Chemical Characterization and Chemotaxonomic Significance of Essential Oil Constituents of Matricaria aurea Grown in Two Different Agro-Climatic Conditions
Abstract
:1. Introduction
2. Results and Discussions
No. | Country | City | Major Components (%) | Reference |
---|---|---|---|---|
1. | Tunisia | Sousse | 1,5 Bis (dicyclohexylphosphino)-pentane (4.0–44.7), 2-Ethoxy-6-ethyl-4,4,5- trimethyl-1,3-dioxa-4-sila-2 boracyclohex-5-ene (6.5–38.0), octahydrocoumarin 5,7-dimethyl (0–19.2), pentadecanoic acid (0–16.0), lauric acid (0–13.7), (2,5-Bis1,1-8 dimethyleth)thiophene (0–11.0), n-eicosanol (0–10.0), n-eicosane (0–6.6). | [43] |
2. | Saudi Arabia | Alkharj | Bisabolol oxide A (64.8), n-nonadecane (6.7), 2R,3R, ALL-E)-2,3-Epoxy-2,6,10,14-tetramethyl-16-(phenylthio) hexadeca-6,10,14-triene (5.8), trans-β-farnesene (3.0), 1-fluorododecane (2.1), β-bisabolene (1.9). | [45] |
3. | Jordan | Amman | (E, E)-α-Farnesene (50.2), γ-gurjunenepoxide (8.5), (E)-β-farnesene (8.1), (Z, E)-α-farnesene (4.4), cis-spiroether (3.9). | Present study |
4. | Saudi Arabia | Riyadh | α-Bisabolol (27.8), γ-gurjunenepoxide (21.7), (E, E)-α-farnesene (16.3), cis-spiroether (7.5), (E)-β-farnesene (2.7), (Z, E)-α-farnesene (1.4). | Present study |
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of M. aurea Essential Oils
3.3. GC and GC–MS Analysis of M. aurea Essential Oils
3.4. Calculation of Linear Retention Indices (LRIs)
3.5. Identification of Volatile Chemical Components
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukherjee, P.K.; Efferth, T.; Das, B.; Kar, A.; Ghosh, S.; Singha, S.; Debnath, P.; Sharma, N.; Bhardwaj, P.K.; Haldar, P.K. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine 2022, 98, 153930. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.; Brijesh, S. Phytochemistry and pharmacology of anti-depressant medicinal plants: A review. Biomed. Pharmacother. 2018, 104, 343–365. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Chaurasia, J.; Khan, R.; Dhand, C.; Verma, S. Role of medicinal plants of traditional use in recuperating devastating COVID-19 situation. Med. Aromat. Plants 2020, 9, 2167-0412. [Google Scholar]
- Kamran, M.; Kousar, R.; Ullah, S.; Khan, S.; Umer, M.F.; Rashid, H.U.; Khattak, M.I.K.; Rehman, M.U. Taxonomic distribution of medicinal plants for Alzheimer’s Disease: A cue to novel drugs. Int. J. Alzheimers Dis. 2020, 2020, 7603015. [Google Scholar] [CrossRef]
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, T.G.; Dhiman, S.; Arora, S.; Babbar, R. Novel herbs used in cosmetics for skin and hair care: A review. Plant Arch. 2020, 20, 3784–3793. [Google Scholar]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev. 2011, 5, 82. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Wahab, S.; Nisar, N.; Dera, A.A.; Alshahrani, M.Y.; Abullias, S.S.; Irfan, S.; Alam, M.M.; Srivastava, S. Evaluation of antibacterial properties of Matricaria aurea on clinical isolates of periodontitis patients with special reference to red complex bacteria. Saudi Pharm. J. 2020, 28, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Hudaib, M.; Mohammad, M.; Bustanji, Y.; Tayyem, R.; Yousef, M.; Abuirjeie, M.; Aburjai, T. Ethnopharmacological survey of medicinal plants in Jordan, Mujib Nature Reserve and surrounding area. J. Ethnopharmacol. 2008, 120, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Qnais, E. The analgesic effect of the ethanolic extract of Matricaria aurea. Turk. J. Biol. 2011, 35, 347–352. [Google Scholar] [CrossRef]
- Khan, M.; Abdullah, M.M.; Mahmood, A.; Al-Mayouf, A.M.; Alkhathlan, H.Z. Evaluation of Matricaria aurea extracts as effective anti-corrosive agent for mild steel in 1.0 M HCl and isolation of their active ingredients. Sustainability 2019, 11, 7174. [Google Scholar] [CrossRef]
- Ahmad, I.; Mir, M.A.; Srivastava, S.; Shati, A.A.; Elbehairi, S.E.I.; Irfan, S.; Abohashrh, M.; Nisar, N.; Bashir, N.; Srivastava, P. Phytochemical screening and in-vitro antibacterial and anticancer activity of crude extract of Matricaria aurea. Curr. Pharm. Des. 2021, 27, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, M.; Abdullah, M.M.; Al-Wahaibi, L.H.; Alkhathlan, H.Z. Characterization of secondary metabolites of leaf and stem essential oils of Achillea fragrantissima from central region of Saudi Arabia. Arab. J. Chem. 2020, 13, 5254–5261. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.T.; Khan, M.; Mousa, A.A.; Mahmood, A.; Alkhathlan, H.Z. Chemical diversity in leaf and stem essential oils of Origanum vulgare L. and their effects on microbicidal activities. AMB Express 2019, 9, 176. [Google Scholar] [CrossRef]
- Chelghoum, M.; Guenane, H.; Tahri, D.; Laggoun, I.; Marfoua, F.Z.; Rahmani, F.Z.; Khenifer, F.; Yousfi, M. Influence of altitude, precipitation, and temperature factors on the phytoconstituents, antioxidant, and α-amylase inhibitory activities of Pistacia atlantica. J. Food Meas. Charact. 2021, 15, 4411–4425. [Google Scholar] [CrossRef]
- Fasuan, T.O.; Chukwu, C.T.; Uchegbu, N.N.; Olagunju, T.M.; Asadu, K.C.; Nwachukwu, M.C. Effects of pre-harvest synthetic chemicals on post-harvest bioactive profile and phytoconstituents of white cultivar of Vigna unguiculata grains. J. Food Process. Preserv. 2022, 46, e16187. [Google Scholar] [CrossRef]
- Singh, R. Chemotaxonomy of medicinal plants: Possibilities and limitations. In Natural Products and Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 119–136. [Google Scholar]
- El-Shazly, A.; Hafez, S.; Wink, M. Comparative study of the essential oils and extracts of Achillea fragrantissima (Forssk.) Sch. Bip. and Achillea santolina L.(Asteraceae) from Egypt. Die Pharm. 2004, 59, 226–230. [Google Scholar]
- Zeedan, G.; Abdalhamed, A.; Ottai, M.; Abdelshafy, S.; Abdeen, E. Antimicrobial, antiviral activity and GC-MS analysis of essential oil extracted from Achillea fragrantissima plant growing in Sinai Peninsula, Egypt. J. Microb. Biochem. Technol. S 2014, 8, 1–7. [Google Scholar] [CrossRef]
- Farouk, A.; Ali, H.; Al-Khalifa, A.R.; Mohsen, M.; Fikry, R. Comparative study for the volatile constituents and the antioxidant activity of the essential oils of dried Achillea fragrantissima cultivated in Madinah Monawara, Saudi Arabia and Egypt. Int. J. Food Prop. 2019, 22, 395–404. [Google Scholar] [CrossRef]
- Alsohaili, S.A.; Al-fawwaz, A.T. Composition and antimicrobial activity of Achillea fragrantissima essential oil using food model media. Eur. Sci. J. 2014, 10, 156–165. [Google Scholar]
- Al-Jaber, H.I.; Abu Zarga, M.H.; Al-Aboudi, A.F.; Al-Qudah, M.A.; Al-Shawabkeh, A.F.; Abaza, I.F.; Abuaisheh, M.N.; Afifi, F.U. Essential oil composition and anticholinesterase activity evaluation of Achillea fragrantissima growing wild in Jordan. J. Herbs Spices Med. Plants 2018, 24, 272–281. [Google Scholar] [CrossRef]
- Marwah, R.; Fatope, M.; Deadman, M.; Ochei, J.; Al-Saidi, S. Antimicrobial activity and the major components of the essential oil of Plectranthus cylindraceus. J. Appl. Microbiol. 2007, 103, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.A.A.; Wurster, M.; Denkert, A.; Arnold, N.; Fadail, I.; Al-Didamony, G.; Lindequist, U.; Wessjohann, L.; Setzer, W.N. Chemical composition, antimicrobial, antioxidant and cytotoxic activity of essential oils of Plectranthus cylindraceus and Meriandra benghalensis from Yemen. Nat. Prod. Commun. 2012, 7, 1934578X1200700834. [Google Scholar] [CrossRef]
- Asres, K.; Tadesse, S.; Mazumder, A.; Bucar, F. Essential oil of Plectranthus cylindraceus Hochst. Ex. Benth from Ethiopia: Chemical composition and antimicrobial activity. J. Essent. Oil-Bear. Plants 2013, 16, 136–143. [Google Scholar] [CrossRef]
- Khan, M.; Al-Saleem, M.S.; Alkhathlan, H.Z. A detailed study on chemical characterization of essential oil components of two Plectranthus species grown in Saudi Arabia. J. Saudi Chem. Soc. 2016, 20, 711–721. [Google Scholar] [CrossRef]
- Khan, M.; Mahmood, A.; Alkhathlan, H.Z. Characterization of leaves and flowers volatile constituents of Lantana camara growing in central region of Saudi Arabia. Arab. J. Chem. 2016, 9, 764–774. [Google Scholar] [CrossRef]
- Acree, T.; Arn, H. Gas Chromatography-Olfactometry (GCO) of Natural Products. Flavornet and Human Odor Space, Sponsored by DATU Inc., (26/10). 2004. Available online: https://www.flavornet.org (accessed on 26 October 2022).
- NIST Mass Spectrometry Data Center. Retention Indices. In NIST Chemistry WebBook; NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022; p. 20899. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Babushok, V.; Linstrom, P.; Zenkevich, I. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Fraga, B.M.; Hernández, M.G.; Fernández, C.; Santana, J.M. A chemotaxonomic study of nine Canarian Sideritis species. Phytochemistry 2009, 70, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Ramazani, E.; Akaberi, M.; Emami, S.A.; Tayarani-Najaran, Z. Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms. Life Sci. 2022, 304, 120728. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Singh, M.; Dubey, V.; Srivastava, S.; Luqman, S.; Bawankule, D.U. α-(-)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation. Curr. Pharm. Biotechnol. 2014, 15, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.; Viljoen, A.M. A review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils. J. Am. Oil Chem. Soc. 2010, 87, 1–7. [Google Scholar] [CrossRef]
- D’Almeida, A.P.L.; Pacheco de Oliveira, M.T.; de Souza, É.T.; de Sá Coutinho, D.; Ciambarella, B.T.; Gomes, C.R.; Terroso, T.; Guterres, S.S.; Pohlmann, A.R.; Silva, P.M. α-bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice. Int. J. Nanomed. 2017, 12, 4479–4491. [Google Scholar] [CrossRef] [PubMed]
- Šalamon, I.; Ghanavati, M.; Abrahimpour, F. Potential of medicinal plant production in Iran and variability of chamomile (Matricaria recutita L.) essential oil quality. J. Essent. Oil-Bear. Plants 2010, 13, 638–643. [Google Scholar] [CrossRef]
- Gosztola, B.; Sárosi, S.; Németh, Έ. Variability of the essential oil content and composition of chamomile (Matricaria recutita L.) affected by weather conditions. Nat. Prod. Commun. 2010, 5, 1934578X1000500325. [Google Scholar] [CrossRef]
- Kheder, F.B.H.; Mahjoub, M.A.; Zaghrouni, F.; Kwaja, S.; Helal, A.N.; Mighri, Z. Chemical composition antioxidant and antimicrobial activities of the essential oils of Matricaria aurea Loefl. growing in Tunisia. J. Essent. Oil-Bear. Plants 2014, 17, 493–505. [Google Scholar] [CrossRef]
- Souza, F.; Souza, R.; Moraes, Â. Incorporation and release kinetics of alpha-bisabolol from PCL and chitosan/guar gum membranes. Braz. J. Chem. Eng. 2016, 33, 453–467. [Google Scholar] [CrossRef]
- Siddiqui, N.A. Chemical constituents of essential oil from flowers of Matricaria aurea grown in Saudi Arabia. Indian J. Drugs 2014, 2, 164–168. [Google Scholar]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
No. | Compounds * | M.F. | R.T. (min.) | LRILit | LRIExpa | LRIExpp | SMA (%) b | JMA (%) b |
---|---|---|---|---|---|---|---|---|
1 | (E)-3-Hexen-1-ol | C6H12O | 7.958 | 844 | 849 | 1370 | - | t |
2 | (Z)-3-Hexen-1-ol | C6H12O | 8.081 | 850 | 853 | 1389 | 0.2 | 0.5 |
3 | 2-Methylbutanoic acid | C5H10O2 | 8.173 | 832 | 855 | - | 0.2 | 0.5 |
4 | 1-Hexanol | C6H14O | 8.533 | 863 | 867 | 1359 | - | 0.1 |
5 | n-Nonane | C9H20 | 9.711 | 900 | 900 | 900 | - | t |
6 | 6-Methyl-5-Hepten-2-one | C8H14O | 12.994 | 981 | 987 | 1338 | 0.2 | 0.5 |
7 | 2-Pentylfuran | C9H14O | 13.158 | 984 | 991 | 1232 | - | 0.1 |
8 | Yomogi alcohol | C10H18O | 13.461 | 999 | 999 | 1402 | 0.1 | 0.1 |
9 | α-Terpinene | C10H16 | 14.143 | 1014 | 1017 | - | - | 0.1 |
10 | Limonene | C10H16 | 14.62 | 1024 | 1029 | 1197 | 0.1 | - |
11 | (Z)-β-Ocimene | C10H16 | 14.957 | 1032 | 1038 | 1235 | - | t |
12 | Benzeneacetaldehyde | C8H8O | 15.187 | 1036 | 1044 | 1642 | - | 0.1 |
13 | (E)-β-Ocimene | C10H16 | 15.356 | 1044 | 1049 | 1252 | 0.2 | 0.3 |
14 | γ-Terpinene | C10H16 | 15.573 | 1054 | 1055 | - | - | t |
15 | Artemesia ketone | C10H16O | 15.851 | 1056 | 1062 | 1350 | 1.8 ± 0.24 | 0.5 |
16 | cis-Linalool oxide | C10H18O2 | 16.157 | 1067 | 1073 | 1447 | - | 0.1 |
17 | Artemesia alcohol | C10H18O | 16.7 | 1080 | 1084 | 1511 | - | t |
18 | Linalool | C10H18O | 17.312 | 1095 | 1100 | 1552 | 0.1 | 0.1 |
19 | Nonanal | C9H18O | 17.477 | 1100 | 1105 | 1395 | 0.3 | 0.1 |
20 | Isoamyl isovalerate | C10H20O2 | 17.655 | - | 1109 | - | - | t |
21 | β-Thujone | C10H16O | 17.873 | 1112 | 1115 | - | 0.1 | - |
22 | Menthone | C10H18O | 19.294 | 1148 | 1154 | 1470 | - | 0.1 |
23 | Pinocarvone | C10H14O | 19.538 | 1160 | 1161 | - | t | - |
24 | Lavandulol | C10H18O | 19.807 | 1165 | 1168 | 1682 | 0.2 | 0.1 |
25 | Naphthalene | C10H8 | 20.425 | 1178 | 1185 | 1740 | - | 0.1 |
26 | n-Dodecane | C12H26 | 20.95 | 1200 | 1200 | 1200 | - | 0.1 |
27 | n-Decanal | C10H20O | 21.182 | 1201 | 1206 | 1500 | 0.1 | - |
28 | Hexyl 2-methylbutyrate | C11H22O2 | 22.254 | - | 1237 | 1430 | 0.1 | - |
29 | Carvone | C10H14O | 22.323 | 1239 | 1239 | - | t | 0.1 |
30 | Geraniol | C10H18O | 22.869 | 1249 | 1255 | - | - | 0.1 |
31 | Benzyl propanoate | C10H12O2 | 23.066 | 1257 | 1260 | 1796 | 0.1 | 0.1 |
32 | trans-2-Decenal | C10H18O | 23.292 | 1260 | 1267 | 1639 | - | 0.1 |
33 | Geranial | C10H16O | 23.452 | 1264 | 1272 | 1735 | - | 0.1 |
34 | Methyl 3-phenylpropanoate | C10H12O2 | 23.69 | - | 1279 | 1857 | - | 0.1 |
35 | p-Ethylacetophenone | C10H12O | 24.071 | 1279 | 1282 | - | - | 0.1 |
36 | Thymol | C10H14O | 24.23 | 1289 | 1294 | - | - | t |
37 | Perilla alcohol | C10H16O | 24.276 | 1294 | 1296 | 2001 | - | 0.2 |
38 | n-Tridecane | C13H28 | 24.392 | 1300 | 1300 | 1300 | - | t |
39 | Carvacrol | C10H14O | 24.675 | 1298 | 1304 | 2215 | - | 0.1 |
40 | n-Undecanal | C11H22O | 24.762 | 1305 | 1310 | 1607 | - | 0.1 |
41 | 2-Methylnaphthalene | C11H10 | 24.851 | - | 1313 | - | - | 0.1 |
42 | (2E, 4E)-Decadienal | C10H16O | 24.991 | 1315 | 1317 | 1807 | 0.2 | 0.1 |
43 | Myrteny acetate | C15H24 | 25.164 | 1324 | 1323 | 1691 | - | 0.1 |
44 | δ-Elemene | C15H24 | 25.758 | 1335 | 1341 | 1472 | t | t |
45 | Piperitenone | C10H14O | 25.799 | 1340 | 1343 | - | - | t |
46 | Eugenol | C10H12O2 | 26.487 | 1356 | 1361 | 2164 | - | 0.1 |
47 | cis-Carvyl acetate | C12H18O2 | 26.537 | 1365 | 1365 | - | t | - |
48 | Biphenyl | C12H10 | 27.061 | - | 1381 | - | t | |
49 | β-Maaliene | C15H24 | 27.186 | - | 1385 | 1524 | - | t |
50 | Benzyl isovalerate | C12H16O2 | 27.321 | - | 1389 | 0.1 | 0.1 | |
51 | α-Isocomene | C15H24 | 27.316 | 1387 | 1390 | - | - | t |
52 | β-Cubebene | C15H24 | 27.517 | 1387 | 1395 | - | - | 0.1 |
53 | Tetradecane | C14H30 | 27.65 | 1400 | 1400 | 1400 | t | 0.1 |
54 | 2, 6-Dimethylnaphthalene | C12H12 | 27.868 | - | 1406 | - | - | 0.2 |
55 | cis-α-Bergamotene | C15H24 | 27.931 | 1411 | 1415 | 0.1 | t | |
56 | β-Caryophyllene | C15H24 | 28.471 | 1417 | 1426 | 1599 | 0.2 | 0.3 |
57 | trans-α-Ionone | C13H20O | 28.598 | 1428 | 1430 | - | - | 0.1 |
58 | β-Gurjunene | C15H24 | 28.753 | 1431 | 1435 | 1595 | - | 0.1 |
59 | Aromadendrene | C15H24 | 28.894 | 1439 | 1440 | 1624 | - | 0.1 |
60 | (Z)-β-Farnesene | C15H24 | 29.063 | 1440 | 1445 | 1654 | 0.2 | 0.1 |
61 | (E)-β-Farnesene | C15H24 | 29.47 | 1454 | 1459 | 1668 | 2.7 ± 0.30 | 8.1 ± 2.62 |
62 | Dehydrosesquicineole | C15H24O | 29.896 | - | 1473 | 1721 | 0.9 | 0.8 |
63 | α-Curcumene | C15H22 | 30.229 | 1479 | 1483 | 1776 | - | 0.1 |
64 | Germacrene D | C15H24 | 30.364 | 1484 | 1487 | 1712 | 1.0 ± 0.02 | 1.9 ± 0.30 |
65 | trans-β-Ionone | C13H20O | 30.533 | 1487 | 1493 | 1944 | - | 0.1 |
66 | (Z, E)-α-Farnesene | C15H24 | 30.622 | - | 1496 | 1728 | 1.4 ± 0.85 | 4.4 ± 1.03 |
67 | Bicyclogermacrene | C15H24 | 30.833 | 1500 | 1503 | 1737 | 0.2 | 0.2 |
68 | α-Muurolene | C15H24 | 30.906 | 1500 | 1506 | 1724 | 0.2 | 0.1 |
69 | (E, E)-α-Farnesene | C15H24 | 31.116 | 1505 | 1513 | 1752 | 16.3 ± 0.02 | 50.2 ± 3.25 |
70 | γ-Cadinene | C15H24 | 31.289 | 1513 | 1517 | - | 0.1 | - |
71 | 7-epi-α-Selinene | C13H14 | 31.293 | 1520 | 1519 | 1769 | - | 0.1 |
72 | β-Sesquiphellanderene | C15H24 | 31.561 | 1521 | 1528 | 1773 | 0.4 | 0.2 |
73 | (Z, E)-Matricaria ester | C14H12O4 | 31.594 | - | 1530 | - | - | 0.2 |
74 | trans-γ-Bisabolene | C15H24 | 31.732 | 1529 | 1534 | - | - | 0.1 |
75 | α-Cadinene | C15H26 | 31.816 | 1537 | 1537 | - | - | 0.1 |
76 | (E, E)-Matricaria ester | C14H12O4 | 31.97 | - | 1543 | - | 0.3 | 0.1 |
77 | α-Calacorene | C15H20 | 32.047 | 1544 | 1545 | 1922 | - | 0.1 |
78 | Elemol | C15H26O | 32.214 | 1548 | 1551 | 2077 | - | 0.1 |
79 | Elemicin | C12H16O3 | 32.310 | 1555 | 1554 | 2231 | - | 0.1 |
80 | Sesquirosefuran | C15H22O | 32.391 | - | 1557 | 1896 | 0.2 | 0.4 |
81 | Diepicedrene-1-oxide | C15H24O | 32.501 | - | 1561 | 1942 | 2.0 ± 0.63 | 0.6 |
82 | trans-Nerolidol | C15H26O | 32.587 | 1561 | 1564 | - | 0.1 | |
83 | γ-Gurjunenepoxide | C15H24O | 32.71 | - | 1568 | 1966 | 21.7 ± 1.01 | 8.5 ± 2.23 |
84 | Caryophyllenyl alcohol | C15H26O | 32.891 | 1570 | 1574 | 2051 | 0.1 | - |
85 | Spathulenol | C15H24O | 33.207 | 1577 | 1585 | 2131 | 0.2 | 0.1 |
86 | Caryophyllene oxide | C15H24O | 33.395 | 1582 | 1592 | 1990 | 0.3 | 0.2 |
87 | n-Hexadecane | C16H34 | 33.632 | 1600 | 1600 | - | - | t |
88 | Sesquithuriferol | C15H26O | 33.683 | 1604 | 1601 | - | 0.3 | 0.4 |
89 | Geranyl isovalerate | C15H26O2 | 33.796 | 1606 | 1605 | 1905 | 0.1 | 0.1 |
90 | Humulene epoxide II | C15H24O | 33.895 | 1608 | 1609 | 2047 | 0.6 | 0.7 |
91 | Tetradecanal | C14H28O | 34.049 | 1611 | 1615 | 1925 | 0.5 | 0.1 |
92 | epi-Cedrol | C15H26O | 34.145 | 1618 | 1618 | 2148 | - | 0.3 |
93 | 10-epi-γ-Eudesmol | C15H26O | 34.24 | 1622 | 1622 | 2106 | 0.7 | 0.7 |
94 | γ-Eudesmol | C15H26O | 34.502 | 1630 | 1631 | 2172 | 0.2 | 0.2 |
95 | α-Acorenol | C15H26O | 34.514 | 1632 | 1633 | 2163 | 0.1 | 0.1 |
96 | Gossonorol | C15H22O | 34.821 | 1636 | 1643 | 2310 | 0.9 | 0.7 |
97 | τ-Muurolol | C15H26O | 34.96 | 1640 | 1647 | - | t | - |
98 | α-Muurolol | C15H26O | 34.976 | 1644 | 1649 | 2187 | 0.2 | 0.3 |
99 | β-Eudesmol | C15H26O | 35.058 | 1649 | 1652 | 2238 | 0.3 | 0.1 |
100 | α-Eudesmol | C15H26O | 35.171 | 1652 | 1656 | 0.1 | 0.1 | |
101 | α-Bisabolol oxide B | C15H26O2 | 35.261 | 1656 | 1659 | 2142 | 0.6 | 0.9 |
102 | Xanthoxylin | C10H12O4 | 35.349 | - | 1662 | 0.6 | 0.4 | |
103 | Intermedeol | C15H26O | 35.411 | 1665 | 1664 | - | - | 0.1 |
104 | Tridecanoic acid | C13H26O2 | 35.6 | - | 1671 | - | - | 0.2 |
105 | β-Bisabolol | C15H26O | 35.678 | 1674 | 1674 | 2140 | - | 0.6 |
106 | epi-α-Bisabolol | C15H26O | 36.071 | 1683 | 1688 | 2115 | - | 0.9 |
107 | α-Bisabolol | C15H26O | 36.128 | 1685 | 1691 | 2223 | 27.8 ± 1.37 | - |
108 | Geranyl tiglate | C15H26O | 36.233 | 1696 | 1694 | 2097 | - | 0.3 |
109 | (Z, Z)-Farnesol | C15H24O2 | 36.414 | 1698 | 1700 | 2322 | 0.2 | 0.1 |
110 | Pentadecanal | C15H30O | 36.786 | - | 1715 | 2043 | 0.2 | 0.1 |
111 | (Z, E)-Farnesol | C15H26O | 37.023 | 1722 | 1724 | 2365 | t | t |
112 | β-Farnesol | C15H26O | 37.577 | 1742 | 1745 | t | - | |
113 | α-Bisabolol oxide A | C15H26O2 | 37.908 | 1748 | 1758 | 2429 | t | - |
114 | Benzyl benzoate | C14H12O2 | 37.992 | 1759 | 1761 | 2607 | 0.1 | - |
115 | Tetradecanoic acid | C14H28O2 | 38.086 | - | 1765 | 0.1 | - | |
116 | Gurjunazulen | C15H18 | 38.236 | - | 1770 | 0.1 | - | |
117 | 3, 4′-Dimethylbiphenyl | C14H14 | 38.387 | - | 1776 | 0.1 | - | |
118 | 8-Cedren-13-ol acetate | C17H26O | 38.701 | 1788 | 1788 | - | t | |
119 | Octadecene | C18H36 | 38.807 | 1789 | 1792 | - | 0.1 | |
120 | Farnesyl acetate | C17H28O2 | 39.989 | 1845 | 1839 | 2257 | - | t |
121 | Phytone | C18H36O | 40.166 | - | 1846 | 2152 | 0.3 | 0.3 |
122 | (Z, Z)-Farnesyl acetone | C18H30O | 40.261 | 1860 | 1850 | 0.1 | 0.2 | |
123 | Pentadecanoic acid | C15H30O2 | 40.794 | - | 1871 | - | - | t |
124 | cis-Spiroether | C13H12O | 41.215 | 1879 | 1888 | - | 7.5 ± 1.23 | 3.9 ± 0.40 |
125 | trans-Spiroether | C13H12O | 41.499 | 1890 | 1899 | - | 0.2 | 0.1 |
126 | Methyl hexadecanoate | C17H34O2 | 42.107 | 1921 | 1925 | 2204 | 0.2 | 0.2 |
127 | Palmitic acid | C16H32O2 | 42.939 | 1959 | 1960 | - | 1.6 ± 0.40 | 0.7 |
128 | Methyl linoleate | C19H34O2 | 46.105 | 2095 | 2093 | - | - | 0.2 |
129 | Phytol | C20H40O | 46.999 | 1942 | 2129 | 2620 | 1.2 ± 0.06 | 1.6 ± 0.72 |
130 | Linoleic acid | C17H30O2 | 47.034 | 2132 | 2132 | - | - | 0.1 |
131 | Oleic acid | C18H34O2 | 47.156 | 2141 | 2137 | - | - | 0.1 |
132 | α-Linolenic acid | C18H30O2 | 47.166 | - | 2138 | - | 0.1 | - |
133 | cis-13-Octadecen-1-yl-acetate | C20H38O2 | 48.523 | - | 2194 | - | 0.1 | |
134 | n-Tricosane | C23H48 | 51.101 | 2300 | 2300 | 2300 | - | t |
135 | n-Pentacosane | C25H52 | 55.901 | 2500 | 2500 | 2500 | 0.7 | 0.6 |
Monoterpenes hydrocarbons | 0.3 | 0.4 | ||||||
Oxygenated monoterpenes | 2.3 | 1.7 | ||||||
Sesquiterpene hydrocarbons | 24.0 | 66.4 | ||||||
Oxygenated sesquiterpenes | 58.2 | 18.46 | ||||||
Aliphatic hydrocarbons | 0.7 | 0.9 | ||||||
Oxygenated aliphatic hydrocarbons | 4.0 | 3.9 | ||||||
Diterpenoids | 1.2 | 1.6 | ||||||
Aromatics | 1.0 | 1.3 | ||||||
Polyacetylenic | 7.7 | 4.0 | ||||||
Other components | 14.6 | 11.7 | ||||||
Total identified | 98.3 | 98.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Khan, M.; Alshareef, E.; Alaqeel, S.I.; Alkhathlan, H.Z. Chemical Characterization and Chemotaxonomic Significance of Essential Oil Constituents of Matricaria aurea Grown in Two Different Agro-Climatic Conditions. Plants 2023, 12, 3553. https://doi.org/10.3390/plants12203553
Khan M, Khan M, Alshareef E, Alaqeel SI, Alkhathlan HZ. Chemical Characterization and Chemotaxonomic Significance of Essential Oil Constituents of Matricaria aurea Grown in Two Different Agro-Climatic Conditions. Plants. 2023; 12(20):3553. https://doi.org/10.3390/plants12203553
Chicago/Turabian StyleKhan, Merajuddin, Mujeeb Khan, Eman Alshareef, Shatha Ibrahim Alaqeel, and Hamad Z. Alkhathlan. 2023. "Chemical Characterization and Chemotaxonomic Significance of Essential Oil Constituents of Matricaria aurea Grown in Two Different Agro-Climatic Conditions" Plants 12, no. 20: 3553. https://doi.org/10.3390/plants12203553