Next Issue
Volume 12, March-2
Previous Issue
Volume 12, February-2
 
 

Plants, Volume 12, Issue 5 (March-1 2023) – 228 articles

Cover Story (view full-size image): AGPs are heavily glycosylated with AGs that are usually composed of a β-1,3-galactan backbone with β-1,6-galactosyl or galactan side chains that are further decorated with arabinosyl and other minor sugar residues. This work describes the characterization of two Hyp-O-AGs isolated from (Ser-Hyp)32-EGFP fusion glycoproteins overexpressed in transgenic Arabidopsis suspension culture. It shows that the AGs of AGP glycomodules expressed by suspension cultured Arabidopsis and tobacco cells share a conserved galactan backbone structure. However, the AGPs expressed in Arabidopsis suspension culture lack t-rhamnosyl residues and have a much lower level of glucuronosylation compared to tobacco, suggesting the presence of distinct glycosyl transferases for AGP glycosylation in the two systems. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 2512 KiB  
Article
An Efficient Agrobacterium-Mediated Genetic Transformation Method for Solanum betaceum Cav. Embryogenic Callus
by Daniela Cordeiro, Ana Alves, Ricardo Ferraz, Bruno Casimiro, Jorge Canhoto and Sandra Correia
Plants 2023, 12(5), 1202; https://doi.org/10.3390/plants12051202 - 6 Mar 2023
Cited by 4 | Viewed by 5041
Abstract
Somatic embryogenesis in Solanum betaceum (tamarillo) has proven to be an effective model system for studying morphogenesis, since optimized plant regeneration protocols are available, and embryogenic competent cell lines can be induced from different explants. Nevertheless, an efficient genetic transformation system for embryogenic [...] Read more.
Somatic embryogenesis in Solanum betaceum (tamarillo) has proven to be an effective model system for studying morphogenesis, since optimized plant regeneration protocols are available, and embryogenic competent cell lines can be induced from different explants. Nevertheless, an efficient genetic transformation system for embryogenic callus (EC) has not yet been implemented for this species. Here, an optimized faster protocol of genetic transformation using Agrobacterium tumefaciens is described for EC. The sensitivity of EC to three antibiotics was determined, and kanamycin proved to be the best selective agent for tamarillo callus. Two Agrobacterium strains, EHA105 and LBA4404, both harboring the p35SGUSINT plasmid, carrying the reporter gene for β-glucuronidase (gus) and the marker gene neomycin phosphotransferase (nptII), were used to test the efficiency of the process. To increase the success of the genetic transformation, a cold-shock treatment, coconut water, polyvinylpyrrolidone and an appropriate selection schedule based on antibiotic resistance were employed. The genetic transformation was evaluated by GUS assay and PCR-based techniques, and a 100% efficiency rate was confirmed in the kanamycin-resistant EC clumps. Genetic transformation with the EHA105 strain resulted in higher values for gus insertion in the genome. The protocol presented provides a useful tool for functional gene analysis and biotechnology approaches. Full article
(This article belongs to the Special Issue Plant Genetic Engineering and Biotechnology)
Show Figures

Figure 1

25 pages, 2626 KiB  
Article
Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado (Persea americana L.) Seeds
by Kaja Kupnik, Mateja Primožič, Vanja Kokol, Željko Knez and Maja Leitgeb
Plants 2023, 12(5), 1201; https://doi.org/10.3390/plants12051201 - 6 Mar 2023
Cited by 12 | Viewed by 4828
Abstract
The aim of this research was to identify and quantify biologically active compounds from avocado (Persea americana L.) seeds (AS) utilizing different techniques with the use of ultrasound (US), ethanol (EtOH), and supercritical carbon dioxide (scCO2) for possible applications in [...] Read more.
The aim of this research was to identify and quantify biologically active compounds from avocado (Persea americana L.) seeds (AS) utilizing different techniques with the use of ultrasound (US), ethanol (EtOH), and supercritical carbon dioxide (scCO2) for possible applications in (bio)medicine, pharmaceutical, cosmetic, or other relevant industries. Initially, a study of the process efficiency (η) was carried out, which revealed yields in the range of 2.96–12.11 wt%. The sample obtained using scCO2 was found to be the richest in total phenols (TPC) and total proteins (PC), while the sample obtained with the use of EtOH resulted in the highest content of proanthocyanidins (PAC). Phytochemical screening of AS samples, quantified by the HPLC method, indicated the presence of 14 specific phenolic compounds. In addition, the activity of the selected enzymes (cellulase, lipase, peroxidase, polyphenol oxidase, protease, transglutaminase, and superoxide dismutase) was quantified for the first time in the samples from AS. Using DPPH radical scavenging activity, the highest antioxidant potential (67.49%) was detected in the sample obtained with EtOH. The antimicrobial activity was studied using disc diffusion method against 15 microorganisms. Additionally, for the first time, the antimicrobial effectiveness of AS extract was quantified by determination of microbial growth-inhibition rates (MGIRs) at different concentrations of AS extract against three strains of Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens) bacteria, three strains of Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus pyogenes) bacteria, and fungi (Candida albicans). MGIRs and minimal inhibitory concentration (MIC90) values were determined after 8 and 24 h of incubation, thus enabling the screening of antimicrobial efficacy for possible further applications of AS extracts as antimicrobial agents in (bio)medicine, pharmaceutical, cosmetic, or other industries. For example, the lowest MIC90 value was determined for B. cereus after 8 h of incubation in the case of UE and SFE extracts (70 μg/mL), indicating an outstanding result and the potential of AS extracts, as the MIC values for B. cereus have not been investigated so far. Full article
(This article belongs to the Special Issue Phytochemistry of Aromatic and Medicinal Plants)
Show Figures

Figure 1

11 pages, 1166 KiB  
Article
Interspecific Drought Cuing in Plants
by Omer Falik and Ariel Novoplansky
Plants 2023, 12(5), 1200; https://doi.org/10.3390/plants12051200 - 6 Mar 2023
Cited by 2 | Viewed by 1736
Abstract
Plants readily communicate with their pollinators, herbivores, symbionts, and the predators and pathogens of their herbivores. We previously demonstrated that plants could exchange, relay, and adaptively utilize drought cues from their conspecific neighbors. Here, we studied the hypothesis that plants can exchange drought [...] Read more.
Plants readily communicate with their pollinators, herbivores, symbionts, and the predators and pathogens of their herbivores. We previously demonstrated that plants could exchange, relay, and adaptively utilize drought cues from their conspecific neighbors. Here, we studied the hypothesis that plants can exchange drought cues with their interspecific neighbors. Triplets of various combinations of split-root Stenotaphrum secundatum and Cynodon dactylon plants were planted in rows of four pots. One root of the first plant was subjected to drought while its other root shared its pot with one of the roots of an unstressed target neighbor, which, in turn, shared its other pot with an additional unstressed target neighbor. Drought cuing and relayed cuing were observed in all intra- and interspecific neighbor combinations, but its strength depended on plant identity and position. Although both species initiated similar stomatal closure in both immediate and relayed intraspecific neighbors, interspecific cuing between stressed plants and their immediate unstressed neighbors depended on neighbor identity. Combined with previous findings, the results suggest that stress cuing and relay cuing could affect the magnitude and fate of interspecific interactions, and the ability of whole communities to endure abiotic stresses. The findings call for further investigation into the mechanisms and ecological implications of interplant stress cuing at the population and community levels. Full article
(This article belongs to the Special Issue Plant Signaling, Behavior and Communication)
Show Figures

Figure 1

14 pages, 3460 KiB  
Article
Insect Herbivory on Main Stem Enhances Induced Defense of Primary Tillers in Rice (Oryza sativa L.)
by Lu Tong, Wanghui Wu, Yibin Lin, Daoqian Chen, Rensen Zeng, Long Lu and Yuanyuan Song
Plants 2023, 12(5), 1199; https://doi.org/10.3390/plants12051199 - 6 Mar 2023
Cited by 3 | Viewed by 1609
Abstract
Clonal plants are interconnected to form clonal plant networks with physiological integration, enabling the reassignment as well as sharing of resources among the members. The systemic induction of antiherbivore resistance via clonal integration may frequently operate in the networks. Here, we used an [...] Read more.
Clonal plants are interconnected to form clonal plant networks with physiological integration, enabling the reassignment as well as sharing of resources among the members. The systemic induction of antiherbivore resistance via clonal integration may frequently operate in the networks. Here, we used an important food crop rice (Oryza sativa), and its destructive pest rice leaffolder (LF; Cnaphalocrocis medinalis) as a model to examine defense communication between the main stem and clonal tillers. LF infestation and MeJA pretreatment on the main stem for two days reduced the weight gain of LF larvae fed on the corresponding primary tillers by 44.5% and 29.0%, respectively. LF infestation and MeJA pretreatment on the main stem also enhanced antiherbivore defense responses in primary tillers: increased levels of a trypsin protease inhibitor, putative defensive enzymes, and jasmonic acid (JA), a key signaling compound involved in antiherbivore induced defenses; strong induction of genes encoding JA biosynthesis and perception; and rapid activation of JA pathway. However, in a JA perception OsCOI RNAi line, LF infestation on main stem showed no or minor effects on antiherbivore defense responses in primary tillers. Our work demonstrates that systemic antiherbivore defense operate in the clonal network of rice plants and JA signaling plays a crucial role in mediating defense communication between main stem and tillers in rice plants. Our findings provide a theoretical basis for the ecological control of pests by using the systemic resistance of cloned plants themselves. Full article
(This article belongs to the Special Issue Insect-Plant Interaction)
Show Figures

Figure 1

19 pages, 7314 KiB  
Article
Genome-Wide Identification and Evolutionary Analysis of Gossypium YTH Domain-Containing RNA-Binding Protein Family and the Role of GhYTH8 in Response to Drought Stress
by Wei Hao, Weipeng Wang, Xiangfen Xiao, Jialiang Sun, Bingjie Wu, Yuping Zhao, Shuaishuai Pei, Wenjia Fan, Dongbei Xu and Tengfei Qin
Plants 2023, 12(5), 1198; https://doi.org/10.3390/plants12051198 - 6 Mar 2023
Cited by 2 | Viewed by 2003
Abstract
YTH domain-containing proteins are one kind of RNA-binding protein involved in post-transcriptional regulation and play multiple roles in regulating the growth, development, and abiotic stress responses of plants. However, the YTH domain-containing RNA-binding protein family has not been previously studied in cotton. In [...] Read more.
YTH domain-containing proteins are one kind of RNA-binding protein involved in post-transcriptional regulation and play multiple roles in regulating the growth, development, and abiotic stress responses of plants. However, the YTH domain-containing RNA-binding protein family has not been previously studied in cotton. In this study, a total of 10, 11, 22, and 21 YTH genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium barbadense, and Gossypium hirsutum, respectively. These Gossypium YTH genes were categorized into three subgroups by phylogenetic analysis. The chromosomal distribution, synteny analysis, structures of Gossypium YTH genes, and the motifs of YTH proteins were analyzed. Furthermore, the cis-element of GhYTH genes promoter, miRNA targets of GhYTH genes, and subcellular localization of GhYTH8 and GhYTH16 were characterized. Expression patterns of GhYTH genes in different tissues, organs, and in response to different stresses were also analyzed. Moreover, functional verifications revealed that silencing GhYTH8 attenuated the drought tolerance in the upland cotton TM-1 line. These findings provide useful clues for the functional and evolutionary analysis of YTH genes in cotton. Full article
(This article belongs to the Special Issue The Trade-Offs between Growth and Development and Stress in Plants)
Show Figures

Figure 1

17 pages, 3566 KiB  
Article
Phytophthora pseudocryptogea, P. nicotianae and P. multivora Associated to Cycas revoluta: First Report Worldwide
by Francesco Aloi, Rossana Parlascino, Sebastiano Conti Taguali, Roberto Faedda, Antonella Pane and Santa Olga Cacciola
Plants 2023, 12(5), 1197; https://doi.org/10.3390/plants12051197 - 6 Mar 2023
Cited by 6 | Viewed by 3231
Abstract
A dieback was observed on three-year-old pot-grown plants of Cycas revoluta in Sicily (Italy). Symptoms, including stunting, yellowing and blight of the leaf crown, root rot and internal browning and decay of the basal stem, closely resembled the Phytophthora root and crown rot [...] Read more.
A dieback was observed on three-year-old pot-grown plants of Cycas revoluta in Sicily (Italy). Symptoms, including stunting, yellowing and blight of the leaf crown, root rot and internal browning and decay of the basal stem, closely resembled the Phytophthora root and crown rot syndrome, common in other ornamentals. Isolations from rotten stem and roots, using a selective medium, and from rhizosphere soil of symptomatic plants, using leaf baiting, yielded three Phytophthora species, P. multivora, P. nicotianae and P. pseudocryptogea, were obtained. Isolates were identified by both morphological characters and DNA barcoding analysis, using three gene regions: ITS, β-tub and COI. Phytophthora pseudocryptogea was the sole species isolated directly from the stem and roots. The pathogenicity of the isolates of the three Phytophthora species was tested on one-year-old potted plants of C. revoluta, using both stem inoculation by wounding, and root inoculation through infested soil. Phytophthora pseudocryptogea was the most virulent and, like P. nicotianae, reproduced all the symptoms of natural infections, while P. multivora was the least virulent and induced solely very mild symptoms. Phytophthora pseudocryptogea was identified as the causal agent of the decline of C. revoluta, as it was re-isolated from both the roots and stems of artificially infected symptomatic plants, thus fulfilling Koch’s postulates. Full article
(This article belongs to the Special Issue Crop Fungal, Oomycetic Disease and Control)
Show Figures

Figure 1

12 pages, 2555 KiB  
Article
Polyacrylamide Hydrogel Enriched with Amber for In Vitro Plant Rooting
by Lyudmyla Kernosenko, Kateryna Samchenko, Olena Goncharuk, Natalya Pasmurtseva, Tetiana Poltoratska, Olena Siryk, Oksana Dziuba, Oleg Mironov and Katarzyna Szewczuk-Karpisz
Plants 2023, 12(5), 1196; https://doi.org/10.3390/plants12051196 - 6 Mar 2023
Cited by 7 | Viewed by 2289
Abstract
In this work, a new material for in vitro plant rooting based on highly dispersed polyacrylamide hydrogel (PAAG) enriched with amber powder was synthesized and investigated. PAAG was synthesized by homophase radical polymerization with ground amber addition. Fourier transform infrared spectroscopy (FTIR) and [...] Read more.
In this work, a new material for in vitro plant rooting based on highly dispersed polyacrylamide hydrogel (PAAG) enriched with amber powder was synthesized and investigated. PAAG was synthesized by homophase radical polymerization with ground amber addition. Fourier transform infrared spectroscopy (FTIR) and rheological studies were used to characterize the materials. They showed that the synthesized hydrogels have physicochemical and rheological parameters similar to those of the standard agar media. The acute toxicity of PAAG-amber was estimated based on the influence of washing water on the viability of plant seeds (pea and chickpea) and Daphnia magna. It proved its biosafety after four washes. The impact on plant rooting was studied using the propagation of Cannabis sativa on synthesized PAAG-amber and compared with agar. The developed substrate stimulated the rooting of the plants to more than 98% in comparison to standard agar medium (95%). Additionally, the use of PAAG-amber hydrogel markedly enhanced metric indicators of seedlings: root length increased by 28%, stem length—by 26.7%, root weight—by 167%, stem weight—by 67%, root and stem length—by 27%, root and stem weight—by 50%. This means that the developed hydrogel significantly accelerates reproduction and allows obtaining a larger amount of plant material within a shorter period of time than the standard agar substrate. Full article
Show Figures

Figure 1

15 pages, 2524 KiB  
Article
Transcriptome Analysis Reveals a Major Gene Expression Pattern and Important Metabolic Pathways in the Control of Heterosis in Chinese Cabbage
by Ru Li, Shanshan Nie, Ning Zhang, Min Tian and Lugang Zhang
Plants 2023, 12(5), 1195; https://doi.org/10.3390/plants12051195 - 6 Mar 2023
Cited by 3 | Viewed by 1847
Abstract
Although heterosis is commonly used in Chinese cabbage, its molecular basis is poorly understood. In this study, 16Chinese cabbage hybrids were utilized as test subjects to explore the potential molecular mechanism of heterosis. RNA sequencing revealed 5815–10,252 differentially expressed genes (DEGs) (female parent [...] Read more.
Although heterosis is commonly used in Chinese cabbage, its molecular basis is poorly understood. In this study, 16Chinese cabbage hybrids were utilized as test subjects to explore the potential molecular mechanism of heterosis. RNA sequencing revealed 5815–10,252 differentially expressed genes (DEGs) (female parent vs. male parent), 1796–5990 DEGs (female parent-vs-hybrid), and 2244–7063 DEGs (male parent vs. hybrid) in 16 cross combinations at the middle stage of heading. Among of them, 72.83–84.20% DEGs conformed to the dominant expression pattern, which is the predominant expression pattern in hybrids. There were 13 pathways in which DEGs were significantly enriched in most cross combinations. Among them, the plant–pathogen interaction (ko04626) and circadian rhythm-plant (ko04712)were significantly enriched by DEGs in strong heterosis hybrids. WGCNA also proved that the two pathways were significantly related to heterosis in Chinese cabbage. Full article
Show Figures

Figure 1

14 pages, 1986 KiB  
Article
Ferula communis Root Extract: In Vitro Evaluation of the Potential Additive Effect with Chemotherapy Tamoxifen in Breast Cancer (MCF-7) Cells Part II
by Jessica Maiuolo, Natalizia Miceli, Federica Davì, Irene Bava, Luigi Tucci, Salvatore Ragusa, Maria Fernanda Taviano, Vincenzo Musolino, Micaela Gliozzi, Cristina Carresi, Roberta Macrì, Federica Scarano, Anna Rita Coppoletta, Antonio Cardamone, Carolina Muscoli, Ezio Bombardelli, Ernesto Palma and Vincenzo Mollace
Plants 2023, 12(5), 1194; https://doi.org/10.3390/plants12051194 - 6 Mar 2023
Cited by 2 | Viewed by 2713
Abstract
Ferula L., belonging to the Apiaceae family, is represented by about 170 species predominantly present in areas with a mild–warm–arid climate, including the Mediterranean region, North Africa and Central Asia. Numerous beneficial activities have been reported for this plant in traditional medicine, including [...] Read more.
Ferula L., belonging to the Apiaceae family, is represented by about 170 species predominantly present in areas with a mild–warm–arid climate, including the Mediterranean region, North Africa and Central Asia. Numerous beneficial activities have been reported for this plant in traditional medicine, including antidiabetic, antimicrobial, antiproliferative, anti-dysentery, stomachache with diarrhea and cramps remedies. FER-E was obtained from the plant F. communis, and precisely from the root, collected in Sardinia, Italy. A total of 25 g of root was mixed with 125 g of acetone (ratio 1:5, room temperature). The solution was filtered, and the liquid fraction was subjected to high pressure liquid chromatographic separation (HPLC). In particular, 10 mg of dry root extract powder, from F. communis, was dissolved in 10.0 mL of methanol, filtered with a 0.2 µm PTFE filter and subjected to HPLC analysis. The net dry powder yield obtained was 2.2 g. In addition, to reduce the toxicity of FER-E, the component ferulenol was removed. High concentrations of FER-E have demonstrated a toxic effect against breast cancer, with a mechanism independent of the oxidative potential, which is absent in this extract. In fact, some in vitro tests were used and showed little or no oxidizing activity by the extract. In addition, we appreciated less damage on the respective healthy cell lines (breast), assuming that this extract could be used for its potential role against uncontrolled cancer growth. The results of this research have also shown that F. communis extract could be used together with tamoxifen, increasing its effectiveness, and reducing side effects. However, further confirmatory experiments should be carried out. Full article
Show Figures

Graphical abstract

12 pages, 1792 KiB  
Article
Floating Mat Formation Makes Zizania latifolia More Competitive under the Conditions of Continuous Significant Water Level Rise
by Ji-Hui Wen, Bing-Yao Li, Hong-Yu Xiao, Cai-Ying Gong, An-Guo Gao, Yan-Hong Wang, De-Liang Li, Hong-Yuan Zeng, You-Zhi Li, Gui-Xiang Yuan, Hui Fu and Ai-Ping Wu
Plants 2023, 12(5), 1193; https://doi.org/10.3390/plants12051193 - 6 Mar 2023
Cited by 1 | Viewed by 1425
Abstract
Water level rise is considered an environmental filter for the growth and reproduction of aquatic plants in lakes. Some emergent macrophytes can form floating mats, enabling them to escape from the negative effects of deep water. However, an understanding of which species can [...] Read more.
Water level rise is considered an environmental filter for the growth and reproduction of aquatic plants in lakes. Some emergent macrophytes can form floating mats, enabling them to escape from the negative effects of deep water. However, an understanding of which species can be uprooted and form floating mats easily and what factors affect these tendencies remains greatly elusive. We conducted an experiment to determine whether the monodominance of Zizania latifolia in the emergent vegetation community in Lake Erhai was related to its floating mat formation ability and to try to find the reasons for its floating mat formation ability during the continuous increase in water level over the past few decades. Our results showed that both the frequency and biomass proportion of Z. latifolia were greater among the plants on the floating mats. Furthermore, Z. latifolia was more likely to be uprooted than the other three previously dominant emergent species due to its smaller angle between the plant and the horizontal plane, rather than the root:shoot or volume:mass ratios. The dominance of Z. latifolia in the emergent community in Lake Erhai is due to its easier ability to become uprooted, allowing it to outperform other emergent species and become the single dominant emergent species under the environmental filter of deep water. The ability to uproot and form floating mats may be a competitive survival strategy for emergent species under the conditions of continuous significant water level rise. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

20 pages, 1482 KiB  
Article
Characterization of Invasiveness, Thermotolerance and Light Requirement of Nine Invasive Species in China
by Arvind Bhatt, Xingxing Chen, Marcelo F. Pompelli, Aftab Jamal, Roberto Mancinelli and Emanuele Radicetti
Plants 2023, 12(5), 1192; https://doi.org/10.3390/plants12051192 - 6 Mar 2023
Cited by 7 | Viewed by 1859
Abstract
Understanding responsible functional traits for promoting plant invasiveness could be important to aid in the development of adequate management strategies for invasive species. Seed traits play an important role in the plant life cycle by affecting dispersal ability, formation of the soil seed [...] Read more.
Understanding responsible functional traits for promoting plant invasiveness could be important to aid in the development of adequate management strategies for invasive species. Seed traits play an important role in the plant life cycle by affecting dispersal ability, formation of the soil seed bank, type and level of dormancy, germination, survival and/or competitive ability. We assessed seed traits and germination strategies of nine invasive species under five temperature regimes and light/dark treatments. Our results showed a considerable level of interspecific variation in germination percentage among the tested species. Both cooler (5/10 °C) and warmer (35/40 °C) temperatures tended to inhibit germination. All study species were considered small-seeded, and seed size did not affect germination in the light. Yet, a slightly negative correlation was found between germination in the dark and seed dimensions. We classified the species into three categories according to their germination strategies: (i) risk-avoiders, mostly displaying dormant seeds with low G%; (ii) risk-takers, reaching a high G% in a broad range of temperatures; (iii) intermediate species, showing moderate G% values, which could be enhanced in specific temperature regimes. Variability in germination requirements could be important to explain species coexistence and invasion ability of plants to colonize different ecosystems. Full article
(This article belongs to the Special Issue Plant Invasion Ecology)
Show Figures

Figure 1

14 pages, 8040 KiB  
Article
A High Performance Wheat Disease Detection Based on Position Information
by Siyu Cheng, Haolan Cheng, Ruining Yang, Junyu Zhou, Zongrui Li, Binqin Shi, Marshall Lee and Qin Ma
Plants 2023, 12(5), 1191; https://doi.org/10.3390/plants12051191 - 6 Mar 2023
Cited by 18 | Viewed by 3142
Abstract
Protecting wheat yield is a top priority in agricultural production, and one of the important measures to preserve yield is the control of wheat diseases. With the maturity of computer vision technology, more possibilities have been provided to achieve plant disease detection. In [...] Read more.
Protecting wheat yield is a top priority in agricultural production, and one of the important measures to preserve yield is the control of wheat diseases. With the maturity of computer vision technology, more possibilities have been provided to achieve plant disease detection. In this study, we propose the position attention block, which can effectively extract the position information from the feature map and construct the attention map to improve the feature extraction ability of the model for the region of interest. For training, we use transfer learning to improve the training speed of the model. In the experiment, ResNet built on positional attention blocks achieves 96.4% accuracy, which is much higher compared to other comparable models. Afterward, we optimized the undesirable detection class and validated its generalization performance on an open-source dataset. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

32 pages, 7275 KiB  
Article
Use of a Biostimulant to Mitigate the Effects of Excess Salinity in Soil and Irrigation Water in Tomato Plants
by Javier Zuzunaga-Rosas, Sara González-Orenga, Roberta Calone, Raúl Rodríguez-Heredia, Ali Asaff-Torres, Monica Boscaiu, Sara Ibáñez-Asensio, Héctor Moreno-Ramón and Oscar Vicente
Plants 2023, 12(5), 1190; https://doi.org/10.3390/plants12051190 - 6 Mar 2023
Cited by 6 | Viewed by 4145
Abstract
Global warming is linked to progressive soil salinisation, which reduces crop yields, especially in irrigated farmland on arid and semiarid regions. Therefore, it is necessary to apply sustainable and effective solutions that contribute to enhanced crop salt tolerance. In the present study, we [...] Read more.
Global warming is linked to progressive soil salinisation, which reduces crop yields, especially in irrigated farmland on arid and semiarid regions. Therefore, it is necessary to apply sustainable and effective solutions that contribute to enhanced crop salt tolerance. In the present study, we tested the effects of a commercial biostimulant (BALOX®) containing glycine betaine (GB) and polyphenols on the activation of salinity defense mechanisms in tomato. The evaluation of different biometric parameters and the quantification of biochemical markers related to particular stress responses (osmolytes, cations, anions, oxidative stress indicators, and antioxidant enzymes and compounds) was carried out at two phenological stages (vegetative growth and the beginning of reproductive development) and under different salinity conditions (saline and non-saline soil, and irrigation water), using two formulations (different GB concentrations) and two doses of the biostimulant. Once the experiments were completed, the statistical analysis revealed that both formulations and doses of the biostimulant produced very similar effects. The application of BALOX® improved plant growth and photosynthesis and assisted osmotic adjustment in root and leaf cells. The biostimulant effects are mediated by the control of ion transport, reducing the uptake of toxic Na+ and Cl ions and favoring the accumulation of beneficial K+ and Ca2+ cations, and a significant increase in leaf sugar and GB contents. BALOX® significantly reduced salt-induced oxidative stress and its harmful effects, as evidenced by a decrease in the concentration of oxidative stress biomarkers, such as malondialdehyde and oxygen peroxide, which was accompanied by the reduction of proline and antioxidant compound contents and the specific activity of antioxidant enzymes with respect to the non-treated plants. Full article
(This article belongs to the Special Issue Mode of Action of Plant Natural Products)
Show Figures

Figure 1

11 pages, 4683 KiB  
Article
Plant Growth, Yield, and Fruit Size Improvements in ‘Alicia’ Papaya Multiplied by Grafting
by Irene Salinas, Juan José Hueso, Danilo Força Baroni and Julián Cuevas
Plants 2023, 12(5), 1189; https://doi.org/10.3390/plants12051189 - 6 Mar 2023
Cited by 3 | Viewed by 4356
Abstract
Papaya (Carica papaya L.) is one of the few fruit crops still propagated by seeds. However, its trioecious condition and the heterozygosity of the seedlings make urgent the development of reliable vegetative propagation procedures. In this experiment, we compared, in a greenhouse [...] Read more.
Papaya (Carica papaya L.) is one of the few fruit crops still propagated by seeds. However, its trioecious condition and the heterozygosity of the seedlings make urgent the development of reliable vegetative propagation procedures. In this experiment, we compared, in a greenhouse sited in Almería (Southeast Spain), the performance of plantlets of ‘Alicia’ papaya originated by seed, grafting, and micropropagation. Our results show that grafted papayas were more productive than seedlings papayas (7% and 4% for total and commercial yield), while in vitro micropropagated papayas were the least productive (28 and 5% less in total and commercial yield than grafted papayas, respectively). Root density and dry weight were both higher in grafted papayas, while the seasonal production of good quality, well-formed, flowers was also enhanced in grafted papayas. On the contrary, micropropagated ‘Alicia’ plants yielded less and lighter fruit despite these in vitro plants blooming earlier and setting fruit at desirable lower trunk height. Less tall and less thick plants and reduced production of good quality flowers might explain these negative results. In addition, the root system of micropropagated papaya was more superficial, while in grafted papayas, the root system was larger and had more fine roots. Our results suggest that the cost-benefit ratio does not favor the choice of micropropagated plants unless elite genotypes are used. On the contrary, our results encourage more research on grafting, including the search for suitable rootstocks for papaya. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

20 pages, 1222 KiB  
Article
Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts
by Andrea Plaza, Lyanne Rodríguez, Anibal A. Concha-Meyer, René Cabezas, Elsie Zurob, Gastón Merlet, Iván Palomo and Eduardo Fuentes
Plants 2023, 12(5), 1188; https://doi.org/10.3390/plants12051188 - 6 Mar 2023
Cited by 12 | Viewed by 3056
Abstract
Aqueous and ethanolic extracts of tomato pomace were examined with the aim of optimizing the extraction process of compounds with cardioprotective activity. Once the results of the ORAC response variables, total polyphenols, °Brix, and antiplatelet activity of the extracts were obtained, a multivariate [...] Read more.
Aqueous and ethanolic extracts of tomato pomace were examined with the aim of optimizing the extraction process of compounds with cardioprotective activity. Once the results of the ORAC response variables, total polyphenols, °Brix, and antiplatelet activity of the extracts were obtained, a multivariate statistical analysis was performed using the Statgraphics Centurion XIX software. This analysis showed that the most relevant positive effects in the inhibition of platelet aggregation were 83 ± 2% when using the agonist TRAP-6, when the working conditions were the type of tomato pomace conditioning (drum-drying process at 115 °C), phase ratio (1/8), type of solvent (ethanol 20%), and type of extraction (ultrasound-assisted solid–liquid extraction). The extracts with the best results were microencapsulated and characterized by HPLC. The presence of chlorogenic acid (0.729 mg/mg of dry sample) was found, a compound that has a potential cardioprotective effect documented in various studies, in addition to rutin (2.747 mg/mg of dry sample) and quercetin (0.255 mg/mg of dry sample). These results show that the extraction efficiency of compounds with cardioprotective activity depends largely on the polarity of the solvent, thus playing an important role in the antioxidant capacity of the extracts of tomato pomace. Full article
(This article belongs to the Special Issue Pharmacology and Toxicology of Plants and Their Constituents)
Show Figures

Figure 1

17 pages, 1989 KiB  
Article
Evaluation of Propiophenone, 4-Methylacetophenone and 2′,4′-Dimethylacetophenone as Phytotoxic Compounds of Labdanum Oil from Cistus ladanifer L.
by María Espinosa-Colín, Irene Hernandez-Caballero, Celia Infante, Irene Gago, Javier García-Muñoz and Teresa Sosa
Plants 2023, 12(5), 1187; https://doi.org/10.3390/plants12051187 - 6 Mar 2023
Cited by 2 | Viewed by 1975
Abstract
This is the first study to evaluate the phytotoxic activity of three phenolic compounds present in the essential oil of the labdanum of Cistus ladanifer, an allelopathic species of the Mediterranean ecosystem. Propiophenone, 4′-methylacetophenone, and 2′,4′-dimethylacetophenone slightly inhibit total germination and radicle [...] Read more.
This is the first study to evaluate the phytotoxic activity of three phenolic compounds present in the essential oil of the labdanum of Cistus ladanifer, an allelopathic species of the Mediterranean ecosystem. Propiophenone, 4′-methylacetophenone, and 2′,4′-dimethylacetophenone slightly inhibit total germination and radicle growth of Lactuca sativa, and they strongly delay germination and reduce hypocotyl size. On the other hand, the inhibition effect of these compounds on Allium cepa was stronger on total germination than on germination rate, and radicle length compared to hypocotyl size. The position and number of methyl groups will affect the efficacy of the derivative. 2′,4′-dimethylacetophenone was the most phytotoxic compound. The activity of the compounds depended on their concentration and presented hormetic effects. In L. sativa, on paper, propiophenone presented greater inhibition of hypocotyl size at greater concentrations, with IC50 = 0.1 mM, whereas 4′-methylacetophenone obtained IC50 = 0.4 mM for germination rate. When the mixture of the three compounds was applied, in L. sativa, on paper, the inhibition effect on total germination and the germination rate was significantly greater compared to the effect of the compounds when they were applied separately; moreover, the mixture inhibited radicle growth, whereas propiophenone and 4′-methylacetophenone did not exert such effect when applied separately. The activity of the pure compounds and that of the mixture also changed based on the substrate used. When the trial was conducted in soil, the separate compounds delayed the germination of the A. cepa to a greater extent compared to the trial on paper, although they stimulated seedling growth. In soil, L. sativa against 4′-methylacetophenone also showed the opposite effect at low concentrations (0.1 mM), with stimulation of germination rate, whereas propiophenone and 4′-methylacetophenone presented a slightly increased effect. Full article
Show Figures

Figure 1

15 pages, 2132 KiB  
Article
Variation in Photosynthetic Efficiency under Fluctuating Light between Rose Cultivars and its Potential for Improving Dynamic Photosynthesis
by Xiao-Qian Wang, Zhi-Lan Zeng, Zi-Ming Shi, Ji-Hua Wang and Wei Huang
Plants 2023, 12(5), 1186; https://doi.org/10.3390/plants12051186 - 6 Mar 2023
Cited by 5 | Viewed by 2279
Abstract
Photosynthetic efficiency under both steady-state and fluctuating light can significantly affect plant growth under naturally fluctuating light conditions. However, the difference in photosynthetic performance between different rose genotypes is little known. This study compared the photosynthetic performance under steady-state and fluctuating light in [...] Read more.
Photosynthetic efficiency under both steady-state and fluctuating light can significantly affect plant growth under naturally fluctuating light conditions. However, the difference in photosynthetic performance between different rose genotypes is little known. This study compared the photosynthetic performance under steady-state and fluctuating light in two modern rose cultivars (Rose hybrida), “Orange Reeva” and “Gelato”, and an old Chinese rose plant Rosa chinensis cultivar, “Slater’s crimson China”. The light and CO2 response curves indicated that they showed similar photosynthetic capacity under steady state. The light-saturated steady-state photosynthesis in these three rose genotypes was mainly limited by biochemistry (60%) rather than diffusional conductance. Under fluctuating light conditions (alternated between 100 and 1500 μmol photons m−2 m−1 every 5 min), stomatal conductance gradually decreased in these three rose genotypes, while mesophyll conductance (gm) was maintained stable in Orange Reeva and Gelato but decreased by 23% in R. chinensis, resulting in a stronger loss of CO2 assimilation under high-light phases in R. chinensis (25%) than in Orange Reeva and Gelato (13%). As a result, the variation in photosynthetic efficiency under fluctuating light among rose cultivars was tightly related to gm. These results highlight the importance of gm in dynamic photosynthesis and provide new traits for improving photosynthetic efficiency in rose cultivars. Full article
(This article belongs to the Special Issue Photosynthesis under Environmental Fluctuations)
Show Figures

Figure 1

16 pages, 13100 KiB  
Article
Earlywood Anatomy Highlights the Prevalent Role of Winter Conditions on Radial Growth of Oak at Its Distribution Boundary in NW Iberia
by Ignacio García-González and Manuel Souto-Herrero
Plants 2023, 12(5), 1185; https://doi.org/10.3390/plants12051185 - 6 Mar 2023
Viewed by 1650
Abstract
We compared climate–growth relationships (1956–2013) of two natural pedunculate oak (Quercus robur L.) stands with different water-holding capacities growing at the species distribution limit of the Mediterranean Region in NW Iberia. For this, tree-ring chronologies of earlywood vessel size (separating the first [...] Read more.
We compared climate–growth relationships (1956–2013) of two natural pedunculate oak (Quercus robur L.) stands with different water-holding capacities growing at the species distribution limit of the Mediterranean Region in NW Iberia. For this, tree-ring chronologies of earlywood vessel size (separating the first row from the other vessels) and latewood width were obtained. Earlywood traits were coupled to conditions during dormancy, whereby an elevated winter temperature appears to induce a high consumption of carbohydrates, resulting in smaller vessels. This effect was reinforced by waterlogging at the wettest site, whose correlation to winter precipitation was strongly negative. Soil water regimes caused differences between vessel rows, since all earlywood vessels were controlled by winter conditions at the wettest site, but only the first row at the driest one; radial increment was related to water availability during the previous rather than the current season. This confirms our initial hypothesis that oak trees near their southern distribution boundary adopt a conservative strategy, prioritizing reserve storage under limiting conditions during the growing period. We believe that wood formation is highly dependent on the balance between the previous accumulation of carbohydrates and their consumption to maintain both respiration during dormancy and early spring growth. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

13 pages, 1701 KiB  
Article
Native Microbes Amplify Native Seedling Establishment and Diversity While Inhibiting a Non-Native Grass
by Liz Koziol, Thomas P. McKenna and James D. Bever
Plants 2023, 12(5), 1184; https://doi.org/10.3390/plants12051184 - 6 Mar 2023
Cited by 7 | Viewed by 1996
Abstract
Although several studies have shown increased native plant establishment with native microbe soil amendments, few studies have investigated how microbes can alter seedling recruitment and establishment in the presence of a non-native competitor. In this study, the effect of microbial communities on seedling [...] Read more.
Although several studies have shown increased native plant establishment with native microbe soil amendments, few studies have investigated how microbes can alter seedling recruitment and establishment in the presence of a non-native competitor. In this study, the effect of microbial communities on seedling biomass and diversity was assessed by seeding pots with both native prairie seeds and a non-native grass that commonly invades US grassland restorations, Setaria faberi. Soil in the pots was inoculated with whole soil collections from ex-arable land, late successional arbuscular mycorrhizal (AM) fungi isolated from a nearby tallgrass prairie, with both prairie AM fungi and ex-arable whole soil, or with a sterile soil (control). We hypothesized (1) late successional plants would benefit from native AM fungi, (2) that non-native plants would outcompete native plants in ex-arable soils, and (3) early successional plants would be unresponsive to microbes. Overall, native plant abundance, late successional plant abundance, and total diversity were greatest in the native AM fungi+ ex-arable soil treatment. These increases led to decreased abundance of the non-native grass S. faberi. These results highlight the importance of late successional native microbes on native seed establishment and demonstrate that microbes can be harnessed to improve both plant community diversity and resistance to invasion during the nascent stages of restoration. Full article
(This article belongs to the Special Issue Symbiosis of Plants with Mycorrhizal and Endophytic Fungi)
Show Figures

Figure 1

11 pages, 1780 KiB  
Communication
Methoxyflavones from Black Ginger (Kaempferia parviflora Wall. ex Baker) and their Inhibitory Effect on Melanogenesis in B16F10 Mouse Melanoma Cells
by Chen Huo, Sullim Lee, Min Jeong Yoo, Bum Soo Lee, Yoon Seo Jang, Ho Kyong Kim, Seulah Lee, Han Yong Bae and Ki Hyun Kim
Plants 2023, 12(5), 1183; https://doi.org/10.3390/plants12051183 - 5 Mar 2023
Cited by 5 | Viewed by 3698
Abstract
Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our [...] Read more.
Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our ongoing phytochemical study aimed at discovering bioactive natural products, we investigated potential bioactive methoxyflavones from K. parviflora rhizomes. Phytochemical analysis aided by liquid chromatography–mass spectrometry (LC-MS) led to the isolation of six methoxyflavones (16) from the n-hexane fraction of the methanolic extract of K. parviflora rhizomes. The isolated compounds were structurally determined to be 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2), 7,4′-dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4′-trimethylkaempferol (5), and 5-hydroxy-3,7,3′,4′-tetramethoxyflavone (6), based on NMR data and LC-MS analysis. All of the isolated compounds were evaluated for their anti-melanogenic activities. In the activity assay, 7,4′-dimethylapigenin (3) and 3,5,7-trimethoxyflavone (4) significantly inhibited tyrosinase activity and melanin content in IBMX-stimulated B16F10 cells. In addition, structure–activity relationship analysis revealed that the methoxy group at C-5 in methoxyflavones is key to their anti-melanogenic activity. This study experimentally demonstrated that K. parviflora rhizomes are rich in methoxyflavones and can be a valuable natural resource for anti-melanogenic compounds. Full article
(This article belongs to the Special Issue Research of Bioactive Substances in Plant Extracts II)
Show Figures

Figure 1

16 pages, 4408 KiB  
Article
Transcriptome Analysis Reveals Differentially Expressed Genes Involved in Cadmium and Arsenic Accumulation in Tea Plant (Camellia sinensis)
by Shiqi Liu, Xuqian Peng, Xiaojing Wang and Weibing Zhuang
Plants 2023, 12(5), 1182; https://doi.org/10.3390/plants12051182 - 5 Mar 2023
Cited by 4 | Viewed by 2306
Abstract
Tea (Camellia sinensis) is the second most consumed drink in the world. Rapid industrialization has caused various impacts on nature and increased pollution by heavy metals. However, the molecular mechanisms of cadmium (Cd) and arsenic (As) tolerance and accumulation in tea [...] Read more.
Tea (Camellia sinensis) is the second most consumed drink in the world. Rapid industrialization has caused various impacts on nature and increased pollution by heavy metals. However, the molecular mechanisms of cadmium (Cd) and arsenic (As) tolerance and accumulation in tea plants are poorly understood. The present study focused on the effects of heavy metals Cd and As on tea plants. Transcriptomic regulation of tea roots after Cd and As exposure was analyzed to explore the candidate genes involved in Cd and As tolerance and accumulation. In total, 2087, 1029, 1707, and 366 differentially expressed genes (DEGs) were obtained in Cd1 (with Cd treatment for 10 days) vs. CK (without Cd treatment), Cd2 (with Cd treatment for 15 days) vs. CK, As1 (with As treatment for 10 days) vs. CK (without Cd treatment), and As2 (with As treatment for 15 days) vs. CK, respectively. Analysis of DEGs showed that a total of 45 DEGs with the same expression patterns were identified in four pairwise comparison groups. One ERF transcription factor (CSS0000647) and six structural genes (CSS0033791, CSS0050491, CSS0001107, CSS0019367, CSS0006162, and CSS0035212) were only increased at 15 d of Cd and As treatments. Using weighted gene co-expression network analysis (WGCNA) revealed that the transcription factor (CSS0000647) was positively correlated with five structural genes (CSS0001107, CSS0019367, CSS0006162, CSS0033791, and CSS0035212). Moreover, one gene (CSS0004428) was significantly upregulated in both Cd and As treatments, suggesting that these genes might play important roles in enhancing the tolerance to Cd and As stresses. These results provide candidate genes to enhance multi-metal tolerance through the genetic engineering technology. Full article
(This article belongs to the Special Issue Molecular Breeding and Stress Physiology in Horticultural Crops)
Show Figures

Figure 1

21 pages, 1939 KiB  
Article
Young Tomato Plants Respond Differently under Single or Combined Mild Nitrogen and Water Deficit: An Insight into Morphophysiological Responses and Primary Metabolism
by Joana Machado, Marta W. Vasconcelos, Cristiano Soares, Fernanda Fidalgo, Ep Heuvelink and Susana M. P. Carvalho
Plants 2023, 12(5), 1181; https://doi.org/10.3390/plants12051181 - 5 Mar 2023
Cited by 7 | Viewed by 2833
Abstract
This study aimed to understand the morphophysiological responses and primary metabolism of tomato seedlings subjected to mild levels of nitrogen and/or water deficit (50% N and/or 50% W). After 16 days of exposure, plants grown under the combined deficit showed similar behavior to [...] Read more.
This study aimed to understand the morphophysiological responses and primary metabolism of tomato seedlings subjected to mild levels of nitrogen and/or water deficit (50% N and/or 50% W). After 16 days of exposure, plants grown under the combined deficit showed similar behavior to the one found upon exposure to single N deficit. Both N deficit treatments resulted in a significantly lower dry weight, leaf area, chlorophyll content, and N accumulation but in a higher N use efficiency when compared to control (CTR) plants. Moreover, concerning plant metabolism, at the shoot level, these two treatments also responded in a similar way, inducing higher C/N ratio, nitrate reductase (NR) and glutamine synthetase (GS) activity, expression of RuBisCO encoding genes as well as a downregulation of GS2.1 and GS2.2 transcripts. Interestingly, plant metabolic responses at the root level did not follow the same pattern, with plants under combined deficit behaving similarly to W deficit plants, resulting in enhanced nitrate and proline concentrations, NR activity, and an upregulation of GS1 and NR genes than in CTR plants. Overall, our data suggest that the N remobilization and osmoregulation strategies play a relevant role in plant acclimation to these abiotic stresses and highlight the complexity of plant responses under a combined N+W deficit. Full article
(This article belongs to the Special Issue New Insights of Plants to Combined Stresses)
Show Figures

Figure 1

19 pages, 2816 KiB  
Article
Transgenerational Herbivory Effects on Performance of Clonal Offspring of the Invasive Plant Alternanthera philoxeroides
by Qiu-Yue Fu, Cheng-Ling Yu, Ran Dong, Juan Shi, Fang-Li Luo, Jun-Qin Gao, Hong-Li Li, Bi-Cheng Dong and Fei-Hai Yu
Plants 2023, 12(5), 1180; https://doi.org/10.3390/plants12051180 - 4 Mar 2023
Cited by 2 | Viewed by 1740
Abstract
Interactions between alien plants and local enemies in introduced ranges may determine plant invasion success. However, little is known about whether herbivory-induced responses are transmitted across vegetative generations of plants and whether epigenetic changes are involved during this process. In a greenhouse experiment, [...] Read more.
Interactions between alien plants and local enemies in introduced ranges may determine plant invasion success. However, little is known about whether herbivory-induced responses are transmitted across vegetative generations of plants and whether epigenetic changes are involved during this process. In a greenhouse experiment, we examined the effects of herbivory by the generalist herbivore Spodoptera litura on the growth, physiology, biomass allocation and DNA methylation level of the invasive plant Alternanthera philoxeroides in the first- (G1), second- (G2) and third-generation (G3). We also tested the effects of root fragments with different branching orders (i.e., the primary- or secondary-root fragments of taproots) of G1 on offspring performance. Our results showed that G1 herbivory promoted the growth of the plants in G2 that sprouted from the secondary-root fragments of G1 but had a neutral or negative effect on the growth of the plants in G2 from the primary-root fragments. The growth of plants in G3 was significantly reduced by G3 herbivory but not affected by G1 herbivory. Plants in G1 exhibited a higher level of DNA methylation when they were damaged by herbivores than when they were not, while neither plants in G2 nor G3 showed herbivory-induced changes in DNA methylation. Overall, the herbivory-induced growth response within one vegetative generation may represent the rapid acclimatization of A. philoxeroides to the unpredictable generalist herbivores in the introduced ranges. Herbivory-induced trans-generational effects may be transient for clonal offspring of A. philoxeroides, which can be influenced by the branching order of taproots, but be less characterized by DNA methylation. Full article
(This article belongs to the Special Issue Plant Invasion 2022)
Show Figures

Figure 1

23 pages, 1673 KiB  
Article
Benzothiadiazole Affects Grape Polyphenol Metabolism and Wine Quality in Two Greek Cultivars: Effects during Ripening Period over Two Years
by Dimitrios-Evangelos Miliordos, Anastasios Alatzas, Nikolaos Kontoudakis, Marianne Unlubayir, Polydefkis Hatzopoulos, Arnaud Lanoue and Yorgos Kotseridis
Plants 2023, 12(5), 1179; https://doi.org/10.3390/plants12051179 - 4 Mar 2023
Cited by 4 | Viewed by 2018
Abstract
Grape berries are one of the most important sources of phenolic compounds, either consumed fresh or as wine. A pioneer practice aiming to enrich grape phenolic content has been developed based on the application of biostimulants such as agrochemicals initially designed to induce [...] Read more.
Grape berries are one of the most important sources of phenolic compounds, either consumed fresh or as wine. A pioneer practice aiming to enrich grape phenolic content has been developed based on the application of biostimulants such as agrochemicals initially designed to induce resistance against plant pathogens. A field experiment was conducted in two growing seasons (2019–2020) to investigate the effect of benzothiadiazole on polyphenol biosynthesis during grape ripening in Mouhtaro (red-colored) and Savvatiano (white-colored) varieties. Grapevines were treated at the stage of veraison with 0.3 mM and 0.6 mM benzothiadiazole. The phenolic content of grapes, as well as the expression level of genes involved in the phenylpropanoid pathway were evaluated and showed an induction of genes specifically engaged in anthocyanins and stilbenoids biosynthesis. Experimental wines deriving from benzothiadiazole-treated grapes exhibited increased amounts of phenolic compounds in both varietal wines, as well as an enhancement in anthocyanin content of Mouhtaro wines. Taken together, benzothiadiazole can be utilized to induce the biosynthesis of secondary metabolites with oenological interest and to improve the quality characteristics of grapes produced under organic conditions. Full article
Show Figures

Figure 1

27 pages, 5762 KiB  
Review
Chronic Ionizing Radiation of Plants: An Evolutionary Factor from Direct Damage to Non-Target Effects
by Gustavo Turqueto Duarte, Polina Yu. Volkova, Fabricio Fiengo Perez and Nele Horemans
Plants 2023, 12(5), 1178; https://doi.org/10.3390/plants12051178 - 4 Mar 2023
Cited by 22 | Viewed by 6466
Abstract
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical [...] Read more.
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical applications, and as a result of radiation disasters or nuclear tests. In the current review, we discuss modern sources of radioactivity, its direct and indirect effects on different plant species, and the scope of the radiation protection of plants. We present an overview of the molecular mechanisms of radiation responses in plants, which leads to a tempting conjecture of the evolutionary role of IR as a limiting factor for land colonization and plant diversification rates. The hypothesis-driven analysis of available plant genomic data suggests an overall DNA repair gene families’ depletion in land plants compared to ancestral groups, which overlaps with a decrease in levels of radiation exposure on the surface of Earth millions of years ago. The potential contribution of chronic IR as an evolutionary factor in combination with other environmental factors is discussed. Full article
(This article belongs to the Special Issue Effects of Chronic Irradiation in Plants)
Show Figures

Figure 1

12 pages, 3751 KiB  
Perspective
Crop Seed Phenomics: Focus on Non-Destructive Functional Trait Phenotyping Methods and Applications
by Gokhan Hacisalihoglu and Paul Armstrong
Plants 2023, 12(5), 1177; https://doi.org/10.3390/plants12051177 - 4 Mar 2023
Cited by 10 | Viewed by 3659
Abstract
Seeds play a critical role in ensuring food security for the earth’s 8 billion people. There is great biodiversity in plant seed content traits worldwide. Consequently, the development of robust, rapid, and high-throughput methods is required for seed quality evaluation and acceleration of [...] Read more.
Seeds play a critical role in ensuring food security for the earth’s 8 billion people. There is great biodiversity in plant seed content traits worldwide. Consequently, the development of robust, rapid, and high-throughput methods is required for seed quality evaluation and acceleration of crop improvement. There has been considerable progress in the past 20 years in various non-destructive methods to uncover and understand plant seed phenomics. This review highlights recent advances in non-destructive seed phenomics techniques, including Fourier Transform near infrared (FT-NIR), Dispersive-Diode Array (DA-NIR), Single-Kernel (SKNIR), Micro-Electromechanical Systems (MEMS-NIR) spectroscopy, Hyperspectral Imaging (HSI), and Micro-Computed Tomography Imaging (micro-CT). The potential applications of NIR spectroscopy are expected to continue to rise as more seed researchers, breeders, and growers successfully adopt it as a powerful non-destructive method for seed quality phenomics. It will also discuss the advantages and limitations that need to be solved for each technique and how each method could help breeders and industry with trait identification, measurement, classification, and screening or sorting of seed nutritive traits. Finally, this review will focus on the future outlook for promoting and accelerating crop improvement and sustainability. Full article
(This article belongs to the Special Issue Plant Morphology and Phylogenetic Evolution)
Show Figures

Figure 1

23 pages, 12749 KiB  
Article
Growth Developmental Defects of Mitochondrial Iron Transporter 1 and 2 Mutants in Arabidopsis in Iron Sufficient Conditions
by Joaquín Vargas, Isabel Gómez, Elena A. Vidal, Chun Pong Lee, A. Harvey Millar, Xavier Jordana and Hannetz Roschzttardtz
Plants 2023, 12(5), 1176; https://doi.org/10.3390/plants12051176 - 4 Mar 2023
Cited by 1 | Viewed by 2279
Abstract
Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant [...] Read more.
Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In Arabidopsis thaliana, two genes encode MIT homologues. In this study, we analyzed different AtMIT1 and AtMIT2 mutant alleles, and no phenotypic defects were observed in individual mutant plants grown in normal conditions, confirming that neither AtMIT1 nor AtMIT2 are individually essential. When we generated crosses between the Atmit1 and Atmit2 alleles, we were able to isolate homozygous double mutant plants. Interestingly, homozygous double mutant plants were obtained only when mutant alleles of Atmit2 with the T-DNA insertion in the intron region were used for crossings, and in these cases, a correctly spliced AtMIT2 mRNA was generated, although at a low level. Atmit1 Atmit2 double homozygous mutant plants, knockout for AtMIT1 and knockdown for AtMIT2, were grown and characterized in iron-sufficient conditions. Pleiotropic developmental defects were observed, including abnormal seeds, an increased number of cotyledons, a slow growth rate, pinoid stems, defects in flower structures, and reduced seed set. A RNA-Seq study was performed, and we could identify more than 760 genes differentially expressed in Atmit1 Atmit2. Our results show that Atmit1 Atmit2 double homozygous mutant plants misregulate genes involved in iron transport, coumarin metabolism, hormone metabolism, root development, and stress-related response. The phenotypes observed, such as pinoid stems and fused cotyledons, in Atmit1 Atmit2 double homozygous mutant plants may suggest defects in auxin homeostasis. Unexpectedly, we observed a possible phenomenon of T-DNA suppression in the next generation of Atmit1 Atmit2 double homozygous mutant plants, correlating with increased splicing of the AtMIT2 intron containing the T-DNA and the suppression of the phenotypes observed in the first generation of the double mutant plants. In these plants with a suppressed phenotype, no differences were observed in the oxygen consumption rate of isolated mitochondria; however, the molecular analysis of gene expression markers, AOX1a, UPOX, and MSM1, for mitochondrial and oxidative stress showed that these plants express a degree of mitochondrial perturbation. Finally, we could establish by a targeted proteomic analysis that a protein level of 30% of MIT2, in the absence of MIT1, is enough for normal plant growth under iron-sufficient conditions. Full article
(This article belongs to the Special Issue Biochemical Interactions of Iron Nutrition in Plants)
Show Figures

Figure 1

15 pages, 1895 KiB  
Article
Optimization of a New Antioxidant Formulation Using a Simplex Lattice Mixture Design of Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. Grown in Northern Morocco
by Ghizlane Nouioura, Meryem Tourabi, Asmae El Ghouizi, Mohammed Kara, Amine Assouguem, Asmaa Saleh, Omkulthom Al Kamaly, Faiçal El Ouadrhiri, Badiaa Lyoussi and El Houssine Derwich
Plants 2023, 12(5), 1175; https://doi.org/10.3390/plants12051175 - 3 Mar 2023
Cited by 14 | Viewed by 2519
Abstract
A statistical Simplex Lattice Mixture design was applied to develop a new formulation based on a combination of three plants grown in northern Morocco: Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. We examined the extraction yield, total polyphenol content (TPC), [...] Read more.
A statistical Simplex Lattice Mixture design was applied to develop a new formulation based on a combination of three plants grown in northern Morocco: Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. We examined the extraction yield, total polyphenol content (TPC), 2′2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging activity, and total antioxidant capacity (TAC). The results of this screening study showed that C. sativum L. had the highest content of DPPH (53.22%) and TAC (37.46 ± 0.29 mg Eq AA/g DW) compared to the other two plants, while P. crispum M. showed the highest TPC (18.52 ± 0.32 mg Eq GA/g DW). Furthermore, the ANOVA analysis of the mixture design showed that all three responses (DPPH, TAC, and TPC) were statistically significant, with determination coefficients of 97%, 93%, and 91%, respectively, and fit the cubic model. Moreover, the diagnostic plots showed good correlation between the experimental and predicted values. Therefore, the best combination obtained under optimal conditions (P1 = 0.611, P2 = 0.289, P3 = 0.100) was characterized by DPPH, TAC, and TPC of 56.21%, 72.74 mg Eq AA/g DW, and 21.98 mg Eq GA/g DW, respectively. The results of this study reinforce the view of stimulating the effect of plant combinations to achieve better antioxidant activities, thus providing a better formulation using designs of mixtures for the food industry and in cosmetic and pharmaceutical applications. Moreover, our findings support the traditional use of the Apiaceae plant species in managing many disorders cited in the Moroccan pharmacopeia. Full article
Show Figures

Graphical abstract

20 pages, 1624 KiB  
Review
Propagation of Medicinal Plants for Sustainable Livelihoods, Economic Development, and Biodiversity Conservation in South Africa
by Olufunke O. Fajinmi, Olaoluwa O. Olarewaju and Johannes Van Staden
Plants 2023, 12(5), 1174; https://doi.org/10.3390/plants12051174 - 3 Mar 2023
Cited by 2 | Viewed by 4142
Abstract
South Africa is blessed with vast plant resources and unique vegetation types. Indigenous South African medicinal plants have been well-harnessed to generate income in rural communities. Many of these plants have been processed into natural products to heal a variety of diseases, making [...] Read more.
South Africa is blessed with vast plant resources and unique vegetation types. Indigenous South African medicinal plants have been well-harnessed to generate income in rural communities. Many of these plants have been processed into natural products to heal a variety of diseases, making them valuable export commodities. South Africa has one of the most effective bio-conservation policies in Africa, which has protected the South African indigenous medicinal vegetation. However, there is a strong link between government policies for biodiversity conservation, the propagation of medicinal plants as a source of livelihood, and the development of propagation techniques by research scientists. Tertiary institutions nationwide have played a crucial role in the development of effective propagation protocols for valuable South African medicinal plants. The government-restricted harvest policies have also helped to nudge natural product companies and medicinal plant marketers to embrace the cultivated plants for their medicinal uses, and thus have helped support the South African economy and biodiversity conservation. Propagation methods used for the cultivation of the relevant medicinal plants vary according to plant family and vegetation type, among others. Plants from the Cape areas, such as the Karoo, are often resuscitated after bushfires, and propagation protocols mimicking these events have been established through seed propagation protocols with controlled temperatures and other conditions, to establish seedlings of such plants. Thus, this review highlights the role of the propagation of highly utilized and traded medicinal plants in the South African traditional medicinal system. Some valuable medicinal plants that sustain livelihoods and are highly sought-after as export raw materials are discussed. The effect of South African bio-conservation registration on the propagation of these plants and the roles of the communities and other stakeholders in the development of propagation protocols for highly utilized and endangered medicinal plants are also covered. The role of various propagation methods on the bioactive compounds’ composition of medicinal plants and issues of quality assurance are addressed. The available literature, media online news, newspapers, and other resources, such as published books and manuals, were scrutinized for information. Full article
(This article belongs to the Special Issue Propagation and Cultivation of Medicinal Plants)
Show Figures

Figure 1

15 pages, 4218 KiB  
Review
Dynamic Regulation of the Light-Harvesting System through State Transitions in Land Plants and Green Algae
by Hui Shang, Mei Li and Xiaowei Pan
Plants 2023, 12(5), 1173; https://doi.org/10.3390/plants12051173 - 3 Mar 2023
Cited by 7 | Viewed by 2297
Abstract
Photosynthesis constitutes the only known natural process that captures the solar energy to convert carbon dioxide and water into biomass. The primary reactions of photosynthesis are catalyzed by the photosystem II (PSII) and photosystem I (PSI) complexes. Both photosystems associate with antennae complexes [...] Read more.
Photosynthesis constitutes the only known natural process that captures the solar energy to convert carbon dioxide and water into biomass. The primary reactions of photosynthesis are catalyzed by the photosystem II (PSII) and photosystem I (PSI) complexes. Both photosystems associate with antennae complexes whose main function is to increase the light-harvesting capability of the core. In order to maintain optimal photosynthetic activity under a constantly changing natural light environment, plants and green algae regulate the absorbed photo-excitation energy between PSI and PSII through processes known as state transitions. State transitions represent a short-term light adaptation mechanism for balancing the energy distribution between the two photosystems by relocating light-harvesting complex II (LHCII) proteins. The preferential excitation of PSII (state 2) results in the activation of a chloroplast kinase which in turn phosphorylates LHCII, a process followed by the release of phosphorylated LHCII from PSII and its migration to PSI, thus forming the PSI–LHCI–LHCII supercomplex. The process is reversible, as LHCII is dephosphorylated and returns to PSII under the preferential excitation of PSI. In recent years, high-resolution structures of the PSI–LHCI–LHCII supercomplex from plants and green algae were reported. These structural data provide detailed information on the interacting patterns of phosphorylated LHCII with PSI and on the pigment arrangement in the supercomplex, which is critical for constructing the excitation energy transfer pathways and for a deeper understanding of the molecular mechanism of state transitions progress. In this review, we focus on the structural data of the state 2 supercomplex from plants and green algae and discuss the current state of knowledge concerning the interactions between antenna and the PSI core and the potential energy transfer pathways in these supercomplexes. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop