Rasmussen, R.; Bai, J.H.; Li, Q.J.; Baker, B. Volatile organic compounds from vegetation in southern Yunnan Province, China: Emission rates and some potential regional implications. Atmos. Environ. 2006, 40, 1759–1773. [Google Scholar] [CrossRef]
- Laothawornkitkul, J.; Taylor, J.E.; Paul, N.D.; Hewitt, C.N. Biogenic volatile organic compounds in the Earth system. New Phytol. 2009, 183, 27–51. [Google Scholar] [CrossRef]
- Staudt, M.; Mir, C.; Joffre, R.; Rambal, S.; Bonin, A.; Landais, D.; Lumaret, R. Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in inter specific genetic introgression. New Phytol. 2004, 163, 573–584. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Peñuelas, J.; Owen, S.M.; Llusià, J.; Munné-Bosch, S.; Bäck, J. Leaf carotenoid concentrations and monoterpene emission capacity under acclimation of the light reactions of photosynthesis. Boreal Environ. Res. 2009, 14, 794–806. [Google Scholar]
- Schuh, G.; Heiden, A.C.; Hoffmann, T.; Kahl, J.; Rockel, P.; Rudolph, J.; Wildt, J. Emissions of volatile organic compounds from sunflower and beech: Dependence on temperature and light intensity. J. Atmos. Chem. 1997, 27, 291–318. [Google Scholar] [CrossRef]
- Otter, L.; Guenther, A.; Wiedinmyer, C.; Fleming, G.; Harley, P.; Greenberg, J. Spatial and temporal variations in biogenic volatile organic compound emissions for Africa south of the equator. J. Geophys. Res. Atmos. 2003, 108, D13. [Google Scholar] [CrossRef]
- Nishimura, H.; Shimadera, H.; Kondo, A.; Bao, H.; Shrestha, K.L.; Inoue, Y. Evaluation of light dependence of monoterpene emission and its effect on surface ozone concentration. Atmos. Environ. 2015, 104, 143–153. [Google Scholar] [CrossRef]
- Sanadze, G.A. Isoprene effect-light-dependent emission of isoprene by green parts of plants. In Trace Gas Emissions by Plants; Academic Press: Cambridge, MA, USA, 1991; pp. 135–152. [Google Scholar]
- Kuhn, U.; Rottenberger, S.; Biesenthal, T.; Wolf, A.; Schebeske, G.; Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Tavares, T.M.; Kesselmeier, J. Isoprene and monoterpene emissions of Amazonian tree species during the wet season: Direct and indirect investigations on controlling environmental functions. J. Geophys. Res. 2002, 107, 8071. [Google Scholar] [CrossRef]
- Okumura, M.; Tani, A.; Shimomachi, A. Light-dependent monoterpene emissions from an oak species native to Asia. Environ. Control Biol. 2008, 46, 257–265. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Monson, R.K. State-of-the-art of BVOC research: What do we have and what have we missed? A synthesis. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions; Springer: Dordrecht, The Netherlands, 2013; pp. 509–528. [Google Scholar]
- Jardine, A.B.; Jardine, K.J.; Fuentes, J.D.; Martin, S.T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A.O.; Chambers, J.Q. Highly reactive light-dependent monoterpenes in the Amazon. Geophys. Res. Lett. 2015, 42, 1576–1583. [Google Scholar] [CrossRef]
- Penuelas, J.; Llusia, J. Seasonal emission of monoterpenes by the Mediterranean tree Quercus ilex in field conditions: Relations with photosynthetic rates, temperature and volatility. Physiol. Plant. 1999, 105, 641–647. [Google Scholar] [CrossRef]
- Sabillón, D.; Cremades, L.V. Diurnal and seasonal variation of monoterpene emission rates for two typical Mediterranean species (Pinus pinea and Quercus ilex) from field measurements-relationship with temperature and PAR. Atmos. Environ. 2001, 35, 4419–4431. [Google Scholar] [CrossRef]
- Bsaibes, S.; Piel, F.; Gros, V.; Truong, F.; Lafouge, F.; Ciuraru, R.; Buysse, P.; Kammer, J.; Loubet, B.; Staudt, M. Monoterpene Chemical Speciation with High Time Resolution Using a FastGC/PTR-MS: Results from the COV3ER Experiment on Quercus ilex. Atmosphere 2020, 11, 690. [Google Scholar] [CrossRef]
- Blande, J.D.; Turunen, K.; Holopainen, J.K. Pine weevil feeding on Norway spruce bark has a stronger impact on needle VOC emissions than enhanced ultraviolet-B radiation. Environ. Pollut. 2009, 157, 174–180. [Google Scholar] [CrossRef]
- Guidolotti, G.; Rey, A.; Medori, M.; Calfapietra, C. Isoprenoids emission in Stipa tenacissima L.: Photosynthetic control and the effect of UV light. Environ. Pollut. 2016, 208, 336–344. [Google Scholar] [CrossRef]
- Maja, M.M.; Kasurinen, A.; Holopainen, T.; Julkunen-Tiitto, R.; Holopainen, J.K. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen. Sci. Total Environ. 2016, 547, 39–47. [Google Scholar] [CrossRef]
- Mochizuki, T.; Amagai, T.; Tani, A. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica. Sci. Total Environ. 2018, 634, 900–908. [Google Scholar] [CrossRef]
- Jansen, R.M.C.; Miebach, M.; Kleist, E.; Van Henten, E.J.; Wildt, J. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Plant Biol. 2009, 11, 859–868. [Google Scholar] [CrossRef]
- Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; et al. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results. Atmos. Chem. Phys. 2013, 13, 11935–11947. [Google Scholar] [CrossRef]
- Mu, Z.; Llusià, J.; Liu, D.; Ogaya, R.; Asensio, D.; Zhang, C.; Peñuelas, J. Seasonal and diurnal variations of plant isoprenoid emissions from two dominant species in Mediterranean shrub land and forest submitted to experimental drought. Atmos. Environ. 2018, 191, 105–115. [Google Scholar] [CrossRef]
- Wu, C.; Pullinen, I.; Andres, S.; Carriero, G.; Fares, S.; Goldbach, H.; Hacker, L.; Kasal, T.; Kiendler-Scharr, A.; Kleist, E.; et al. Impacts of soil moisture on de novo monoterpene emissions from European beech, Holm oak, Scots pine, and Norway spruce. Biogeosciences 2015, 12, 177–191. [Google Scholar] [CrossRef]
- Bertin, N.; Staudt, M. Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 1996, 107, 456–462. [Google Scholar] [CrossRef]
- Blanch, J.S.; Peñuelas, J.; Llusià, J. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol. Plant. 2007, 131, 211–225. [Google Scholar] [CrossRef]
- Lavoir, A.V.; Staudt, M.; Schnitzler, J.P.; Landais, D.; Massol, F.; Rocheteau, A.; Rodriguez, R.; Zimmer, I.; Rambal, S. Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: Results from a through fall displacement experiment. Biogeosciences 2009, 6, 1167–1180. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Greenberg, J.; Llusia, J. Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol. Plant. 2009, 53, 351–355. [Google Scholar] [CrossRef]
- Simpraga, M.; Verbeeck, H.; Demarcke, M.; Joo, E.F.; Pokorska, O.; Amelynck, C.; Aubinet, M. Clear link between drought stress, photosynthesis and biogenic compounds in Fagus sylvatica L. Atmos. Environ. 2011, 45, 5254–5259. [Google Scholar] [CrossRef]
- Tani, A.; Ohno, T.; Saito, T.; Ito, S.; Yonekura, T.; Miwa, M. Effects of ozone on isoprene emission from two major Quercus species native to East Asia. J. Agric. Meteorol. 2017, 73, 195–202. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef]
- Beauchamp, J.; Wisthaler, A.; Hansel, A.; Kleist, E.; Miebach, M.; Niinemets, Ü.; Schurr, U.L.I.; Wildt, J. Ozone induced emissions of biogenic VOC from tobacco: Relationships between ozone uptake and emission of LOX products. Plant Cell Environ. 2005, 28, 1334–1343. [Google Scholar] [CrossRef]
- Miyama, T.; Tobita, H.; Uchiyama, K.; Yazaki, K.; Ueno, S.; Saito, T.; Matsumoto, A.; Kitao, M.; Izuta, T. Differences in monoterpene emission characteristics after ozone exposure between three clones representing major gene pools of Cryptomeria japonica. J. Agric. Meteorol. 2018, 74, 102–108. [Google Scholar] [CrossRef]
- Mochizuki, T.; Watanabe, M.; Koike, T.; Tani, A. Monoterpene emissions from needles of hybrid larch F1 (Larix gmelinii var. japonica× Larix kaempferi) grown under elevated carbon dioxide and ozone. Atmos. Environ. 2017, 148, 197–202. [Google Scholar] [CrossRef]
- Constable, J.; Litvak, M.E.; Greenberg, J.P.; Monson, R.K. Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob. Chang. Biol. 1999, 5, 252–267. [Google Scholar] [CrossRef]
- Rapparini, F.; Baraldi, R.; Miglietta, F.; Loreto, F. Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ. 2004, 27, 381–391. [Google Scholar] [CrossRef]
- Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environ. Pollut. 2013, 183, 71–80. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Llusià, J.; Filella, I.; Niinemets, Ü.; Arneth, A.; Wright, I.J.; Loreto, F.; Peñuelas, J. Nutrient-rich plants emit a less intense blend of volatile isoprenoids. New Phytol. 2018, 220, 773–784. [Google Scholar] [CrossRef]
- Staudt, M.; Bertin, N.; Frenzel, B.; Seufert, G. Seasonal variation in amount and composition of monoterpenes emitted by young Pinus pinea trees-implications for emission modeling. J. Atmos. Chem. 2000, 35, 77–99. [Google Scholar] [CrossRef]
- Kim, J.C. Factors controlling natural VOC emissions in a southeastern US pine forest. Atmos. Environ. 2001, 35, 3279–3292. [Google Scholar] [CrossRef]
- Komenda, M.; Koppmann, R. Monoterpene emissions from Scots pine (Pinus sylvestris): Field studies of emission rate variabilities. J. Geophys. Res. Atmos. 2002, 107, 4161. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, J.C.; Kim, K.J.; Son, Y.S.; Sunwoo, Y.; Han, J.S. Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 2008, 73, 470–478. [Google Scholar] [CrossRef]
- Hartikainen, K.; Riikonen, J.; Nerg, A.M.; Kivimäenpää, M.; Ahonen, V.; Tervahauta, A.; Kärenlampi, S.; Mäenpää, M.; Rousi, M.; Kontunen-Soppela, S.; et al. Impact of elevated temperature and ozone on the emission of volatile organic compounds and gas exchange of silver birch (Betula pendula Roth). Environ. Exp. Bot. 2012, 84, 33–43. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Niwa, S.; Mochizuki, T.; Tani, A.; Kusumoto, D.; Utsumi, Y.; Enoki, T.; Hiura, T. Seasonal variation in basal emission rates and composition of mono-and sesquiterpenes emitted from dominant conifers in Japan. Atmos. Environ. 2013, 69, 124–130. [Google Scholar] [CrossRef]
- Tarvainen, V.; Hakola, H.; Hellen, H.; Back, J.; Hari, P.; Kulmala, M. Temperature and light dependence of the volatile organic compounds (VOCs) emissions of Scots pine. Atmos. Chem. Phys. 2005, 5, 989–998. [Google Scholar] [CrossRef]
- Llusia, J.; Penuelas, J. Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am. J. Bot. 2000, 87, 133–140. [Google Scholar] [CrossRef]
- Janson, R.; de Serves, C. Acetone and monoterpene emissions from the boreal forest in northern Europe. Atmos. Environ. 2001, 35, 4629–4637. [Google Scholar] [CrossRef]
- Hakola, H.; Tarvainen, V.; Back, J.; Ranta, H.; Bonn, B.; Rinne, J.; Kulmala, M. Seasonal variation of monoterpene and sesquiterpene emission rates of Scots pine. Biogeosciences 2006, 3, 93–101. [Google Scholar] [CrossRef]
- Tian, Z.; Luo, Q.; Zuo, Z. Seasonal emission of monoterpenes from four chemotypes of Cinnamomum camphora. Ind. Crops Prod. 2021, 163, 113327. [Google Scholar] [CrossRef]
- Son, Y.S.; Kim, K.J.; Jung, I.H.; Lee, S.J.; Kim, J.C. Seasonal variations and emission fluxes of monoterpene emitted from coniferous trees in East Asia: Focused on Pinus rigida and Pinus koraiensis. J. Atmos. Chem. 2015, 72, 27–41. [Google Scholar] [CrossRef]
- Mochizuki, T.; Endo, Y.; Matsunaga, S.; Chang, J.; Ge, Y.; Huang, C.; Tani, A. Factors affecting monoterpene emission from Chamaecyparis obtusa. Geochem. J. 2011, 45, e15–e22. [Google Scholar] [CrossRef]
- Juráň, S.; Pallozzi, E.; Guidolotti, G.; Fares, S.; Šigut, L.; Calfapietra, C.; Alivernini, A.; Savi, F.; Večeřová, K.; Křůmal, K.; et al. Fluxes of biogenic volatile organic compounds above temperate Norway spruce forest of the Czech Republic. Agric. For. Meteorol. 2017, 232, 500–513. [Google Scholar] [CrossRef]
- Dement, W.A.; Tyson, B.J.; Mooney, H.A. Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemistry 1975, 14, 2555–2557. [Google Scholar] [CrossRef]
- Yokouchi, Y.; Yoshinari, A. Factors affecting the emission of monoterpenes from Red pine (Pinus densiflora). Plant Physiol. 1984, 75, 1009–1012. [Google Scholar] [CrossRef]
- McCormick, A.C.; Boeckler, G.A.; Köllner, T.G.; Gershenzon, J.; Unsicker, S.B. The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biol. 2014, 14, 304. [Google Scholar] [CrossRef]
- Taniguchi, S.; Hosokawa-Shinonaga, Y.; Tamaoki, D.; Yamada, S.; Akimitsu, V.; Gomi, K. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ. 2013, 37, 451–461. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J.; Asensio, D.; Munné-bosch, S. Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ. 2005, 28, 278–286. [Google Scholar] [CrossRef]
- Pazouki, L.; Niinemets, U. Multi-substrate terpene synthases: Their occurrence and physiological significance. Front. Plant Sci. 2016, 7, 1019. [Google Scholar] [CrossRef]
- Byron, J.; Kreuzwieser, J.; Purser, G.; Haren, J.V.; Nemiah Ladd, S.; Meredith, L.K.; Werner, C.; Williams, J. Chiral monoterpenes reveal forest emission mechanisms and drought responses. Nature 2022, 609, 307–327. [Google Scholar] [CrossRef]
- Lerdau, M.; Matson, P.; Fall, R.; Monson, R. Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga menziesii). Ecology 1995, 76, 2640–2647. [Google Scholar] [CrossRef]
- Ortega, J.; Helmig, D. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques–Part A. Chemosphere 2008, 72, 343–364. [Google Scholar] [CrossRef]
- Ortega, J.; Helmig, D.; Guenther, A.; Harley, P.; Pressley, S.; Vogel, C. Flux estimates and OH reaction potential of reactive biogenic volatile organic compounds (BVOCs) from a mixed northern hardwood forest. Atmos. Environ. 2007, 41, 5479–5495. [Google Scholar] [CrossRef]
- Steeghs, M.; Bais, H.P.; de Gouw, J.; Goldan, P.; Kuster, W.; Northway, M.; Fall, R.; Vivanco, J.M. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol. 2004, 135, 47–58. [Google Scholar] [CrossRef]
- Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME. Atmos. Meas. Tech. 2010, 3, 1615–1627. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Fares, S.; Harley, P.; Jardine, K.J. Bidirectional exchange of biogenic volatiles with vegetation: Emission sources, reactions, breakdown and deposition. Plant Cell Environ. 2014, 37, 1790–1809. [Google Scholar] [CrossRef] [PubMed]
- Malik, T.G.; Gajbhiye, T.; Pandey, S.K. Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of Central India. Environ. Monit. Assess. 2018, 190, 631. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhang, Y.; Zhang, H.; Song, W.; Wu, Z.; Wang, X. Design and characterization of a semi-open dynamic chamber for measuring biogenic volatile organic compound (BVOC) emissions from plants. Atmos. Meas Tech. 2022, 15, 79–93. [Google Scholar] [CrossRef]
Plant Species | β-Factor (K−1) | Season | Temperature Range (°C) | Ref |
---|---|---|---|---|
Pinus densiflora | 0.18 | Spring | Not given | [117] |
0.14 | Summer | |||
0.06 | Fall | |||
0.05 | Winter | |||
Pinus rigida | 0.07 | Spring | 22–42 | [125] |
0.04 | Summer | 23–40 | ||
0.03 | Fall | 10–22 | ||
0.08 | Winter | 11–15 | ||
Larix leptolepis | 0.14 | Spring | Not given | [49] |
0.14 | Summer | |||
0.07 | Fall | |||
n/a | Winter | |||
Pinus koraiensis | 0.26 | Spring | 23–45 | [125] |
0.09 | Summer | 26–35 | ||
0.18 | Fall | 18–29 | ||
0.08 | Winter | 5–18 | ||
Pinus sylvestris 1 | 0.13 | Early Spring | Not given | [120] |
0.08 | Late spring | |||
0.15 | Summer | |||
Pinus sylvestris 2 | 0.10 | Spring | Not given | [120] |
0.18 | Early Summer | |||
0.08 | Late Summer | |||
0.11 | Autumn | |||
Chamaecyparis obtusa | 0.08–0.35 | Winter | Not given | [126] |
0.07–0.12 | Spring | |||
0.13–0.15 | Summer | |||
0.024–0.16 | Autumn |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, T.G.; Sahu, L.K.; Gupta, M.; Mir, B.A.; Gajbhiye, T.; Dubey, R.; Clavijo McCormick, A.; Pandey, S.K. Environmental Factors Affecting Monoterpene Emissions from Terrestrial Vegetation. Plants 2023, 12, 3146. https://doi.org/10.3390/plants12173146
Malik TG, Sahu LK, Gupta M, Mir BA, Gajbhiye T, Dubey R, Clavijo McCormick A, Pandey SK. Environmental Factors Affecting Monoterpene Emissions from Terrestrial Vegetation. Plants. 2023; 12(17):3146. https://doi.org/10.3390/plants12173146
Chicago/Turabian StyleMalik, Tanzil Gaffar, Lokesh Kumar Sahu, Mansi Gupta, Bilal Ahmad Mir, Triratnesh Gajbhiye, Rashmi Dubey, Andrea Clavijo McCormick, and Sudhir Kumar Pandey. 2023. "Environmental Factors Affecting Monoterpene Emissions from Terrestrial Vegetation" Plants 12, no. 17: 3146. https://doi.org/10.3390/plants12173146